

Lecture Notes in Computer Science 3347
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

R.K. Ghosh Hrushikesha Mohanty (Eds.)

Distributed Computing
and Internet Technology

First International Conference, ICDCIT 2004
Bhubaneswar, India, December 22-24, 2004
Proceedings

13

Volume Editors

R.K. Ghosh
IIT Kanpur, Department of Computer Science and Engineering
Kanpur, India
E-mail: rkg@cse.iitk.ac.in

Hrushikesha Mohanty
University of Hyderabad, Department of Computer and Information Sciences
Hyderabad, India
E-mail: hmcs@uohyd.ernet.in

Library of Congress Control Number: 2004116532

CR Subject Classification (1998): D.1.3, C.2.4, D.2, F.2, H.3, H.4, D.4.6, K.6.5

ISSN 0302-9743
ISBN 3-540-24075-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11366805 06/3142 5 4 3 2 1 0

Program Chairs’ Message

This volume contains the papers presented at the 1st International Conference
on Distributed Computing and Internet Technology (ICDCIT 2004), December
22–24, 2004. The Conference was held in Bhubaneswar, the capital city of Orissa
and the city of a thousand temples. It was hosted by the Kalinga Institute of
Industrial Technology (KIIT).

We received 211 contributed papers from researchers in 15 countries across
the world. With the help of a strong international program committee that
comprised 48 members and four track chairs, Vijay Kumar (Distributed Com-
puting), Sanjay Madria (Internet Technology), Indrakshi Ray (System Security)
and Abhik Roychoudhury (Software Engineering), we offered an excellent tech-
nical program. Each of the submitted papers was reviewed by two reviewers and
by at least one program committee member. Every effort was made to include
the papers of the highest quality in the technical programme. Less than 23% of
the contributed papers were selected for presentation after the review process.
As the conference is a focused one, we had to be selective and had to return even
some good papers. We are confident that this volume will attest to the technical
quality of the conference.

The presentations were grouped under four tracks, namely Distributed Com-
puting, Internet Technology, Software Engineering, and System Security. Dis-
tributed Computing track presentations were organized into three different ses-
sions with first and second sessions each having two parallel sittings. The papers
in the Distributed track report results on several important problems like leader
election, modeling, protocols and performance, distributed transaction process-
ing, and information dissemination. The Internet Technology track was com-
prised of three sessions with the second session having two parallel sittings. The
track included papers about some recent problems on application development
using Internet technologies, related protocols, information retrieval, and service
delivery in the Internet environment. The Software Engineering track consisted
of two sessions with the second session having two parallel sittings. This track
contained some interesting papers on formal modeling, generating systems from
specifications, requirements engineering, distributed program analysis and pro-
gram reusability. The System Security track had three sessions; the second and
third sessions had two parallel sittings each. The track contained papers on in-
teresting issues in systems security. Several hot topics like intrusion detection
and access control were in the second session. Some security issues pertaining to
conventional and ad hoc computer networks were also presented in this session.
The third session addressed the issues in the design of secured systems. The pa-
pers discussed anonymity in mobile commerce, and techniques of steganography
and cryptography for achieving secured services. The preconference activities
included tutorials and a workshop. The workshop on Data Mining, Security and
Other Applications was organized by Prem Uppuluri (University of Missouri-

VI Preface

Kansas City) and Ashok Srivastava (NASA Ames Research Center, USA). The
tutorials were on security issues in distributed systems and enterprise resource
planning.

We take this opportunity to thank various people and organizations who con-
tributed to make this conference a grand success. Our heartfelt thanks to the
track chairs whose full cooperation and technical assessments were crucial to
achieve this high level of quality even in the first edition of the conference. The
full participation of the program committee members and the reviewers made it
possible to complete the peer-review process in time. We are extremely thankful
to them. We would like to thank our advisors and general chair for having con-
fidence in us. Our special thanks go to A. Samanta and P.K. Mishra of KIIT for
their support and encouragement in organizing this conference. We gratefully
acknowledge the financial and logistic support extended by KIIT in hosting this
conference. The All India Council of Technical Education (AICTE), Government
of India, New Delhi provided a generous grant-in-aid for organizing ICDCIT. We
thankfully acknowledge AICTE’s support. We are thankful to Springer for its
cooperation in publishing the proceedings in such a short time. We are also
thankful to our parent departments, Department of Computer Science and En-
gineering, IIT Kanpur and Department of Computer and Information Sciences,
University of Hyderabad, for providing infrastructural support to carry out the
editorial work. We thank Krithi Ramamritham and Pradeep Khosla for agree-
ing to deliver the lectures in the plenary sessions. We also extend our thanks to
Susil Jajodia, Bharat Bhargava and Vijay Kumar for agreeing to deliver the track
keynote addresses and Satish Chandra and Sharma Chakravarthy for agreeing
to deliver the invited talks. All the talks focused on the themes of the conference
and were well appreciated and thought provoking.

We would like to thank all the authors and attendees for making this confer-
ence a grand success. We sincerely hope that the three-day program of
ICDCIT 2004 provided a platform to researchers for further academic inter-
actions and collaborations. We plan to make the ICDCIT conference an annual
event with the support of KIIT and the cooperation of Springer. We hope the
ICDCIT proceedings in the coming years will report exciting research results in
hot topics in computer science and engineering.

December 2004 R.K. Ghosh
Hrushikesha Mohanty

General Chair’s Message

The convergence of computing, communication and control is setting the re-
search agenda for the coming years. Distributed computing and Internet tech-
nology are two important in this issues. The series of international conferences
on Distributed Computing and Internet Technology (ICDCIT 2004) was initi-
ated to provide a forum for researchers around the world. It was indeed a great
honor and privilege for me to welcome all the participants to ICDCIT 2004, held
in the historical cultural city of Bhubaneswar.

A true measure for a conference is the material being presented and also the
participation. I was extremely delighted to see a wealth of material represented
here that can be broadly categorized into the following tracks: (i) Distributed
Computing, (ii) Internet Technology, (iii) Software Engineering, (iv) System Se-
curity. In addition to these tracks, various tutorials were dedicated to Web min-
ing, intrusion detection, enterprise resource planning and distributed secured
systems. Gauging the impact of the convergence of computing, communications
and control on science and on society is very difficult. This conference is a forum
that shall attempt not only to comprehend the impact but also reshape it. It
was a delight to see the enthusiastic participation of researchers from a large
number of countries. The most interesting feature was that the conference was
held in a purely academic environment of a typical college in India that naturally
attracted a large number of students from Orissa and other parts of India.

I would like to thank the plenary speakers Krithi Ramamritham, IIT, Bombay
and Pradeep Khosla, CMU. In addition, I thank all the keynote speakers of
various tracks for joining us in making the conference a success.

I would like to thank R.K. Ghosh and H. Mohanty for compiling such an
excellent program. I would like to thank all the PC members, especially the
track chairs who did excellent work.

It is a pleasure to thank the Kalinga Institute of Industrial Technology
(KIIT), Bhubaneswar who took the brunt of the organization of ICDCIT 2004.
My special thanks go to A. Samanta, Chancellor, and P.K. Mishra, Pro-chancellor,
KIIT (Deemed University) for all the organizational efforts, and also to the in-
numerable dedicated volunteers who were responsible for the organization of
the conference. Finally, I thank Springer for having accepted to bring out the
proceedings in their LNCS series.

December 2004 R.K. Shyamasundar

Conference Organization

Advisory Committee
General Chair

R.K. Shyamasunder, TIFR, Mumbai, India

Advisors
Chris George, UNU/IIST, Macau, China
Gautam Barua, IIT Guwahati, India
Achyuta Samanta, KIIT, Bhubaneswar, India
M. Bhattacharjee, KIIT, Bhubaneswar, India

Program Committee
Program Chairs

R.K. Ghosh, IIT, Kanpur, India
Hrushikesha Mohanty, University of Hyderabad, India

Track Chairs
Distributed Computing:

Vijay Kumar, University of Missouri-Kansas City, USA
Internet Technology:

Sanjay K. Madria, University of Missouri-Rolla, USA
Systems Security:

Indrakshi Ray, Colorado State University, USA
Software Engineering:

Abhik Roychoudhury, National University of Singapore, Singapore

Program Committee Members
Distributed Computing Track

Albert Burger, Heriot-Watt University, UK
Ashok N. Srivastava, NASA Ames Research Center, USA
Bharat Bhargava, Purdue University, USA
Deendayal Dinakarpandian, University of Missouri-Kansas City, USA
Evaggelia Pitoura, University of Ioannina, Greece
Gi-Chul Yang, Mokpo National University, South Korea
Lein Harn, University of Missouri-Kansas City, USA
Margaret H. Dunham, Southern Methodist University, USA
Panos Chrysanthis, University of Pittsburgh, USA
Prem Uppuluri, University of Missouri-Kansas City, USA
Raj Kannan, Louisiana State University, USA
Sharma Chakravarthy, University of Texas at Arlington, USA
Yugyung Lee, University of Missouri-Kansas City, USA
Vijay K. Garg, University of Illinois, Chicago, USA
Vijay Vaishnavi, Georgia State University, USA

X Organization

Internet Technology Track
Dheeraj Bhardwaj, IIT Delhi, India
Gajanan Chinchwadkar, Sybase Inc., USA
Gi-Chul Yang, Mokpo National University, South Korea
Kajal Claypool, University of Massachusetts, Lowell, USA
Kalpdrum Passi, Laurentian University, Canada
Leszek Lilien, Purduev University, USA
Mukesh Mohania, IBM Research Lab, India
N.L. Sarda, IIT Mumbai, India
Neelima Gupta, University of Delhi, India
Pabitra Mitra, IIT Kanpur, India
Sourav Bhowmick, NTU, Singapore
S.K. Gupta, IIT Delhi, India
Shiyong Lu, Wayne State University, USA
Takahiro Hara, Osaka University, Japan

Software Engineering Track
Bikram Sengupta, IBM Research Lab, India
Gopal Gupta, University of Texas, Dallas, USA
Giorgio Delzanno, University of Genoa, Italy
Jin Song Dong, National University of Singapore, Singapore
Kung-Kiu Lau, University of Manchester, UK
Rushikesh K. Joshi, IIT Mumbai, India
Shaoying Liu, Hosei University, Japan
Supratik Mukhopadhyay, NASA IV&V Center, USA
Zhiming Liu, UNU/IIST, Macau, China

System Security Track
Aditya Bagchi, Indian Statistical Institute, India
Brajendra Panda, University of Arkansas, USA
Csilla Farkas, University of South Carolina, USA
Duminda Wijesekera, George Mason University, USA
Elena Ferrari, University of Insubria at Como, Italy
Elisa Bertino, Purdue University, USA
Indrajit Ray, Colorado State University, USA
Pierangela Samarati, University of Milan, Italy
Ravi Mukkamala, Old Dominion University, USA
Sabrina De Capitani di Vimercati, University of Milan, Italy
Vijayalakshmi Atluri, Rutgers University, USA

Workshop Organizers
Workshop on Data Mining, Security and Other Applications

Co-chairs
Ashok N. Srivastava, NASA Ames Research Center, USA
Prem Uppuluri, University of Missouri-Kansas City, USA

Organization XI

Organizing Committee
Organizing Chair

P.K. Mishra, KIIT, Bhubaneswar, India

Finance Chair
Dhanada K. Mishra, KIIT, Bhubaneswar, India

Scholarship Chair
Atul Negi, University of Hyderabad, India
M.M. Gore, IIIT-Allahabad, India

Host Institution
Kalinga Institute of Industrial Technology, KIIT, Bhubaneswar, Orissa, India

XII Organization

List of Referees

Debopam Acharya
Vijayalakshmi Atluri
A. Badia
Aditya Bagchi
Gautam Barua
Cory Beard
Elisa Bertino
Bharat Bhargava
Sourav Bhowmick
S. Biswas
Albert Burger
Sudip Chakraborty
Sharma Chakravarthy
B.D. Chaudhary
Gajanan Chinchwadkar
Panos Chrysanthis
Soon Ae Chun
Kajal Claypool
A.R. Dani
Pradipta De
Giorgio Delzanno
Deendayal Dinakarpandian
Jin Song Dong
Margaret H. Dunham
Mohamed Eltoweissy
Csilla Farkas
Eduardo Fernandez
Elena Ferrari
Michael Gertz
R.K. Ghosh
K. Gopinath
M.M. Gore
Ehud Gudes
Gopal Gupta
S.K. Gupta
Arobindo Gupta
R.C. Hansdah
Takahiro Hara
Lein Harn
Chittaranjan Hota
Chin-Tser Huang
Amit Jain
Rushikesh K. Joshi

Vamsi Kambhampati
Raj Kannan
Ng Wee Keong
Vijay Kumar
Sukhamay Kundu
Kung-Kiu Lau
Yugyung Lee
Ninghui Li
Leszek Lilien
Shaoying Liu
Zhiming Liu
Peng Liu
Shiyong Lu
Sanjay Madria
Rajib Mall
Nasir Memon
Pabitra Mitra
Hrushikesha Mohanty
Mohammed Moharrum
Ken Moody
Supratik Mukhopadhyay
Ravi Mukkamala
Glen Nuckolls
Martin Olivier
S.P. Pal
Brajendra Panda
Kalpdrum Passi
Evaggelia Pitoura
Nayot Poolsappit
Nitin Prabhu
Ashish Raniwala
Indrakshi Ray
Indrajit Ray
Sibabrata Ray
Abhik Roychoudhury
Pierangela Samarati
N.L. Sarda
Bikram Sengupta
Anna Squicciarini
Ashok N. Srivastava
Andrei Stoica
Zahir Tari
Rajeev Tripathi

Organization XIII

Prem Uppuluri
Vijay Vaishnavi
Sabrina De Capitani di Vimercati
Tao Wang

Duminda Wijesekera
Tai Xin
Wei Xu
Gi-Chul Yang

Table of Contents

Plenary Talk – I
Taming the Dynamics of Distributed Data

Krithi Ramamritham . 1

DISTRIBUTED COMPUTING

Keynote Address – I
Data in Your Space

Vijay Kumar . 2

Invited Talk – I
Enabling Technologies for Harnessing Information Explosion

Sharma Chakravarthy . 21

Algorithms and Modeling

Fair Leader Election by Randomized Voting
Siddhartha Brahma, Sandeep Macharla, Sudepkumar Prasant Pal,
Sudhir Kumar Singh . 22

An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks
Pradeep Parvathipuram, Vijay Kumar, Gi-Chul Yang 32

Distributed Balanced Tables: A New Approach
Amiya Tripathy, Tripti Negi, Anil Singh . 42

Systems, Protocols and Performance

Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster
Rajesh Kalmady, Digamber Sonvane . 50

Performance Evaluation of a Modified-Cyclic-Banyan Based ATM/IP
Switching Fabric

V.S.Tripathi, S.Tiwari . 60

A Scalable and Roboust QoS Architecture for WiFi P2P Networks
Sathish Rajasekhar, Ibrahim Khalil, Zahir Tari . 65

XVI Table of Contents

NEC: Node Energy Based Clustering Protocol for Wireless Sensor
Networks with Guaranteed Connectivity

Shilpa Dhar, Krishnendu Roy, Rajgopal Kannan 75

Energy Efficient Cache Invalidation in a Disconnected Mobile
Environment

Narottam Chand, Ramesh Joshi, Manoj Misra . 85

Transaction and Information Dissemination

An Efficient Data Dissemination Schemes for Location Dependent
Information Services

KwangJin Park, Moon Bae Song, Chong-Sun Hwang 96

A Publish/Subscribe Based Architecture of an Alert Server to Support
Prioritized and Persistent Alerts

Sharma Chakravarthy, Nishant Vontella . 106

A Nested Transaction Model for LDAP Transactions
Debmalya Biswas, K. Vidyasankar . 117

Team Transaction: A New Transaction Model for Mobile Ad Hoc
Networks

Ankur Gupta, Nitin Gupta, R.K.Ghosh, M.M.Gore 127

An Efficient Protocol for Checkpoint-Based Failure Recovery in
Distributed Systems

D.Goswami, S.Sahu . 135

Plenary Talk – II
Cybersecurity: Opportunities and Challenges

Pradeep Khosla . 145

INTERNET TECHNOLOGY

Keynote Address – II
Vulnerabilities and Threats in Distributed Systems

Bharat Bhargava, Leszek Lilien . 146

Query and Retrieval

A TNATS Approcah to Hidden Web Documents
Yih-Ling Hedley, Muhammad Younas, Anne James 158

Table of Contents XVII

Querying XML Documents from a Relational Database in the Presence
of DTDs

Manjeet Rege, Izabell Caraconcea, Shiyong Lu, Farshad Fotouhi 168

SAQI: Semantics Aware Query Interface
M.K. MadhuMohan, Sujatha R. Upadhyaya, P. Sreenivasa Kumar . . . 178

Protocol and Replica Management

Hybrid-Chord: A Peer-to-Peer System Based on Chord
Paola Flocchini, Amiya Nayak, Ming Xie . 194

A Generic and Flexible Model for Replica Consistency Management
Corina Ferdean, Mesaac Makpangou . 204

An Efficient Distributed Scheme for Source Routing Protocol in
Communication Networks

Vijayalakshmi Hadimani, R.C. Hansdah . 210

Ontology and Services

The Roles of Ontology and Metadata Registry for Interoperable
Databases

Jeong-Oog Lee, Myeong-Cheol Ko, Woojin Paik, Heung Seok Jeon,
Junghwan Kim, Hyun-Kyu Kang, Jinsoo Kim . 217

DHL: Semantically Rich Dynamic and Active Hyperlinks
Gi-Chul Yang, Sanjay Kumar Madria . 227

User-Class Based Service Acceptance Policy Using Cluster Analysis
Hea-Sook Park, Yan Ha, Soon-Mi Lee, Young-Whan Park,
Doo-Kwon Baik . 237

SOFTWARE ENGINEERING

Invited Talk – II
Tools and Techniques for Multi-site Sotware Development

Satish Chandra . 243

Analysis and Modelling

Specifying a Mobile Computing Infrastructure and Services
Satyajit Acharya, Chris George, Hrushikesha Mohanty 244

XVIII Table of Contents

Generating a Prototype from a UML Model of System Requirements
Xiaoshan Li, Zhiming Liu, Jifeng He, Quan Long 255

A Type System for an Aspect Oriented Programming Language
M. Devi Prasad, Banshi Dhar Chaudhary . 266

Secure Requirements Elicitation Through Triggered Message Sequence
Charts

Arnab Ray, Bikram Sengupta, Rance Cleaveland 273

Framework for Safe Reuse of Software Binaries
Ramakrishnan Venkitaraman, Gopal Gupta . 283

Tools and Techniques

Supporting Partial Component Matching
Padmanabhan Krishnan, Lai Wang . 294

A Novel Approach for Dynamic Slicing of Distributed Object-Oriented
Programs

Durga Prasad Mohapatra, Rajib Mall, Rajeev Kumar 304

Pattern Semantic Link: A Reusable Pattern Representation in MDA
Context

Jianfei Yin, Heqing Guo, Xinyi Peng, Manshan Lin 310

Compatibility Test and Adapter Generation for Interfaces of Software
Components

Johannes Maria Zaha, Marco Geisenberger, Martin Groth 318

A Modern Graphic Flowchart Layout Tool
Sukhamay Kundu . 329

SYSTEMS SECURITY

Keynote Address – III
A Flexible Authorization Framework for E-Commerce

Sushil Jajodia, Duminda Wijesekera . 336

Intrusion Detection and Access Control

Efficient Algorithms for Intrusion Detection
Niranjan K. Boora, Chiranjib Bhattacharyya, K. Gopinath 346

Table of Contents XIX

Proxy-Annotated Control Flow Graphs: Deterministic Context-Sensitive
Monitoring for Intrusion Detection

Samik Basu, Prem Uppuluri . 353

Using Schemas to Simplify Access Control for XML Documents
Indrakshi Ray, Marianna Muller . 363

Automatic Enforcement of Access Control Policies Among Dynamic
Coalitions

Vijayalakshmi Atluri, Janice Warner . 369

Network and Security

Implementing Consistency Checking in Correlating Attacks
Kaushal Sarda, Duminda Wijesekera, Sushil Jajodia 379

LSAD: Lightweight SYN Flooding Attack Detector
Seung-won Shin, Ki-young Kim, Jong-soo Jang . 385

UGSP: Secure Key Establishment Protocol for Ad-Hoc Network
Neelima Arora, R.K. Shyamasundar . 391

Tracing Attackers with Deterministic Edge Router Marking (DERM)
Shravan K. Rayanchu, Gautam Barua . 400

Secured Systems Design

Distributing Key Updates in Secure Dynamic Groups
Sandeep S. Kulkarni, Bezawada Bruhadeshwar . 410

Succinct and Fast Accessible Data Structures for Database Damage
Assessment

Jing Zhou, Brajendra Panda, Yi Hu . 420

A Secure Checkpointing Protocol for Survivable Server Design
Vamsi Kambhampati, Indrajit Ray, Eunjong Kim 430

Security Services

MobiCoin: Digital Cash for M-Commerce
Ranjit Abbadasari, Ravi Mukkamala, V. Valli Kumari 441

Cellular Automata : An Ideal Candidate for a Block Cipher
Debdeep Mukhopadhyay, Dipanwita RoyChowdhury 452

XX Table of Contents

NFD Technique for Efficient and Secured Information Hiding in Low
Resolution Images

S.N. Sivanandam, C.K. Gokulnath, K. Prasanna, S. Rajeev 458

WORKSHOP ON DATAMINING, SECURITY &
APPLICATION

Improving Feature Selection in Anomaly Intrusion Detection Using
Specifications

Yanxin Wang, Andrew Miner, Johnny Wong, Prem Uppuluri 468

Towards Automatic Learning of Valid Services for Honeypots
Vishal Chowdhary, Alok Tongaonkar, Tzi-cker Chiueh 469

Author Index . 471

Taming the Dynamics of Disributed Data

Krithi Ramamritham

IIT, Mumnai, India

Abstract. Data gathered from (wireless) sensor networks and those de-
livered today via the web reflect rapid and unpredictable changes in the
world around us. Clearly, the Quality of Service needs for such delivery
are much more stringent than for static data. This talk will examine
the nature of dynamics of distributed data, study the suitability of the
current infrastructure for disseminating time varying information, and
discuss fresh approaches to maintain the temporal coherency of dynamic
data. We argue that executing user queries over dynamic data at the
edge of the network, e.g., at Data Aggegators, improves scalability and
reduce overheads but poses challenges in terms of delivering consistent
query results in spite of data dynamics as well as failures in the infras-
tructure. How these challenges can be met by the judicious design of
algorithms for data dissemination, caching, and cooperation forms the
crux of the talk.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, p. 1, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 2–20, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Data in Your Space

Vijay Kumar

SCE, Computer Networking,
University of Missouri-Kansas City,

5100 Rockhill,
Kansas City, MO 64110, USA

kumarv@umkc.edu

Abstract. We envision a fully connected data space where flow of data
between any two points, is continuous. In this paper we discuss the research
and development activities for managing this data flow and present our
solutions to some of the problems in the areas of mobility, broadcast, web, and
security.

1 Introduction

We envision the real world or a part of it as a fully connected and highly dynamic
data space where data continuously flows between any two points. The states of the
data space are managed by the laws of nature, which we cannot mess around with and
the only way to manage our interaction with these states is to be “in sync” with the
natural events. The state of “being in sync” is to tame the flow of data. For example,
to handle natural events such as earthquake, tornado, flood, etc., we must fetch or
acquire and process necessary data on time for making necessary protection
arrangements. Thus a perfect synchronization in our interaction with nature can
guarantee minimum or no undesirable effects on our lives. Figure 1 illustrates our
view of the real world in terms of the fully connected data space.

Our data space is packed with functional entities which continuously exchange
information through wired and wireless links to complete the assigned tasks. For
example a taxi may communicate with a bus through wireless link or a hot air balloon
may communicate with the submarine through wireless link and so on. To achieve the
desired synchronization in this highly dynamic set of states one must examine all
possible scenarios of data flow. We categorize them into (a) temporal data, (b)
temporal and spatial data, and (c) free data [1]. Temporal data represents time-bound
events which can be hard, medium or soft real-time. For example traffic event data
can fall into any of these categories. Similarly weather data can be time-bound
because it must be broadcast under some time constraints. Space and time bound
event is related to two parameters consequently the data flow must happen under
location and time constraints. Traffic situation is related to a particular location and
importance is given to traffic condition in rush hour. Traffic data, therefore, must be
broadcast at certain time and from certain location. This gives rise to “Location
Dependent Data (LDD)” [1] and its processing must satisfy comparatively more
constraints. Finally, the free data represent event which can happen any time and

Data in Your Space 3

anywhere. We, however, believe that no event and therefore no data flow is entirely
free from temporal or spatial constraints. We may chose to ignore it because the
constraints they put may not seriously affect the semantics of the data they generate.

Fig. 1. A fully connected data space

In this paper we deal with data flow through wireless channels which presents
many research challenges both from application and system view points.

2 Mobility

The discipline of mobility is an essential component for establishing and maintaining
continuous data flow. It is deployed in the data space through a number of gadgets
and the most common of them are cell phones and laptops. Telecommunication
companies are continuously improving the communication qualities, security,
availability and reliability of cell phones and trying to enhance its scope by adding
data management capabilities, which is highly desirable. To address the issues of data
management on mobile platform we envision an information processing system based
on PCS or GSM architecture, which we refer to as the Mobile Database System
(MDS) [2]. It is essentially a distributed client/server system where clients can move
around freely while performing their data processing activities in connected,
disconnected or intermittent connected mode. MDS thus can process debit/credit
transactions, pay utility bills, make airline reservations, and other transactions without
being subject to any geographical constraints. We believe that MDS or a similar
system is likely to become an essential gadget of our lives.

2.1 A Reference Architecture of Mobile Database System

Figure 2 illustrates our reference architecture of Mobile Database System (MDS). We
have added a number of DBSs (database Servers) to incorporate data processing
capability without affecting any aspect of the generic mobile network [3].

V. Kumar 4

A set of general purpose computers (PCs, workstations, etc.) are interconnected
through a high-speed wired network, which are categorized into Fixed Hosts (FH) and
Base Stations (BS) or mobile support stations (MSS). One or more BSs are connected
with a BS Controller or Cell Site Controller (BSC) [Mahi], which coordinates the
operation of BSs using its own stored software program when commanded by the
MSC (Mobile Switching Center). We also incorporate some additional simple data
processing capability in BSs to handle the coordination of transaction processing.

BSC BSC

MU
BS

MU

MU

BS

MU

BS

MU

PSTN

C1
C2 Cn

Fixed Host

Fixed Host

MSC MSC

VLRHLR

DBS

DB

DBS

DB

Fig. 2. A reference architecture of Mobile Database System (MDS)

Unrestricted mobility in PCS is supported by wireless link between BS and mobile
data processing devices such as PDA (Personal Digital Assistants), laptop, cell
phones, etc. We refer to these as Mobile Hosts (MH) or Mobile Units (MU) [3]. A
number of MUs communicate with a BS using dedicated wireless channels dedicated
to the BS [3] and the power of the BS defines the communication domain, which we
refer to as G, within which such communication takes place. In reality a high power
BS is not used because of a number of factors including the cost rather a number of
low power BSs are deployed for managing movement of MUs. Each BS manages
wireless communication in a part of G, which is referred to as a cell. The size of a cell
depends upon the power of its BS and also restricted by the limited bandwidth of
wireless communication channels. Thus, G is defined as {C1 + C2 + … + Cn} where
Ci is the area of a cell i (Fig. 2). A MU may be in powered off state or it may be in
idle state (doze mode) or it may be actively processing data. It can freely moves from
one cell to another in any of its state, however, at any instance of time it exists only in
one cell. When the MU crosses a cell boundary, it gets disconnected from its last BS
and gets connected with the BS of the cell it enters. During the migration from one
cell to another, the handoff mechanism makes sure that the boundary is crossed
seamlessly and its processing is not affected by such movement.

A DBS provides full database services and it communicates with MUs only
through a BS. DBSs can either be installed at BSs or can be a part of FHs or can be
independent to BS or FH. It is possible to install DBS at BSs, however, we argue
against this approach because BS is a switch and equipping it with database
functionality would be unacceptable from mobile communication viewpoint. For

Data in Your Space 5

these reasons and for the reason of scalability, we created DBSs as separate nodes on
the wired network, which could be reached by any BS at anytime.

3 Mobilaction: A Mobile Transaction Model

A transaction mechanism is essential for database processing. In recent years a
number of new transaction models such as nested transaction model [30], open nested
transaction, sagas [31], etc., have evolved to manage ever changing data processing
requirements. These new models, however, are not suitable for MDS because they
are unable to deal with the issues of mobility, consequently a new transaction model
is required to manage them under the constraints of MDS. The new transaction
structure must have the ACID properties and must also be equipped with facilities for
handling spatial data flow. Motivated by unique requirements of MDS, we developed
a mobile transaction model which we refer to as “Mobilaction” [2]. We present here
some data characteristics related to mobility before we introduce Mobilaction.

LDD (Location Dependent Data) gives rise to Location Dependent Query (LDQ)
and Location Aware Query (LAQ) [4, 28]. The answer of a LDQ depends on the
geographical origin of the query. For example the answer to a query “What is the
distance of the airport” is strongly tied to the geographical origin of this query. For
example, a person who is traveling by car from Dallas to Kansas City continues to ask
“What is the distance of the airport” after every few minutes. The system will
generate multiple correct answers to this query and each answer will be strongly
related with the geographical origin of the query. Thus from these reasoning we
conclude that location has to be a basic property of Mobilaction and we incorporate it
into Mobilaction which is defined as:

An Execution Fragment eij is a partial order eij= {σj, ≤j} where

• σj = OSj ∪ {Nj} where OSj = ∪k Ojk, Ojk∈{read, write}, and Nj ∈{abortL,
commitL}. Here these are location dependent commit and abort.

• For any Ojk and Ojl where Ojk = R(x) and Ojl = W(x) for a data object x, then
either Ojk ≤j Ojl or Ojl ≤j Ojk

• ∀ Ojk∈ OSj, OSj ≤j Nj

A Mobile Transaction Ti is a triple <Fi, Li, FLMi> where Fi = {ei1, ei2... , ein} is a
set of execution fragments, Li = {li1, li2, ... , lin} is a set of locations, and FLMi = {flmi1,
flmi2, ... , flmin} is a set of fragment location mappings where ∀j, flmi1(eij) = lij.

3.1 Mobilaction: Execution and Commitment

A Mobilaction may run on multiple nodes which could be located anywhere in the
network. Each ei represents a subset of the total Ti processing. A Ti is requested at a
MU, it is fragmented, and are executed at the MU and at a set of DBSs. Note that no
fragment of a Ti is sent to another MU for execution because it is a personal unit and
its use is controlled by its owner who can switch it off or disconnect it from the
network at any time. This could force the Ti to fail unnecessary. Furthermore, other
MUs may not have necessary data to process the fragment generated by another MU,

V. Kumar 6

in which case the fragment will end up at a DBS. Also transfer of ei’s to other MUs
will incur wireless communication overhead which could be prohibitive.

In MDS, like conventional distributed database systems, a coordinator (CO) is
required to manage the commit of Ti [2] and its role can be illustrated with the
execution of a Ti. A Ti originates at MU and its BS is identified as the holder of the
CO of Ti. The MU fragments Ti extracts its ei, sends Ti - ei to the CO and begins
processing ei. The MU may move to other cell during the execution of ei, which must
be logged for recovery. At the end of the execution of ei, the MU updates its cache
copy of the database, composes update shipment and sends it to the CO. CO logs the
updates from the MU.

Upon receipt of Ti - ei from MU, the CO splits Ti - ei into ej's (i j) and sends them
to a set of relevant DBSs for execution. Note that the presence of handoff may delay
the execution and commit of a Ti. In this situation even a small Ti may appear as a
long-running Ti. Thus, the meaning of long-running Ti on MDS could be (a) a small
Ti (such as debit/credit) may take long time to run because of frequent handoffs and
(b) the Ti does access a large number of data items, such as the preparation of bank
customer monthly statements, and takes long time to execute in the absence of any
handoff. It is, however, meaningless to run statement preparation transactions on MU
and long-running transaction in our case will be mostly of (a) type.
 It is obvious that a conventional two-phase or three-phase commit protocol [5]
would not work satisfactorily in MDS. It will generate excessive overhead, which
could not be handled by MDS. We have developed a commit protocol called TCOT
[2] (Transaction Commit on Timeout) which (a) uses minimum number of wireless
messages, (b) MU and DBS have independent decision making capability, and (c) is
non-blocking. In distributed database systems the use of timeout is necessary for
developing a “non-blocking” transaction commit protocol [5, 6, 7]. We propose the
use of timeout for our commit protocol. We assume that instead of failure the end of
timeout period indicates a success. Thus, at the end of the timeout it is expected that
the receiver has received the message sent by the sender.

TCOT strives to limit the number of messages (especially uplink) needed to
commit a Ti. It does so by assuming that all members of a commit set successfully
commit their fragments within the defined timeout leading to commit of Ti. Unlike
2PC or 3PC [5, 6, 7], no further communications between the CO and participants
take place for keeping track of the progress of fragments. However, the failure
situation is immediately communicated to CO to make a final decision about commit.

It is well known that finding the most appropriate value of a timeout is not always
easy because it depends on a number of system variables [5]. However, it is usually
possible to define a value for timeout, which performs well in all cases. It should be
noted that an imprecise value of timeout does not affect the correctness but affects the
performance of an algorithm.

4 Data Dissemination Through Wireless Broadcast

Although MDS provided highly desirable transaction management facility to M-
commerce, it does not have capability to reach every user in the data space and satisfy
their demands for highly consumable information such as airline schedule, stock price
quotes, weather information, etc. Users desire to tune some wireless frequencies and

Data in Your Space 7

retrieve necessary data from the data space. Such facilities can only be developed
using data dissemination through wireless channels. In this paper we propose an
innovative public data dissemination strategy which is based on a new architecture.
We use a hybrid (push and pull based) approach where data is adaptively scheduled to
utilize limited bandwidth. We show that the use of data staging helps mobile users to
access and stage his data anywhere and at anytime with low latency.

One of the most important problems is the development of a suitable architecture
of asymmetric broadcast environment. Few developments in this field such as the
Hughes DirectTV [8] and Marimba’s Castanet [9] have addressed this issue and we
have also considered them in the development of our system. We suggest that any
data broadcast architecture should be able to satisfy the following requirements:

a. It should be able to broadcast not only the current data, but also the static data
which is used in general by the people in different times of the day.

b. Access latency should be low.
c. The architecture should be energy efficiency.

Two ways to build data distribution system are (a) cellular network and (b)
satellite broadcast. System based on cellular technology can be developed at low cost
but they would be more area specific and would not be able to reach people globally.
System based on satellites broadcast can be used to distribute data to a very large
number of users. The low earth object (LEO) satellites can be used for this purpose.
The LEO satellites can reach almost everywhere in the earth with a certain number of
satellites unfortunately such system would be expensive to build and maintain. Our
approach is based on cellular technology.

4.1 A Review of Previous Works

Data dissemination through wireless channels generated noticeable attention and the
concept of broadcast disks was proposed and investigated in [10, 11, 12]. This
approach created the notion of multiple disks spinning at different speeds on a single
broadcast channel to create an effect of a fine grained storage hierarchy. Push and
pull based broadcast was proposed in [13]. There has been some work on adaptive
broadcast protocols [14] in the mobile computing environment. The goal was to
design cooperative strategies between the server and the client to access information
where energy expenditure by clients is minimal. Novel techniques have been
proposed in [15] to ensure efficient interplay between broadcast, cache management,
and disk scheduling [16, 17, 18, 19]. Variance of response time and its minimization
has been considered in [11] which also discussed a trade-off in mean and variance of
response time. Adaptive and hybrid data delivery in multi channel environment is
considered in [21] and [22] considers calculating an optimal cut-off point in deciding
the portion which will appear in push based scheduling. The on-demand portion never
appears in push broadcast. Several researches [12] have proposed the effective use of
caching and pre-fetching as a way to develop efficient broadcast environment. Most
papers assume a kind of centralized server with minimum caching only in mobile
units. Assumption of a single broadcast channel for push and pull broadcasts imposes
serious constraints on the efficiency of data access. The latency time in this case can
be as large as a broadcast cycle. Data staging [23] has been proposed as a novel way

V. Kumar 8

to cache user specific data to reduce user access latency. The experiments done in this
work shows a significant improvement in performance. The topic of data staging has
also been investigated in [24, 25, 26].

4.2 The InfoSpace Architecture

We believe that an adaptive and hybrid broadcast based data dissemination system
can best address the problems of user access latency and limited bandwidth. We
propose a new architecture called “InfoSpace” which uses the concept of data staging
where data is stored in un-trusted machines, called surrogates. Surrogates are
connected to the file servers with high speed wired networks and with users with high
speed wireless link. The user accesses data either from the broadcast or from the
surrogate as directed by the client proxy which resides in mobile units.

InfoSpace
Node

InfoSpace
coordinator

Broadcast
Scheduler

InfoSpace
server

InfoSpace
Node

InfoSpace
Node

Fig. 3. InfoSpace Architecture

The InfoSpace uses the existing cellular concept for data broadcast. It pushes
popular data in the channel and at the same time caches user specific data in file
servers (a part of BS) so that they can be accessed individually. The broadcast
schedule for pushed data is entirely dynamic and is based on existing popularity level.
There is a popularity threshold, which identifies which data has to be pushed and
which is to be kept for on-demand access. At the same time it also identifies only a
certain amount of data to be pushed in the channel. The popularity is calculated at
regular intervals based on which the new broadcast schedule is determined. Thus,
scheduling is dependent on the user access pattern and as a result at different times
during the day, different push broadcast schedule may exist. Figure 1 shows the
reference architecture of InfoSpace. The information is composed and stored in the
InfoSpace server. The wireless cells are denoted as InfoSpace nodes. We assume that
InfoSpace server is connected to all BSs in the respective InfoSpace nodes through
high speed networks.

Figure 4 elaborates the architecture of an InfoSpace node and presents the page
structure. An InfoSpace node consists of BSs, the mobile units and surrogates. The
server contains series of data which are stored in pages along with control
information: (a) BT (broadcast type) (b) PT (page type), and (c) T (time). BT is one
bit information with possible values of 0 or 1. Pages which are popular and intended
to be pushed into the broadcast channel have their BT bit set to one. The BT bit of the
remaining pages has value zero. The scheduler decides which page to push depending
on the popularity pattern generated by the InfoSpace coordinator. We show the

Data in Your Space 9

generation of popularity patterns when we discuss the InfoSpace Coordinator. PT can
be described as PT(x,y), where x bits are used to denote the type of page and y bits are
used to denote the sequence number of the corresponding type of page. As the size of
information generated can always increase or decrease, the value of y for a particular
x varies continuously. But the bit sequence x, once assigned to a type of page is kept
fixed to avoid inconsistencies at different levels of storage. T denotes the time of
generation of the page in the InfoSpace server. As the pages are to be cached at
different levels, the timestamp is added to the page so that the relevance of the
information can be seen at any point of time.

MU

MU

MU

MU

Surrogate

BS BT PT T

Data

BS

BS

BS

BS

Infospace nodes
connected by wired

network

Fig. 4. Data dissemination and page structure

The scheduler develops the broadcast schedule for the pages to be pushed
according to the popularity patterns presented to it by the InfoSpace coordinator. The
more popular pages get the earlier slots for schedule in the broadcast but each type of
pages are kept together to keep the broadcast schedule simple and well structured.

Pages which are intended to be pulled are interleaved with the push schedules to
be stored at the file servers. The structure of these pages is exactly the same except
that the BT bit of the pages are 0. When the BS receives the pages, it only checks the
its BT bit. If it is 1, then it broadcasts all pages of that type. It doesn’t need to check
the BT bit of every page as all types of a particular page are kept sequentially in the
broadcast schedule. All pages are then sent to the file server for caching. When the BS
broadcasts the pages, it also prepares a broadcast directory which contains the
information of the type and time of the pages to be distributed. This is easy for the BS
as it just have to put into the broadcast directory the control information PT(x,y), i.e.,
the type and number of pages, T, the last time at which the pages are modified, and t,
the time of broadcast of the page. It gets the PT(x,y) bits and the T bit from the pages
which are sent to it by the InfoServer for broadcast. The time at the BS is used to fill
the t control information in the broadcast directory. The time of each and every BS in
different InfoSpace nodes are synchronized for this purpose. This broadcast directory
is then interleaved with the pushed pages. We later discuss the organization of the
broadcast and the time bounds for getting access to the pages and the broadcast
directory.

Figure 5 illustrates file server and page request structures. The pushed pages are
kept in one portion and the pulled pages are kept in the other. This can be easily done
by checking the BT bit of the pages. In one portion, pages containing similar PT(x)
bits are grouped together. They can be sequentially placed by comparing the y bits of
PT. Thus, the structure of cache is hierarchical. If the InfoSpace server sends the same

V. Kumar 10

page again, then the old page is replaced by the new page from the cache only if the T
of the pages differs. Otherwise, the page is neglected. If a page’s status changes from
push to pull or vice versa, then the file server simply changes the BT bit of that page.
It then shifts the pages to the other category in the file server. If the cache gets filled
then the oldest pages can be purged.

BT PT T

Fig. 5. File server and Page request structures

4.3 Data Staging in InfoSpace

Staging data in a surrogate allows users to extend their limited caching capacity. This
is done by borrowing storage space from the surrogate. This process of data staging
requires the joint operation of the client proxy of the mobile user, the file server in the
BS and the surrogate where data is to be staged. The surrogate is only a single
wireless hop away from the mobile unit and connected by wireless technologies such
as 802.11. The client proxy continuously monitors the data access operation of the
mobile user. It maintains a log file into which it stores the three control information
of each page, BT, PT, and T for the broadcast pages and the pages which are pulled by
the user. In this way it is able to store the information of the user access pattern
without using much cache area. At the same time, since it is working internally and
doesn’t need to log on to the wireless channel continuously, the power consumption
of the mobile unit doesn’t increase. Based on the information of the log file, the proxy
generates a periodic routine which contain the information about what the mobile user
is most likely to access at any point of time. The routine contains the control
information about the pushed data which is requested and the information about a
particular pulled data which has been frequently accessed by the user. The proxy
continuously maintains and upgrades this routine.

File server

Mobile Unit

Staging
Coordinator

BT, PT, T
Data

Period routine

Data

Surrogate

Client
Proxy

Surrogates

Fig. 6. Data Staging Architecture and Data access from Surrogates

Data in Your Space 11

Figure 6 shows the data staging architecture and data access from surrogates.
When a mobile user is connected to a nearby surrogate, it registers with the surrogate.
A surrogate allows the user to use a certain amount of apace for staging data.

Since the data staged in the machine is public data, we believe that proper
handling of data storage in a surrogate can significantly increase the efficiency of data
access and thus the overall latency time can be reduced. Figure 6 shows accesses of
data from the surrogates by a mobile user.

5 Wireless Web Services

A Web Service (WS) is a programmable application logic accessible using standard
internet protocols. It combines the best aspects of component based development and
the web and offers functionality that can be easily implemented. Unlike current
component technologies which are accessed via proprietary protocols, Web Services
are accessed via ubiquitous Web protocols like HTTP using universally-accepted data
formats such as XML. In real business terms as Data Warehouse integrated
heterogeneous data sources (base databases), Web Services have emerged as a
powerful mechanism for integrating disparate IT systems and assets. They work using
widely accepted technologies and are governed by commonly adopted standards [29].

5.1 Limitations of Web Services in Wireless and Mobile Environment

The present model of web services has some fundamental limitations which affect
their seamless infusion into the wireless and mobile environment. Some of these
limitations are related to (a) service discovery, (b) pull based information retrieval, (c)
topical Web Services, and (d) limitations of UDDI.

Location based Web Services are an important class of context aware
applications. We argue that incorporating location information in a web service can
significantly decrease the service discovery time on part of the user. Our approach is
to create a framework which is compatible across all platforms. To achieve this, we
propose to create a Universal Location domain (ULD). The ULD contains locations
which are hierarchically arranged in a structure called the location tree. This idea is
motivated by several facts. To provide ubiquitous computing ability, web services
should have the compatibility across all types of mobile devices and across all types
of platforms. Moreover, Service Providers are not unique across different parts of the
world and only the presence of a unique location structure may proliferate the use of
location dependent web services.

The location tree is a set of locations arranged in a hierarchical manner. An
important property of the locations present in the ULD is Containment which helps
determining relative position of an object by defining or identifying locations that
contains those objects. The subordinate locations are hierarchically related to each
other. Thus, Containment property limits the range of availability or operation of a
service. We use this important property in location dependent web service discovery.

V. Kumar 12

Starbucks

Kansas City

Plaza

USA

TopecaSt. LouisKansas City

JohnsonJackson

Plaza

Fig. 7. A part of ULD and Location Structure of the web service

Apart from the ULD, we also define the location of the web service which is
provided by the user who intends to access the service. It is the job of the location
framework to create a location structure for the service. This location structure is then
suitably mapped on the ULD to find the exact location of the web service. We present
an example to explain the functionality of the proposed location framework.

A mobile user intends to access the web service of the Star Bucks Coffee Shop
and place an order for a home delivery. He initiates the order by placing a query for
the availability of his choice of coffee in the Star Bucks Plaza branch of Kansas City.
It is the job of the location framework to develop the location structure of the
requested web service. The location structure of web service as is illustrated in Fig. 7
is: Star Bucks Kansas City Plaza. To search and access the required web
service, a unique ID for the web service has to be generated. This unique ID is
generated by mapping the location structure of the web service with the ULD. The
location of the web service in the ULD is: USA Kansas City Jackson Plaza
(Fig. 7). The Containment property limits the search of the location of the various Star
Bucks services which are present only at the subordinate locations of “Plaza “. The
number of searched entries for the desired web service is equal to the n where n is the
number of subordinate locations near Plaza. Thus, the set of location IDs of the
requested web service is: Star Bucks USA Kansas City Jackson Plaza
Xi where i is the number of subordinate locations in “Plaza”. It is possible that the Star
Bucks coffee shop is not present in all the subordinate locations of the “Plaza”. Thus,
the number of results will always be greater than or equal to the number of original
locations of the web service. The exact number of locations will be found when this
calculated IDs will be matched with the entries of the web Service present in the
Distributed Service Repository (DSR), a structure which we discuss in our proposed
architecture of Web Bazaar in the next section.

5.2 Web Bazaar

The Web Bazaar architecture consists of a Broadcast Server, uplink and downlink
Wireless Channels, Distributed Service Repository (DSR) containing Service Marts
and the Universal Location Domain. The broadcast server has the central role of
service distribution. In this model we propose to broadcast the services instead of the
traditional pull based access. We argue that in the future, to make the web services
popular among the increasing group of mobile users, efforts should be made not only
to publish the services but also to distribute them to the users. This will support both

Data in Your Space 13

pre-trip planning and on-route information on occasionally found points of interest.
Moreover, web service use XML documents the size of which tends to be much larger
than traditional text messages. Thus, efforts should be to the minimize number of
messages exchanges between a mobile user and the web service provider.
Broadcasting web service information may significantly reduce the number of
messages required for the process of service discovery. This is our motivation behind
the proposition of web service broadcast in Web Bazaar.

XML Soap request
Server

Broadcasting Location
dependent web services ServerDSR

UDDI

Location
domain

XML Soap response

Broadcast cell

Mobile Unit

Fig. 8. Web Bazaar: Location dependent Web Service Architecture

Fig. 8 shows the proposed architecture of Web Bazaar. The standards and
specifications demand that the structure and role of UDDI should not be changed.
Thus, to incorporate location information, we propose the concept of Distributed
Service Repositories (DSR). A DSR contains web services entries which are local to
the region. Each broadcast region contains a DSR. The DSR incorporates the location
information in the web services.

For a particular broadcast region, the web services which cater to the region are
extracted from the UDDI. The location ID for the web service is generated by using
the Universal Location Domain. For any web service located at particular location, its
location structure is generated and mapped with the Universal location domain to get
the unique location ID. This means for a single web service, there will be many
entries depending on the number of locations at which the service is located. This
may increase the size of the DSR, but considering the fact that the DSR contains
entries which are local to the broadcast region, the number of entries will be limited.
A different view of the web service is then generated. This view contains fewer
parameters which makes it suitable for broadcast in bandwidth limited channels.
Views are compact documents and contain information about the location dependent
web services. The views are broadcasted and are used to initiate the service from a
mobile or wireless device.

Within a DSR, the services may be organized by keeping similar web services
under one group. For example, the DSR in Kansas City will group the web services
related to hotels under one group, grocery stores under another group, and so on. Each
specific group is called a Service Mart. This makes the service discovery much easier.
Moreover, It helps in creating simple but informative views. For example, if a user in
Lenexa intends to use the web service of grocery store in downtown area in Kansas
City, he just have to give the location name and type of Service Mart (here, for
example, Food Mart) in his request to discover a service. In contrast to the earlier
method of searching the UDDI registries and then deciding for a service, our way of

V. Kumar 14

service discovery through broadcast of views seems much faster. As evident from
table, these views are much simpler than the UDDI entries.

Table 1. Views of two Types of Web services

Mart Type Input, Output Parameters Location
Star Bucks Food Coffee, Order Destination, Card No. Plaza
Theatre Entertain Movie, Showtime, # of Tickets, Card No. Down Town

The advantages of creating DSRs are manifold. First, it helps in creating location
dependent web services by assigning unique location IDs to each service for fast
service discovery. Second, the views created for the web services are compact so that
they could be used to broadcast the service definitions in bandwidth limited wireless
channels, thus supporting our broadcast mechanism. Third, a user does not have to
contact the UDDI for service discovery for location dependent services. By
mentioning the location, the request can bypass the UDDI and contact the
corresponding DSR directly. This prevents exhaustive search, allows fewer data
download which is suitable for bandwidth limited wireless environment and allows
fast access to the service.

There is an important issue which needs to be discussed at this point. There is a
large number of web service entries present in the UDDI. Broadcasting all of them
through bandwidth limited wireless channels may sound unrealistic at present. At the
same time we argue that broadcasting location dependent Web Services present in
DSRs which are commonly used in day to day life will certainly make them more
popular among the mobile users. Prominent among these services are the Topical
Web Services in which the information accessed frequently change when the user is
on the move. Important examples are flight bookings, last minute theatre ticket deals,
traffic information etc.

5.3 Working of Web Bazaar

The broadcast mechanism consists of a broadcast channel from the broadcast server to
the users. It also consists of an uplink channel from the users to the DSR and a
downlink channel from the DSR to the user (Fig.3). Each broadcast is preceded by an
index which depicts the sequential order of web service broadcast. The index is also
interleaved between the broadcast views so that the user does not have to wait for the
next broadcast schedule. The structure of the index is helpful to the users in
personalization of Web Services which we discuss later. The broadcast includes the
compact views which contain WSDL definitions. These definitions are WSDL
components. The WSDL components consist of interfaces, bindings, and services.

The service download, request and response of services are managed by a Java
based coordinator present in the mobile device. This Java based coordinator is
installed in the machine when the user avails the Web Service from the service
provider. The Coordinator has the task of listening to the channel, downloading the
required service, initiating the request, and receiving the response. The coordinator
also has an important task of personalization of the WS.

Data in Your Space 15

Personalization of WS means to access and use services only according to a pre-
planned schedule fixed by the user. The coordinator downloads the index containing
the description of the services to be broadcast. The user checks the index according to
his needs and so does not have to bother about the downloading of the services. Based
on the service checked and the predetermined schedule from the index, the
coordinator estimates the time required for service download. It allows the mobile
device to go into doze mode to save power. It becomes active only when the service is
about to be broadcasted. The service components are downloaded and the user is
notified to start the service request. Thus, only those services needed by the user are
downloaded from the channel. This describes the ability of the user to block certain
services data and personalize his requirements.

Example

Star Bucks Food Coffee Type 1, Order, Destination, Card No. Plaza

Star Bucks Food Coffee Type 2, Order, Destination, Card No. Walnut

To initiate a service request, the coordinator creates a SOAP message. The XML
document in the message is created according to the downloaded service description
which contains the unique location ID (for a location dependent service) and user’s
ID. Even if the view of WS of the desired location is not present, their structures and
properties of XML documents allow changing the view information to access a
particular location dependent service.

If the user wants to order coffee of type 2 which is not available in the Plaza
branch, he doesn’t have to wait for the view of Walnut to be broadcasted. He can
simply change the XML information of the views by replacing the Coffee Type
Information and the Location information. It is the job of the ULD to map the
location information provided by the user to generate appropriate location IDs which
can be used to search the appropriate location dependent service from the DSR.

After XML request is constructed, the coordinator sends this message to the
SOAP server present in the DSR through the uplink wireless channel. Since this
message is compact, it is the responsibility of the DSR to make it compatible for the
Web Server. When all the definitions are added, The SOAP server directs the request
to the service provider's web service. If the user requests a service which belongs to
another location, the request is transferred to the DSR containing the service
description. This identification of location is done by the DSR local to the user.

The web service, after receiving the requests, processes it and creates a response
which is also a SOAP message. It is sent to the DSR local to the user. The DSR
operates on the response and makes it compact thus making it easier for the DSR to
push the response through the downlink channel to the user. The compaction is
necessary as the SOAP messages which are several times larger than text messages
may overburden the bandwidth limited wireless channels. When the response reaches
the user, he is notified about its arrival.

The proposed framework thus provides location dependent web service to the
mobile user. Broadcasting web service information signifiicantly reduces the number

V. Kumar 16

of messages in the wireless environment. The broadcast XML views are compact and
allows efficient service request/response style of messaging. The ULD is used to
create appropriate location information for the service entries in DSR and also for
service request. The simplified hierarchical structure of the ULD allows smooth
addition/deletion of location information when needed.

5.4 Security of Wireless Applications

Wireless systems face greater security risk than wired systems. WWS exposes
companies to a massive range of new threats and vulnerabilities. The overall security
of a wireless application is only as strong as its weakest link, and in M-commerce, the
weakest link is the mobile device. Existing wireless security controls are inadequate
to deliver the levels of security that the next wave of WWS will demand. Fig. 9
illustrates the security threats faced by the Wireless Services. We describe the security
needs of WWS and then present an idea of our scheme to protect authorized users
from serendipitous threats and malicious attacks.

Since the mobile device has a weak radio frequency interface, data transmitted
over wireless networks, such as passwords, personal information, security
information, etc., can be captured using digital RF scanning equipment. Most wireless
protocols do not come with built-in encryption mechanisms. Additional security
measures such as secure connections and cryptography are definitely needed,
especially for those applications transmitting sensitive data. Insecurity increases over
the internet due to additon of large user base and various service providers. As new
Application to Application (A2A) integration increases, they create serendipitous
threats and new vulnerabilities to the existing Web Service Systems.

Data transmitted over air with
weak authentication and integrity

Weak RF Interface

New application and technologies create
serendipitous threats and vulnerabilities

Insecurity always looms over internet due
to addition of various service providers

Service broadcast

Mobile device
Server

Fig. 9. Insecurity in Wireless Services

5.5 Location Signature Based Security and Authentication

One of the biggest obstacles to the widespread adoption of WWS is winning the trust
of mobile users. A single security breach provides a very high profile way of
undermining a wireless service. We propose the use of Symbolic Location
Coordinates identifying the real time location information of a user into existing
security mechanisms to improve the efficacy of authentication, authorization, and
access controls. We refer to this real time location information which will be unique
for a user as Location Signature (LS).

Data in Your Space 17

Effective wireless application security depends on the ability to authenticate users
and grant access accordingly. Existing authentication and authorization mechanisms
fundamentally depend on information known to a user (password or keys), possession
of an authentication device (security token or crypto card) or information derived
from unique personal characteristics (biometrics). None of this is totally foolproof.
Symbolic Location information (building, street, area ID, BS id, etc.) of a mobile
device or user adds a fourth and new dimension to wireless application security. It
gives extra assurance to users of the wireless applications who want to perform
sensitive operations such as financial transactions, access valuable information, or
remotely control critical systems. It can supplement or complement existing security
mechanisms. The LS can still be used as a security mechanism when other systems
have been compromised as it is and will always be unique for a user at any point of
time. For highly sensitive wireless applications, a real time LS can be generated so
that authorities can trace any malicious activity back to the location of the intruder.
Without the incorporation of LS, it will be difficult to trace the origin of malicious
activity.

It is almost impossible to replicate a LS because a user cannot exist at two places
at the same time and use it elsewhere to gain unauthorized entry. Even if the
information is intercepted during communications, an intruder cannot replicate that
data from some other place. A LS is continuously generated from location
information on real-time basis and is unique to a particular place and time. Such
information becomes invalid after a short time interval, which means that the
intercepted LS cannot be used to mask unauthorized access especially when it is
bound to the wireless protocol messages as checksums or digital signatures. Even if
the perpetrator uses other means to masquerade as a legitimate user, the complete set
of LS can be used to log the access trail [20].

We propose to develop and incorporate two-way authentication between the
wireless client (mobile device) and the Web Server. The Web Server can give access
to a wireless client based on the security mechanisms along with the LS. The reverse
process - the client receiving Server’s LS - ensures a higher lever of security as it will
always be a unique mapping between the continuously moving user and the Web
Server, especially if this "handshaking" is done periodically. This requires an
additional message between the wireless device and the Web Server which is not
likely to affect the performance. Location information can provide evidence to
absolve innocent users. If illegal activity is conducted from a particular user account
by someone who has gained unauthorized access to that account, then the legitimate
owners of the account might be able to prove that they could not have been present in
the location where the activity originated. The following example gives an idea of the
working of WWS based on LS:

Suppose Shyam is on his way back home to Overland Park and wants to buy
coffee from Star Bucks. He is tired and in no mood to search the nearest Star Bucks
on his way back. He uses his PDA and logs on to the Wireless Broadcast of WWS. He
downloads the views of Star Bucks and places the order. He types the necessary
information about the type of coffee he wants, the address of order delivery and
initiates a query. The mobile device coordinator of Shyam’s PDA develops the
location information for delivery based on the address. It also develops the location
signature and attaches with the query. The LS consists of the mapping among various

V. Kumar 18

real time variables like the time, building, street, area ID, mobile device ID, etc. After
the LS is developed, it is attached with the query and also stored in a log file
corresponding to the time when the signature was generated. The log file is not
accessible to the user. This LS is a real time variable (as the values of most of the
variables changes every moment) but will always be unique for a particular time. It is
also cumulative, i.e., the new signature is a set of old signatures plus the new
signature recently added. The Web Server receives the views through the wireless
channel and based on the location finds out the service for Star Bucks which is
nearest to Shyam’s preferred location of Overland Park. It sends back the response
and asks Ben to place the order. Shyam enters the necessary information like his
credit card number and the address for delivery and completes the order. When the
server receives the information, it checks the log file and matches the existing LS set
with the newly received LS set. If the user is original and not a malicious one, both
the LS set will exactly match except the last entry which is newly generated. The two
sets will never match for a malicious user. The Web Server completes the transaction
and issues a response. This response will be available to the user only when the
received location signature set matches exactly with the signature set present in the
mobile device cache.

Thus, location-based authentication can be done transparently to the user and be
performed continuously. This means that unlike most other types of authentication
information, LS can be used as a common authenticator for all systems the user
accesses. This feature makes location-based authentication a good technique to use in
conjunction with single sign-on.

6 Conclusions and Future Work

In this paper we discussed issues related to data flow in data space. We developed a
Mobile Database System (MDS) to manage M-commerce activities. We proposed a
data dissemination system called InfoSpace to provide users their required data
through wireless channels. It considers popular data to be broadcasted and less
popular data be pulled from the file server. The system works on a cellular based
network in which the cells are denoted by InfoSpace nodes. It also contains a file
server which caches both the pushed and the pulled data. This file server is accessed
by the surrogates through high speed wired network to deliver data to the users when
requested. The surrogates are storage machines that are connected to the mobile user
through high speed wireless network.

We presented a web service system called Web Bazaar in which a Universal
Location Domain is used to develop unique location ID for a service. The unique
location ID is subsequently used for fast and efficient service discovery. The wireless
broadcast consists of the views of web services. These views are compact XML
documents and they can be efficiently used to decrease the message exchange
between the mobile user and the web server which is essential in a bandwidth limited
wireless environment. Security of wireless applications is a huge concern as the
mobile unit has weak radio frequency interface. Moreover, increase of application to
application (A2A) integration in web services introduces unexpected security lapses.
We developed a user authentication system called location signature. In our future
work, we intend to develop the location structure further by introducing a location

Data in Your Space 19

domain naming system similar to the existing Domain Name Services (DNS) for
translating domain names of IP addresses. This will enable simpler and more realistic
location identification for location dependent services. The location domain naming
system may also be used for the location signature scheme.

References

1. Margaret H. Dunham, and Vijay Kumar, “Location Dependent Data and its Management
in Mobile Databases,” Proc. of the Ninth Workshop of Database and Expert Systems
Applications DEXA'98, Vienna, Austria, August 26-28, 1998.

2. Vijay Kumar, Nitin Prabhu, Maggie Dunham, and Yasemin A. Seydim, “TCOT - A
Timeout-based Mobile Transaction Commitment Protocol”, Special issue of IEEE
Transaction on Computers, Vol. 51, No. 10, Oct. 2002.

3. Dharma P. Agarwal, Qing-An Zeng: Introduction to Wireless and Mobile Systems,
Thomson Brooks/Cole.

4. Margaret Dunham and Vijay Kumar, “Impact of Mobility on Transaction Management,”
Int. Workshop on Data Engineering for Wireless and Mobile Access (MobiDE99), Seattle,
Washington, August 20, 1999.

5. P. A. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency Control and Recovery in
Database Systems”. Addision Wesley, 1987.

6. Vijay Kumar and Sang H. Son, “Database Recovery”, Kluwer International,
7. Vijay Kumar and Meichun Hsu, “Recovery in Mechanisms in Database Systems”,

Prentice Hall, 1998.
8. http:// www.direcpc.com, 2001.
9. http://www.marimba.com, 2001.

10. S. Acharya, R Alonso, M Franklin and S. Zdonik. “Broadcasts disks- data management for
asymmetric communication environment”, ACM SIGMOD, May 1995.

11. S. Acharya, M Franklin and S. Zdonik. “Dissemination based data delivery using
broadcast disks”, IEEE Personal Communication (Dec. 95).

12. S. Acharya, M Franklin, and S. Zdonik. “Prefetching from a broadcast disk”, 12th
International Conference on Data Engineering, February, 1996.

13. S. Acharya, R Alonso, M Franklin and S. Zdonik. “Balancing push and pull for data
broadcast”, ACM SIGMOD, May 1997.

14. A.Datta. A Celic, J.G.Dim, D.E.Vandermeer and V. Kumar, “Adaptive broadcast
protocols to support efficient and energy conserving retrieval from databases in mobile
computing environments”, IEEE Data Engineering Conference, April, 1997.

15. Peter Triantafillou, R. Harpantidou and M. Paterakis. “High Performance Data
Broadcasting Systems”, Mobile Networks and Applications, 7, 2002.

16. S. Su, L. Tassiulas, “Broadcast scheduling for information distribution”, INFOCOM,
1997.

17. T. Imielinski, S Viswanathan and B.R. Badrinath. “Data on the air- organisation and
access”, IEEE Transaction of Data and Knowledge Engineering, July, 1996.

18. M. Franklin and S. Zdonik, “Data in your Face: Push Technology in Perspective”, ACM
SIGMOD, WA, June 1998.

19. Sohail Hameed and Nitin H. Vaidya. “Efficient algorithms for scheduling data broadcast”,
Wireless Networks, May 1999.

20. Shu Jiang,Nitin H,Vaidya, “Reponse time in Data Broadcast Systems: Mean, Variance and
Tradeoff”, Mobile Networks and Applications, 7, 2002.

V. Kumar 20

21. Chih-Lin Hu and Ming-Syan Chen “Adaptive balance hybrid data delivery for multi
channel data broadcast”, ICC, 2002.

22. Yufei Guo, Sajal K.Das, Critina M. Pinotti. “A new Hybrid Broadcast Scheduling
Algorithm for Asymmetric Communication Systems: Push and Pull Data Based on
Optimal Cut-Off Point”, MSWIM 2001, Rome, Italy.

23. Jason Flinn, Shafeeq Sinnamohideen, M. Satyanarayan. “Data Staging on Untrusted
Surrogates”, Intel Research, Pittsburg, Unpublished Report.

24. Garlan D., Siewwiork, D., Smailagic, A., Steenkiste, P. “Project Aura: Towards Distraction
 free Pervasive Computing”, IEEE Pervasive Computing 1, 2 (April-June 2002).

25. Yunqing Chen, Jian Yu, and Cong Yu. “Data Staging on NFS”, www.eecs.umich.edu/
~congy/ December 11, 2002.

26. Demet Aksoy, Michael J. Franklin, Stanley B. Zdonik. “Data Staging for On-Demand
Broadcast”. VLDB 2001.

27. UDDI, www.uddi.org.
28. Yasemin Seydim, Margaret Dunham, and Vijay Kumar, “Location Dependent Query

Processing,” 2nd ACM Int. Workshop on Data Engineering for Wireless and Mobile
Access (MOBIDE01), Santa Barbara, May 20, 2001.

29. T. Pilioura, A. Tsalgatidou, S. Hadjiefthymiades, “Scenarios of using Web Services in M-
Commerce”, ACM SIGecom Exchanges, Vol. 3, No. 4, January 2003.

30. Eliot Moss. “Nested Transactions: An approach to reliable distributed computing”, The
MIT Press, 1985.

31. H. Garcia Molina and Ken Salem. “Sagas”, ACM SIGMOD, 1987.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, p. 21, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Enabling Technologies for Harnessing Information
Explosion1

Sharma Chakravarthy2

Computer Science and Engineering Department
and Information Technology Laboratory,

The University of Texas at Arlington,
Arlington, TX 76019-0015
sharma@cse.uta.edu

http://itlab.uta.edu/sharma

Abstract. The amount of information accessible on the Internet and other
repositories is increasing at an alarming rate. Presence and availability of
information is quite different from being able to access the right information at
the right time. Easy and flexible access to such large repositories of data also
poses its own set of problems. Some of the problems faces today are: the ability
to access relevant data without information overload, monitor only needed data
and receive it in a timely manner, ability to filter data to reduce the amount of
information to be analyzed manually, and the ability to classify data into groups
that are beneficial.

The focus of this presentation will be on how information explosion,
although beneficial in a larger context, baffles the user in terms of the time,
energy, and resources spent in searching, browsing, retrieving, monitoring,
filtering, and classifying them. We discuss the problem, issues, and various
technologies that are needed for harnessing information in a way that provides
relevant and useful information in a timely manner (just-in-time) and reduce
user involvement as much as possible. One such technology is the “push”
technology in contrast to the “pull” technology. WebVigiL is a project at
UTA/IT Lab that has explored Internet change monitoring for the above
purpose.

In addition to the applicability of the push technology and its uses, we will
discuss several other technologies that allow us to harness appropriate
information from potentially large repositories that are continuously
changing/evolving. Some of the technologies that will be discussed in this talk
are: mining, filtering, classification, and monitoring.

In this talk, I will relate the results of some of the projects that are underway
at the Information Technology Laboratory at UTA to address the above
problem.

1 This work was supported, in part, by the Office of Naval Research, the SPAWAR System

Center-San Diego & by the Rome Laboratory (grant F30602-02-2-0134), and by NSF (grant
IIS-0123730).

2 Currently with IBM India Research Laboratory, New Delhi, on Faculty Development Leave
from UTA.

Fair Leader Election by Randomized Voting

Siddhartha Brahma1, Sandeep Macharla1,
Sudebkumar Prasant Pal1, and Sudhir Kumar Singh2

1 Dept. of Computer Science and Enginnering, IIT, Kharagpur, 721302, India
spp@cse.iitkgp.ernet.in

2 Dept. of Mathematics, IIT, Kharagpur

Abstract. Leader election is a fundamental problem in distributed com-
puting where a unique node from a set of nodes declares itself as the
leader (a distinguished state). We propose a notion of fairness in the
leader election problem; a leader election algorithm is said to be fair if
each node has the same probability of getting elected as leader. We show
that existing deterministic algorithms based on comparisons of identi-
fiers fail to achieve fairness. We demonstrate how fairness can be achieved
through randomization and propose new leader election algorithms based
on randomized voting. We separate the task of fair leader election on
unidirectional rings into two subtasks: attrition and solitude detection
following [9]. We show that tight interleaving of these two procedures
as in [7], results in fair leader election on asynchronous, anonymous,
unidirectional rings using expected O(n log n) bits of communication, in
expected O(log n) rounds. (Here n is the number of nodes in the ring.)
This matches the performance of the optimal algorithm of Abrahamson
et al. [1]. Similar algorithms are presented for electing a fair leader in
other models.

1 Introduction

Leader election is a fundamental problem in distributed computing. Its solution
forms a building block for many involved distributed computations. The problem
is to designate by consensus, a unique node from the collection of nodes that
forms a distributed system [11, 3]. All nodes in the distributed system should
agree upon one amongst them as the leader. So, leader election causes a unique
node from amongst a collection of nodes, to enter a distinguished final state [7].

Usually the ring topology is considered to be a standard for the design
and analysis of leader election algorithms; the symmetry of the ring topology
makes the task of leader election non-trivial. A unidirectional ring is a sequence
P0, P1, · · · , Pn−1 of n nodes or processors, where each node sends messages to
Pi+1 and receives messages from Pi−1, the subscripts being modulo n. There are
several variants of this basic model. Communication between nodes may be syn-
chronous or asynchronous; nodes may have unique identifiers (asymmetric rings)
or may be indistinguishable (symmetric or anonymous rings); nodes may or may
not know the size of the ring at the start of the computation. The complexity of

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 22–31, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fair Leader Election by Randomized Voting 23

a leader election algorithm is usually measured in terms of the number of mes-
sages communicated between the nodes, the total number of bits communicated
and the time taken to elect the leader.

There are several deterministic algorithms for leader election in unidirectional
rings. Several deterministic algorithms have been developed for finding a leader
in an asynchronous, unidirectional, asymmetric ring networks, (see Lelann [11],
Peterson [12], Chang and Roberts [3], Hirschberger and Sinclair [8], Burns [10],
Dolev [4], Franklin [5]). The problem is simpler for the asymmetric case as com-
pared to that in the symmetric case; the node with the maximum identifier may
serve as the leader in the assymetric case.

Angluin [2], established that deterministic algorithms fail to elect a leader if
nodes do not have unique identifiers, even if the number of nodes n is known a
priori to all the nodes. This limitation was overcome by the use of randomization
by Itai and Rodeh [9]. They were also the first to point out the correspondence
between leader election and the two tasks - attrition and solitude detection. Abra-
hamson et al. [1], gave another randomized algorithm for the same problem with
the same message complexity as that of Itai and Rodeh, but with an improved
bit complexity by tightly interleaving the solutions of the attrition and solitude
detection tasks.

Deterministic algorithms in [3, 5, 8] elect the node with the maximum iden-
tifier as the leader. This is somewhat unfair, as all the nodes do not get a fair
chance to become the leader. We define a notion of fairness, where all nodes
have the same probability of becoming the leader. With this notion of fairness,
we develop fair randomized algorithms for asynchronous ring networks. Our al-
gorithms have an implicit round structure where nodes are elected to progress
to the next round by randomized voting. Leader election is achieved by the tight
interleaving of solitude detection and attrition procedures.

The motivation for such a notion of fairness is natural and useful in real ap-
plications in distributed computing. Managing multiple resources in dynamic en-
vironments requires election of resource managing nodes. Fairness as we propose
in this paper will help in randomly distributing leadership responsibilities for
various resource managing tasks in a uniform manner, thereby balancing loads
across the distributed system. Resources may be software services or shared data,
possibly managed by semaphores; in a dynamic environment, such resources may
be created and destroyed continuously.

The remaining paper is organized as follows. In section 2 we define the notion
of fairness in leader election and present our algorithm for fair leader election in
asynchronous, anonymous, unidirectional ring networks. In section 3 we extend
the above algorithm for variants of the above network model. Finally in section
4, we conclude with a few remarks about future research directions.

2 Fair Leader Election on Rings

We define a leader election protocol to be fair if all the nodes have equal prob-
ability of getting elected as the leader. If there are c contenders initially, each

24 S. Brahma et al.

of them must have probability 1/c of being elected leader. Our eader election
algorithm proceeds in stages. Suppose the ring is in a certain configuration CF0
at a particular stage. Let CF1, CF2, · · · , CFT be the configurations that can re-
sult from CF0 in the next stage. Suppose the probability of occurence of each
CFi , 1 ≤ i ≤ T is 1/T . If this holds for any intermediate configuration CF0 of
the leader election algorithm, then it is easy to see that the overall algorithm
will be fair. In what follows, we achieve fairness by exploiting this fact. Any
leader election algorithm should finally accomplish the following two tasks (i)
eliminate all but one node from contending, and (ii) confirm that only one node
is contending. As mentioned above, there is a strong relationship between leader
election and the two tasks of attrition and solitude detection. The two proce-
dures are defined as follows [7]:

Attrition Procedure: A procedure solves the attrition problem if the following
holds: when initiated by a set of nodes, it never renders all candidates noncon-
tenders, and it takes all but exactly one of these candidates into a permanent
state of noncontention with probabbility 1.

Solitude Detection Procedure: A procedure solves the solitude detection
problem if teh following hold: when initiated by a set of nodes, it terminates
with probability 1, giving a ‘yes’ answer upon termination when there is exactly
one initiator and a ‘no’ answer when there are more than one initiators. In the
latter case, all initiators are set to a ‘no’ state.

Typically, the attrition procedure does not terminate. Solitude detection is
required to break this infinite loop. We approach the problem of attrition using
a process of voting. As we wish to ensure fairness, the idea of a node randomly
casting a vote in favour of another node is natural. So, each node votes randomly
for another node; nodes voted for in one round, contend in the next round. This
randomized voting protocol ensures fairness in the election process. Each node
has an infinite FIFO buffer where incoming messages are stored and processed
one by one. In the next three subsections, we explain the attrition procedure,
the solitude detection procedure and the overall leader election algorithm.

2.1 The Attrition Procedure

Our attrition procedure is based on the idea of one node sending its vote to
another node based on a random number generated by itself. The attrition pro-
cedure has an implicit round structure. The contender nodes are called active
and the rest are called passive. Let the number of nodes in the ring be n and
let the number of active nodes in the beginning be c (c ≤ n). In each round, an
active node generates a random number r and sends its vote to a node which is
r hops away. Clearly, r is the number of active nodes between the sender and
the receiver, including the receiver. The intermediate passive nodes simply relay
votes. The nodes that receive a non-empty set of votes in the current round,
survive to become contenders in the next round. Note that the part of the leader
elction algorithm that dictates which node will ultimately become the leader is
the attrition procedure. Since, voting is based on random numbers and passive

Fair Leader Election by Randomized Voting 25

nodes only relay votes, all the active nodes have an equal chance of going to the
next round. So, all the configurations that are possible in the next round are
equally likely in a particular round of the attrition procedure, thereby ensuring
fairness in the attrition procedure. This also ensures fairness in leader election.
By setting the range of values that r can take, the attrition procedure can be
varied. We consider the following two cases :

(i) Procedure I
r lies in the interval [0, A), where A is the number of active nodes in the begin-
ning of a particular round.
(i) Procedure II
r lies in the interval [0, K), where K is a positive integer constant.

The implicit round structure in the attrition procedure is enforced as fol-
lows. Since the network is asynchronous, there must be a way for the nodes to
detect the end of a round. Let β0, β1, · · · βn−1 be the n nodes in the ring. Let
α0, α1, · · · αt−1 be the t contenders (t ≥ 2) in an arbitrary intermediate round j.
Every node αi has a set of potential voters. αi can detect the end of a round if it
has the knowledge that all its potential voters have already, either voted for it or
for somebody else. Every node αi maintains two variables zi1 and zi2 which are
initialized to zero in the beginning of each round. zi1 keeps track of the number
of votes obtained in a particular round and zi2 maintains the number potential
voters for αi that have already voted in that particular round. Every active node
generates a random number and sends a message < x, y > to its neighbor, where
x is the random number generated and y = A or y = K for Procedure I and II
respectively. An active node checks whether x = 0. If x is zero, then it means the
vote has gone to that node. Then, if y > 1 the message < 0, y −1 > is forwarded
and zi1 and zi2 are incremented, otherwise the message is no longer forwarded.
If x is non-zero, then zi2 is incremented and the message < x − 1, y − 1 > is
forwarded. It is easy to see that a node can be sure that a round has ended
when zi2 is A or K, for Procedure I and II respectively. Thus, in each round
a contender gives its vote and waits until zi2 becomes A or K, whence it checks
the value of zi1 . If it is nonzero it remains active in the next round otherwise it
becomes passive. If we assume that there is no loss of messages in the network,
then the above attrition procedure works correctly in the sense that a node that
should have been active in a particular round is surely active and a node that
should have become passive in a particular round is never active, as shown in
the following lemma.

Lemma 1. If there is no loss of messages in the ring, every round in the above
attrition procedure is completed correctly.

Proof. Let us assume that the attrition procedure has worked for p rounds cor-
rectly, where p ≥ 0. Let us consider the FIFO buffer corresponding to the active
node αi+1 for some i. Any message in this buffer comes from the previous active
node αi. Since αi has completed round p successfully, it will send all the messages
of round p+1 to αi+1 before going into the next round. This implies that in the

26 S. Brahma et al.

buffer of αi+1 there will be no messages of any other round in between the mes-
sages of round p. Since, the node we are considering is arbitrary, this is true for all
nodes. It is easy to see that the attrition procedure may not work correctly only
when the messages from two rounds overlap in the buffer. Since this does not hap-
pen in round p+1, it will also be completed correctly. By induction on the number
of rounds, all the rounds are completed correctly and the lemma is proved. ��
Procedure I
In this case, in the beginning of each round every node is required to know
the number of active contenders. The task of discovering the number of active
nodes and informing all the active nodes about the number is left to the solitude
detection procedure which is interleaved with the attrition procedure in the
leader election algorithm and is explained later.

The correctness of the attrition procedure in the sense that all the rounds are
completed correctly has been proved in Lemma 1. Also, since the votes are sent
only to active nodes, in each round there will be at least one node which receives
a vote, and hence will remain a contender. Therefore, at all intermediate stages
there is at least one contender. Also, the probability that a node is eliminated
in round j is η1 =

(
1 − 1

t

)t. Since 1/e > η1 ≥ 1/4 for t ≥ 2, in each round there
at least a non-zero constant probability of a contender getting eliminated and
hence the number of contenders decreases to 1 with probability 1.

The attrition procedure goes into an infinite loop when only one contender
remains. This loop can broken by a suitable solitude verification algorithm. The
complexity analysis of the attrition procedure therefore excludes the last soli-
tude detection round. Consider an arbitrary round numbered j. Let Xj be a
random variable denoting the number of contenders in round j. So, X1 = c.
Let Yi, 0 ≤ i < t, be a random variable defined as Yi = 1 if αi is a contender
in round j + 1 and, 0 otherwise. Then, it is easy to see that E(Yi) = 1 − η1,
where t ≥ 2. So, if t ≥ 2, E(Xj+1|Xj = t) = E

(∑t−1
i=0 Yi

)
=

∑t−1
i=0 E(Yi) =

(1 − η1)t. Therefore, E(Xj+1) =
∑

t≥1 E(Xj+1|Xj = t)Pr(Xj = m). Since
E(Xj+1|Xj = 1) = 1, we have E(Xj+1) =

∑
t≥2 E(Xj+1|Xj = t)Pr(Xj =

t) + Pr(Xj = 1) = (1 − η1)E(Xj) + η1Pr(Xj = 1) ≤ 3
4E(Xj) + η1Pr(Xj = 1)

So, after an expected log4/3(c) rounds of the attrition procedure, the number
of contenders will be negligible (constant), and hence will contribute negligi-
bly to the overall complexity. So, in an expected O(log n) rounds, the num-
ber of contenders converges to 1. The message complexity is derived as fol-
lows. Let Mj be a random variable representing the number of messages trans-
ferred in round j. Let Ni , (0 ≤ i ≤ t − 1), be a random variable denot-
ing the number of messages transferred for the vote of αi in round j. Let
the number of passive nodes between αi and α

i+1(mod t) be ni − 1. Then,

E(Ni) = 1
t

∑t−2
l=0

∑l
m=0 n

i+l(mod t) +n−n
i+t−1(mod t). Therefore, E(Mj |Xj =

t) =
∑t−1

i=0 E(Ni) = t−1
2

∑t−1
i=0 ni +

∑t−1
i=0 n−n

i+t−1(mod t) = 3n(t−1)
2 . Therefore,

E(Mj) =
∑

t≥2 E(Mj |Xj = t)Pr(Xj = t) < 3n
2

∑
t≥1 t · Pr(Xj = t) = 3n

2 E(Xj)
Let M be the random variable denoting the total number of messages required
in the attrition procedure. Then, E(M) =

∑
j≥1 E(Mj) < 3n

2

∑
j≥1 E(Xj) ≤

Fair Leader Election by Randomized Voting 27

3n
2

(∑
j≥1 E(X1) · (3

4

)j + d
)

≤ 3n
2 (4c + d) where, using the fact that Pr(Xj =

1) ≤ 1 for all j and η1 < 1/e, d ≤ η1
∑

j≥0

(3
4

)j
< 4

e . Since, each vote can be
implemented using O(log c) bits, this attrition procedure converges in expected
O(log c) rounds using an expected O(nc log c) bits. The structure of the proce-
dure ensures that it leads to fair leader election. Although the expected number of
rounds required is only O(log c), the expected bit complexity is O(nc log c), which
is far from optimal. Next, we show that the attrition procedure in Procedure
II has an optimal bit complexity.

Procedure II
There is no need here for the active nodes to know the total number of active
nodes in the ring. Since the votes are sent only to active nodes, there will be at
least one node which receives a vote in each round, thereby ensuring a contender.
Also, the probability that a node is eliminated from contention in a particular
round is η2 =

(
1 − q+1

K

)r (
1 − q

K

)t−r where K = t · q + r. Since, there is at least
a non-zero constant probability of a contender getting eliminated in each round,
the number of contenders decreases to 1 with probability 1.

Let Xj and Yi be a random variable defined as in Case(i). It is easy to see
that E(Yi) = 1 − η2 where t ≥ 2 and η is as defined above. So, if t ≥ 2,
E(Xj+1|Xj = t) = E

(∑t
i=1 Yi

)
=

∑t
i=1 E(Yi) = (1 − η2)t. Therefore,

E(Xj+1) =
∑

t≥1 E(Xj+1|Xj = t)Pr(Xj = m). Since E(Xj+1|Xj = 1) = 1
, we have E(Xj+1) =

∑
t≥2 E(Xj+1|Xj = t)Pr(Xj = m) + Pr(Xj = 1) =

(1 − η2)E(Xj) + η2Pr(Xj = 1). So, after an expected log1/1−η2
(c) rounds of

the attrition procedure, the number of contenders will be negligible (constant),
and will contribute negligibly to the overall complexity. The bit complexity for
each round of attrition is O(nK log K). Since we have used randomized voting
in each round by each node, each active node has the same chance of surviving
the current round. Fairness in electing the leader is therefore assured by such a
attrition procedure. Therefore, we have the following lemma.

Lemma 2. Procedure II reduces the number of contenders from c to a negligi-
ble number (a constant) in expected O(log1/1−η2

)(c) rounds, with a bit complexity
of O((K log K)n log c).

2.2 The Solitude Detection Procedure

A solitude detection procedure determines whether there is a lone active node
in a ring. Such a node can be declared leader. A suitable solitude detection
procedure for the attrition Procedure I is as follows. A particular node α0
initiates the solitude procedure. It initializes a counter F to 0. If it is active it
increments the counter by 1, otherwise, it does nothing. The counter is forwarded
to the next node. Each active node increments F and forwards it. All passive
nodes simply forward the counter F . When the counter returns back to α0, the
value of F is the number of active nodes in the ring. This value of F is then
broadcast to all the nodes, whence every node updates its knowledge of the
number of the active nodes. If F = 1, the only active node declares itself as the

28 S. Brahma et al.

leader. This procedure requires O(n log c) bits of communication and not only
achieves solitude detection, but also ensures that all the active nodes know the
number of active nodes in the ring.

A solitude detection algorithm suitable for use with Procedure II is given in
[9]. We reproduce it here for the sake of completeness. All the nodes βi maintain
a counter ci initialized to zero. The variable di > 0 of node βi, where 1 ≤ i ≤ n,
denotes the distance of the node βi from its preceding active node. The algorithm
maintains the invariant: node βi has received j bits if and only if ci = di mod 2ji .
The actual number of nodes in passive state preceding node βi is di. This is
calculated as the bits are received. For an active node to conclude that it is
the only node surviving, there must be n − 1 nodes in the relay state preceding
this active node. For maintaining the invariant, the active nodes first send 0.
Thereafter, all nodes alternately receive and send bits. If node βi is passive,
then it will send the jth

i low order bit of di in its jth
i message. The active nodes

continue to send 0. Whenever a node k receives its jth
k message, it computes the

first jk bits of dk and updates the value of ck. The jth
k message received by node k

contains the jth
k bit of dk −1 because it is sent by the preceding neighbor to node

k. In this algorithm each message is of a constant number of bits. O(n) messages
are communicated in each step. If there is exactly one active node, the algorithm
confirms the survival of this single node in log n steps. Solitude detection can thus
be done using O(n log n) messages of constant length, resulting in bit complexity
O(n log n).

2.3 The Leader Election Algorithm

In the previous two subsections we have proposed two attrition procedures and
solitude detection procedures that can work with them. The structure of the
attrition procedure ensures that the leader election algorithm in which they will
be used is fair. Since Procedure I leads to an algorithm which has high and
non-optimal bit complexity, we only describe the leader election algorithm for
Procedure II. The leader election algorithm is obtained by interleaving the
attrition procedure with the solitude detection procedure. There is a trivial way
to interleave the two procedures coarsely. In this method the attrition procedure
is run until (with very high probability) the number of contenders reduces to one.
This is followed by a round of solitude detection. In most cases solitude will be
confirmed. In the rare case when solitude is not achieved, the attrition procedure
is restarted. These two procedures are repeated until solitude is confirmed. It
can be shown by an analysis similar to that given in [6] that even this naive
approach achieves an O(n log n) expected bit complexity.

The above leader election algorithm has a deficiency that it cannot be adapted
to work in a ring where the nodes have no knowledge of the ring size or the
number of contenders, even if each node has a unique identifier. This deficiency
can be overcome by a tighter interleaving as shown in [7]. This new procedure
also has an added advantage of stopping early if the attrition procedure proceeds
more quickly than expected. We discuss the main aspects of the algorithm in
[7], adapted to work with our attrition procedure.

Fair Leader Election by Randomized Voting 29

The second solitude detection procedure as outlined in section (2.2) essen-
tially tries to maintain gap information between two adjacent active nodes. In
a leader election algorithm where attrition and solitude detection are tightly in-
terleaved, the gaps keep on changing from one round to another. This problem
is eliminated by the use of restart flags in the messages. In each round, each
contender sends a message consisisting of three parts - an attrition part (as de-
scribed in section (2.1)), a solitude detection part (as described in section (2.2))
and a solitude restart flag initialized to FALSE, to the next contender. If a mes-
sage arrives at a passive node αi that was active in the previous round, then all
nodes following it upto and including the next active node have gap information
that is no longer valid. βi notifies this by setting the restart flag to TRUE so that
the succeeding nodes reinitialize their solitude detection variables. Since βi was
active in the previous round it had received information about the gap between
itself and the preceeding active node. It can send the first bit of this unchanged
gap information as the solitude detection bit.

Each node maintains the following three variables for solitude detection apart
from the variables for the attrition procedure.

1. ji: count of the number of messages received containing correct gap infor-
mation.

2. ci: counter variable containing the value di mod 2ji .
3. oi: position of the outgoing solitude detection bit.

All nodes initialize their local variables ji, ci and oi to 0. In each round,
an active node generates a random number and sends its vote in the form of a
message as mentioned above. Depending on the message an active and a passive
node act in the following ways :

Active Node: The attrition part of the message is handled in the way described
in section (2.1). If the restart flag is TRUE, it reinitializes its local variables ji, ci

and oi to 0 and resets the restart flag to FALSE. Based on the received solitude
detection bit, it updates counter variable ci to maintain ci=di mod 2ji and in-
crements ji and oi. Now it forwards a message containing the modified attrition
part, the solitude detection bit and restart bit set to FALSE to its neighbor.

Passive Node: In each round, a passive node βi receives messages that it has
to forward. If the restart bit in the received message is set, it will reinitialize its
local variables ji, ci and oi to 0. Based on the solitude detection bit, it updates
its counter variable ci to maintain ci=di mod 2ji and increments ji and oi. If the
position variable oi is one, βi is a node that was active in the previous round,
and as reasoned above it sets the restart flag to TRUE. It uses the first bit of the
counter ci as the new solitude detection bit. With the new values for the solitude
detection bit and the restart flag and keeping the attrition part unchanged βi

forwards the message to its neighbor.
In our attrition scheme, a node receives more than one message in a particular

round. However, a node requires to update its solitude detection variables only
once in each round. The solitude detection parts of all subsequent messages are

30 S. Brahma et al.

ignored in that round; note that the actual gap distance can only increase and
the counter ci is so maintained that it is a lower bound on this distance. This
distance eventually increases to the correct gap distance in O(log n) rounds.

Following the correctness of our second attrition procedure (see Lemma 2)
and the above mentioned interleaving of the attrition procedure and the corre-
sponding solitude detection procedure (adapted from [7] as explained above), we
now summarize our main result in the following theorem.

Theorem 1. Fair leader election in a unidirectional, asynchronous, anonymous
ring can be done in expected O(log n) rounds with O(n log n) bits of communica-
tion where the nodes know the size n of the ring. Fairness here means that each
node has the same probability of getting elected as leader.

3 Extensions to Other Models

Our algorithms above work for an anonymous, asynchronous ring where the
number of nodes n is known to every node. Even when n is known only within
a factor of less than 2, i.e. n ∈ [N, 2N − 1] and N is known to every node,
the solitude detection procedure for Procedure II can be modified to work
correctly. There can be at most one gap of length N or more between neighboring
contenders and if the gap is less than N , non-solitude is confirmed. If a particular
node detects a gap greater than N , it can confirm solitude by initiating a single
round to check whether the next gap also remains the same. This modified
procedure detects solitude when every node has the knowledge of N , where
n ∈ [N, 2N − 1].

The leader election algorithm can also be adapted to a situation in which
each node has a distinct identifier but no knowledge of the ring size or the
number of contenders. This is achieved by a simpler solitude detection proce-
dure. In the new solitude detection procedure, an active node verifies its solitude
by confirming that the preceeding active node has the same identifier as itself.
Thus solitude can be verified using only O(nm) bits where m is the length of
the longest identifier. Our leader election algorithm can be easily be adapted to
work with this new solitude detection procedure.

4 Conclusion

In this paper we have proposed a new notion of fairness in the leader election
problem. Fairness ensures that each contending node has the same probability
of getting elected as leader. We have designed algorithms for fair leader elec-
tion amongst c contending nodes in an n-node unidirectional, asynchronous and
anonymous ring (c ≤ n) using randomized voting, achieveing optimal O(n log n)
expected communication bit complexity in expected O(log n) rounds. We assume
that the ring size n is known. We also show how to adapt our algorithms for
slightly different unidirectional ring models.

Fair Leader Election by Randomized Voting 31

It may be worthwhile investigating fair leader election algorithms for other
network models such as trees and complete graphs. Reuse of random bits be-
tween rounds is also an important research issue since randomness is a precious
resource.

References

1. Karl Abrahamson, Andrew Adler, Rachel Gelbart, Lisa Higham, and David Kirk-
patrick. The bit complexity of randomized leader election on a ring. SIAM J.
Comput., 18(1):12–29, 1989.

2. Dana Angluin. Local and global properties in networks of processors (extended
abstract). In Proceedings of the twelfth annual ACM symposium on Theory of
computing, pages 82–93, 1980.

3. E. Chang and R Roberts. An improved algorithm for decentralized extrema-finding
in circularly configurations of processes. Commun. ACM, 22(5):281–283, 1979.

4. Danny Dolev, Maria M. Klawe, and Michael Rodeh. An O(n log n) unidirectional
distributed algorithm for extrema finding in a circle. J. Algorithms, 3(3):245–260,
1982.

5. Randolph Franklin. On an improved algorithm for decentralized extrema finding
in circular configurations of processors. Commun. ACM, 25(5):336–337, 1982.

6. Lisa Higham. Randomized Distributed Computing on Rings. Phd thesis, University
of British Columbia, 1988.

7. Lisa Higham. Simple randomized leader election with extensions. Technical report,
University of Calgary, 1988.

8. D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular
configurations of processors. Commun. ACM, 23(11):627–628, 1980.

9. Alon Itai and Michael Rodeh. Symmetry breaking in distributed networks. Infor-
mation and Computation, 88(1):60–87, 1990.

10. J.E.Burns. A formal model for message passing systems. Technical Report TR-91,
Indiana University, 1980.

11. G Le Lann. Distributed systems-towards a formal approach. In Proceedings of the
IFIP Congress 77, pages 155–160. North-Holland, 1977.

12. Gary L. Peterson. An O(n log n) unidirectional distributed algorithm for the circu-
lar extrema problem. ACM Transactions on Programming Languages and Systems,
4(4):758–762, 1982.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 32–41, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient Leader Election Algorithm for
Mobile Ad Hoc Networks

Pradeep Parvathipuram1, Vijay Kumar1, and Gi-Chul Yang2,

1 SICE, Computer Networking, University of Missouri-Kansas City,
5100 Rockhill Kansas City, MO 64110
Pkp39c(kumarv)@umkc.edu

2 Division of Information Engineering, Mokpo National University, 61 Dorim-ri,
Chungkye-myun, Muan-gun, Jeonnam, 534-729 Korea

gcyang@mokpo.ac.kr

Abstract. Nodes communicate under peer-to-peer level in ad-hoc mobile net-
works. To manage the inter-node communication and data exchange among
them a leader node is required. In this paper we present a leader election
algorithm for distributed mobile ad hoc networks where inter-node
communication is allowed only among the neighboring nodes along with the
correctness of the algorithm. The algorithm uses least amount of wireless re-
sources and does not affect the movement of the nodes.

1 Introduction

A mobile ad hoc (dynamic network) consists of a set of peer-to-peer nodes, which
communicate with each other through wireless channels. The nodes are free to move
around in a geographical area and are loosely bounded by the transmission range of
the wireless channels. Since a node is completely free to move around, there is no
fixed final topology. A mobile node communicates with a set of nodes, which are
within its transmission range. These nodes are said to be the neighbors of the commu-
nicating node and the mobile nodes present in between the source and the set of
neighbors (destination nodes) act as routers as they route packets to destinations from
the source. To coordinate the communication among nodes and to manage their data
requirements a leader (node) is identified. The identification problem of leader is
referred to as “leader election problem”.

The leader election problem originally appeared in token ring network for man-
aging the use of tokens [13]. The problem resurfaced again in ad hoc or dynamic
networks, however, with added complexity. Since then a number of papers have
discussed the nature of algorithms [2, 3, 4, 5] and to our knowledge only few papers
[2, 3] have presented such algorithms. One of the main reasons for such lack of
work in this area is the complexity involved in finding an efficient solution for a
highly dynamic network. Unlike conventional distributed systems, designing a
leader election algorithm for mobile ad hoc networks is challenging mainly because
(a) the nodes are highly mobile, (b) the mean time failure of these nodes are
relatively high compared to static wired network nodes, (c) the transmission range

An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks 33

and bandwidth of wireless channels are limited, (d) neighbor configuration may
change randomly, and (e) there is no fixed network topology. For these reasons, an
efficient leader election algorithm must do everything, which an algorithm for static
networks does, and in addition it must handle the movement of the nodes. Further-
more, the algorithm must guarantee that (a) there should be a leader at the end of the
execution of the algorithm and (b) there cannot be more than one leader in a single
connected component.

Our aim is to develop an efficient leader election (identification) scheme for this
highly dynamic system that (a) incurs minimum messaging cost and time to elect a
leader (b) is correct, that is, at any time there cannot be two or more conflicting leaders
in the network, and (c) it does not hinder or restrict the geographical movement of
nodes. In our approach we do not impose any specific structure for the mobile ad hoc
network We assume followings for our algorithm. Consider a system of N mobile
nodes, which are managed with the following set of assumptions (a) each mobile node
has a unique identifier, (b) all communication links are bi-directional and reliable, and
(c) the topology changes are finite.

Our leader election algorithm ensures only one leader for each connected compo-
nent in a network. When a partition occurs in the network, a new leader is elected in
each component and its id is propagated through out the component. We have used
ZRP (zone routing protocol) [1] to propagate this information.

2 A Review of Existing Work

The algorithm presented in [2] uses compulsory and non-compulsory protocols on the
movement of the mobile nodes. Non-compulsory protocols do not impose any restric-
tion on the movement of the mobile nodes but the compulsory protocols do. Both
types assume that the movement of these mobile nodes is bounded by the three dimen-
sional space S where S is quantized by a regular polyhedron. Neither of the protocols
addresses networks partitions. Non-compulsory protocols might not even elect a
leader under certain circumstances and the compulsory protocols perform random
walk. For this algorithm to run, the mobile nodes need to know the type and dimen-
sion of the polyhedron. This was the first algorithm for mobile ad hoc networks and
although it has limitations, it does provide some useful information for leader election
algorithm. The algorithm assumes that the mobile hosts move in such a way that each
host performs a random walk in the specified space S. Because of this assumption, it
is proved that the algorithm terminates in times asymptotically linear to the size of the
space S, which is measured as its volume divided by the volume of the sphere defined
by the range of transmission of the mobile host. A graph theoretic model has been
proposed for the ad hoc networks and a mobile host has been viewed as being covered
by a sphere with a radius of transmission range.

The algorithm presented in [3] uses the TORA [6] (Temporally Ordered Routing
Algorithm) routing protocol for the leader election and imposes a DAG (Directed
Acyclic Graph) structure for the network. This algorithm takes care of the partitions in
the network as TORA can detect partitions when reversal reaches a node with no
downstream links and all its neighbors have the same reflected reference level. We
think that imposing a DAG structure is quite an overhead for a particular network as

P. Parvathipuram, V. Kumar, and G.-C. Yang 34

the leader is assumed to be the sink with DAG and each DAG is said to be leader
oriented. Each time a change occurs the DAG structure needs to be maintained. There
are two algorithms proposed for leader election in this paper. One when there is only
one change and after that change the whole network stabilizes before the intervention
of a new change, the second one deals with concurrent multiple topology changes, i.e.,
concurrent changes can take place before the network gets stabilized. So as the topol-
ogy changes keep increasing, the cost of maintaining the DAG structure also in-
creases. The whole algorithm is based on the routing protocol called TORA and the
orientation of the DAG has been changed from destination oriented to leader oriented.

The multicast operation of the AODV (Ad hoc On Demand Distance Vector
routing protocol) [4] for ad hoc network performs the leader election only during
multicasting. It also ensures that only one of the nodes is elected as a leader when a
network gets partitioned and when the components get merged. This algorithm basi-
cally deals with the multicast and shows that multicasting can be done in ad hoc net-
work and AODV can unicast, broadcast and multicast. A multicast group leader main-
tains the multicast group sequence number and these group members agree to act as
routers in the multicast tree. In case of partitions, the algorithm ensure that only one
multicast leader exist.

In [5], an algorithm has been presented to maintain a rooted spanning tree for dy-
namic networks. This algorithm does not propose a scheme for leader election but can
be viewed as maintaining a leader (root) as it maintains a spanning tree structure for
the network. Just as TORA imposes a DAG structure, this algorithm imposes a span-
ning tree structure. This algorithm does incorporate changes in the network but
doesn’t deal with network partitions. Moreover, imposing and maintaining a spanning
tree structure for a network is quite an overhead in mobile ad hoc networks, as the
whole network keeps moving. Basically this paper mainly describes the protocol
to maintain the spanning tree in dynamic topology. This scenario can be seen similar
to an ad hoc network where in the network changes its topology frequently.

3 Zone Routing Protocol (ZRP)

We use ZRP [1] as the routing protocol for mobile ad hoc networks. It uses both the
proactive and reactive type routing protocols. The whole network is divided into zones
of radius r, and the information of all the nodes present in the zone is recorded in the
zone routing table. It proactively maintains the route information for all the nodes
present in the zone. Each node has a routing table, which consists of the information
for all the nodes within radius r (routing zone) for that particular node. If a node of a
zone wants to communicate with the nodes of other zones, then it uses bordercasting
to get the information. It uses IARP (intra zone routing protocol) and IERP (Inter zone
routing protocol) for routing. IARP proactively maintains the routing information for
all the nodes present in the routing zone and IERP is used if a node in one zone wants
to communicate with the nodes in another zone. The border nodes of the routing zone
are called border routers or the peripheral nodes. If a node in one zone wants to

An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks 35

communicate with the nodes of another zone, then it propagates the query to the bor-
der routers. These border routers look for the nodes inside their routing zone and the
process continues until the destination is reached. This way the number of messages to
locate the destination is greatly reduced.

I

A

L

F

K

C

C
J

SD

E

H

B

Fig. 1. A routing zone with radius 2

Consider node S (figure 1), and let size of the radius be two hops (distance metric).
Then for node S all nodes except for L come in its zone and has a route to every node
in the zone. To communicate with a node outside the zone, node S sends the query to
all the border routers in the zone and in turn those border routers check to see whether
the node is present in its zone and if not then it keeps bordercasting the query until it
finds the destination. Some of the query termination techniques are also been imple-
mented in ZRP if a query that has been looked into a zone before comes again. It
achieves multiple paths for a single destination and the shortest one is selected. Note
that it reduces the number of messages, as it does not use flooding to propagate the
information. This comes in handy when the leader information needs to propagate
throughout the network and when a node requires knowing the presence of leader, thus
decreasing the communication cost. The objective of reducing the message complexity
is obtained by using ZRP.

4 Our Approach

Our approach basically selects the largest identity node as the leader using minimum
wireless messages. A mobile ad hoc network can be considered as a static network
with frequent link or node failures, which can be thought of as a mobile node of an ad
hoc network going out of reach. We use the diameter concept to cover all the nodes
in the network. A diameter is defined as the longest distance between any two nodes
in the network where the distance is defined as the shortest path between the nodes. In
figure 2, the diameter of the network is 6, which is the distance between the nodes L
and I. The distance metric is measured in number of hops. We assume the network

P. Parvathipuram, V. Kumar, and G.-C. Yang 36

gets stabilized after a single change occurs during leader election process. We further
assume that there are only a finite number of changes in the network. The steps of the
algorithm can be stated briefly as follows and later we provide the pseudo code for the
algorithm.

Consider a network of N nodes. Our algorithm may take more than diameter
rounds to terminate since the topological changes are considered during the leader
election. If, however, the topological changes are not considered, then it takes diame-
ter rounds to elect the leader.

Leader Election
For each round, each node propagates its unique identifier to its neighbors and a
maximum identifier is elected as a leader. This maximum identifier is propagated
in the subsequent rounds. All the rounds need to be synchronized. idlist (i) identi-
fies identifier list for nodei, which consists of all the neighbors for nodei. Lid(i) =
max(idlist(i))

Termination
At (rounds >= diameter), for each nodei

If all identifiers in idlist (i) are the same, then the nodei stops sending the maxi-
mum identifier further and elects the maximum identifier in the idlist (i) as the
leader. The termination may not be at the end of the diameter rounds, the algo-
rithm gets terminated if for each nodei the elements in idlist (for each node) are the
same.

Algorithm:
For each node i in the network, we have the following.
idlist - Identifier list, lid(i) – leader id of node i.
For each round,
Begin
Each node say nodei transmits its unique identifier in the first round and Lid(i) in the
subsequent rounds to their neighbors and all these ids will be stored in idlist.
Lid(i) = max (idlist(i));
End
A unique leader is elected in diameter rounds, if there are no topological changes in
the network. The algorithm is modified to incorporate topological changes in between
the rounds and below is the description of how the algorithm is modified.

Case 1: If a node has no outgoing links then lid(i) = i;

Case 2: If a node leaves between the rounds, then the neighbors would know this.

Suppose nodei leaves the network after round r and let its neighbors be j and k.

Begin
∀ neighbors of i (i.e. j, k).
Delete (ilist, idlist(j & k)) // delete ilist from idlist

Where ilist contains the group of identifiers that nodei has sent to its neighbors be-
fore round r along with i.

An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks 37

The ilist information is also deleted from all the neighbors of j and k if the ilist
identifiers have been propagated in the previous rounds. This process continues until
all the nodes in the network are covered.
While (round > = diameter), // Termination condition
Begin
∀nodes in the network
 say for nodei,
compare all the identifiers present in idlist(i)

If all the identifiers in idlist(i) are equal, nodei stops propagating its maximum

identifier and elects the maximum identifier as the leader.
All nodes in the network follow this process and a unique leader is elected in a sin-

gle connected component.
End //end of while loop

End //end of case2

Case 3: If a new node i joins the network in between the rounds say round r then the
neighbors will update its idlist.

Begin
 ∀ Neighbors of i say nodej is the neighbor for nodei.
 add (i, idlist(j));

The normal algorithm continues (the ids are propagated), nodes keep exchanging
the information till diameter rounds.
while (round > = diameter),
Begin
∀ nodes in the network. Say nodej, and nodej receives an identifier i at diameter
round.

If i is greater than the maximum identifier nodej has propagated in the previous
round (diameter-1).

Propagate nodei to all the neighbors of j.
Also propagate the nodei information to all the neighbors of neighbors of i until the
whole network is covered, if the above condition satisfies.
 Else Do not propagate the information.
∀nodes in the network // Termination Condition
 say for nodei,
compare all the identifiers present in idlist(i)

If all the identifiers in idlist(i) are equal, nodei stops propagating its maximum
identifier and elects the maximum identifier as the leader.

All nodes in the network follow this process and a unique leader is elected in a sin-
gle connected component.
End //end of the while loop

End //end of case3

So the time taken for the algorithm to elect a leader will be O (diam + ∆t) where ∆t
is the time taken for all the nodes to converge and ∆t depends on the topology changes

P. Parvathipuram, V. Kumar, and G.-C. Yang 38

in the network (∆t might be the time taken for few more rounds). The algorithm termi-
nates when all nodes have exactly one identifier as a leader.

The message complexity for the leader election algorithm depends on the net-
work topology and the number of messages propagated as the topology changes.
Even for multiple concurrent changes in the network, our algorithm ensures only
one leader but the time ∆t may increase. Since all the cases are considered in the
algorithm, even if multiple topological changes occur the algorithm can still elect a
unique leader as different cases are called for different changes in the network at
different times.

5 Proof of Correctness

We assume that the leader has been elected and we are permitting only one change to
occur after the network gets stabilized. We also assume that the system is synchro-
nized. At each round, messages are sent to all the neighbors. We prove that there is
only one leader elected at any time.

Case 1: If a link appears at time t causing two components say C1 and C2 to merge
together and form one component C, then we prove that there is only one leader for C.
Once a leader is elected, we need to make sure that this information is propagated
through out the component whose leader has been defeated by the leader of the other
component.

Let us consider the case where the leader l1 of C1 is greater than the leader l2 of
component C2. Let the diameters of C1 and C2 be d1 and d2 respectively. The infor-
mation of the leader l1 should be propagated through C2. Also assume that the link
appears between the nodes n1 and n2 corresponding to C1 and C2 making the two
components merge. Let k1 be the maximum shortest distance between the node n1 and
any other node in C1 and K2 the maximum shortest distance between the node n2 and
any other node in C2.

Lemma 1: l1 is elected as the leader of C in k2 rounds.

Proof: There can be only one leader in C if the propagation of the leader is successful.
As we assumed l1 > l2, we now need to propagate the value of l1 through C2. Since
n2 is the node that needs to propagate the information all through C2, we can con-
struct a tree with n2 as the root (Figure 2) and its neighbors as the descendents of n2
and so on until all the nodes are covered in the network. The depth of the tree will be
equal to k2. So, at the end of k2 rounds the information is propagated throughout C2.

At round r = 1, n2 knows that l1 is the leader and it will propagate this information
to its neighbors. At r = k2 - 1, all the nodes that are present at a distance of k2 - 1 has
been informed. At r = k2 - 1, only the nodes that are at a distance of k2 do not know
about the new leader and when r = k2, the nodes present at k2 - 1 rounds propagate to
their neighbors thus covering C2. So at the end of k2 rounds, the information about the
new leader is propagated. Since we are assuming that there is no change in the net-
work before the network stabilizes after a single change (i.e. during propagating the
information) there will be only one leader in the network.

An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks 39

r = 0

r = 1

r = 2

r = k2

Fig. 2. A node tree with root at n2

Case 2: A link breaks at time t due to the mobility of nodes causing a connected com-
ponent partitioned into two separate components.

Lemma 2: Two separate leaders need to be elected in the two separate components.

Proof: Consider a connected C. Let us assume that (k1, k2) be the link between the
two nodes k1 and k2. When it breaks due to the movement of the node say k2 causes a
partition in the network. To detect the partition, the neighboring nodes of k2 tries to
establish a connection with the leader. The leader should be present in any one of the
components. Suppose it is in C1 with k1. k2 knows that it has been disconnected
from the network and elects itself as the leader and propagates the information of the
new leader across C2.

2(4)

1(4)

4(4)

3(4)

7(7)

6(7)

5(7)

1(7)

6(7)

5(7)

7(7)

4(7)

3(7)

2(7)

Fig. 3. Before Partition Fig. 4. After Partition

The information is propagated as in the case of lemma 1 and the same argument
can be used here to prove that only one leader gets selected for each and every con-
nected component.

Figure 3 represents a network before partition and Figure 4 represents a network
after partition. In figure 3, if the link between 4 and 7 is removed by the movement of
node7, then the network gets partitioned in to two. Since node 4 and node 6 are the
neighbors, both these try to establish connection with the leader (node 7). Node 6
reaches node 7 so it is not disconnected but node 4 fails reach node 7, as it is no more
in the network. Node 4 detects that a partition has occurred and it establishes itself as
the leader and this information is propagated throughout the component. After parti-
tion (Figure 4) two components are formed with node 4 as the leader of one compo-
nent and node 7 as the leader of the other component.

P. Parvathipuram, V. Kumar, and G.-C. Yang 40

Case 3: When a single node, say j, departs from the network, then for every neighbor i
of j, we have the following:

If (lid(i) <> uid(j)) then nothing has to be done since j is not a leader otherwise the
node that has moved is the leader. A situation arises. What to do if the leader itself
goes away. A new leader should be elected in the connected component, if i is only the
neighbor of j, then it knows that leader has left and elects itself as the leader since
there is no other contender in the network. The argument of lemma 1 can be used to
prove that only one leader gets elected in a connected component.

6 Conclusions

We have presented two algorithms (Leader election and Termination) for leader elec-
tion and discussed their capabilities. We believe that our algorithms are easy to im-
plement as the messages are exchanged only between the neighbors. We have used the
concept of time stamping to distinguish the messages so that the most recent informa-
tion is taken into consideration. All cases are considered in the algorithms and show
that only one leader is elected at a particular time.

References

1. Z.J. Haas and M.R. Pearlman, "The Zone Routing Protocol (ZRP) for Ad Hoc Networks,"
Internet Draft, draft-ietf-manet-zone-zrp-02.txt, June 1999

2. Kostas P Hatzis, George P. Pentaris, Paul G. Spirakis, Vasilis B. Tampakas and Richard B.
Tan Fundamental Control Algorithms in Mobile Networks Proc. 11th Annual ACM Symp.
on Parallel Algorithms And Architectures.

3. N. Malpani, J. L. Welch. N. H. Vaidya, Leader Election Algorithms for Mobile Ad Hoc
Networks, Fourth International Workshop on Discrete Algorithms and Methods for Mo-
bile Computing and Communications, Boston, August 2000.

4. Elizabeth M. Royer and Charles E. Perkins. "Multicast Operation of the Ad-hoc On-
Demand Distance Vector Routing Protocol." Proceedings of MobiCom '99, Seattle, WA,
August 1999, pp. 207-218.

5. Chunhsiang Cheng and Srikanta P.R. Kumar. A loopfree spanning tree protocol in Dy-
namic topology. Proc. 27th Annual Allerton Conference on Communication, Control and
Computing, sep 1989. PP.594-595.

6. Vincent D. Park and M. Scott Corson. A Highly Adaptive Distributed Routing Algorithm
for Mobile Wireless Networks. Proc. IEEE INFOCOM, April 7-11, 1997.

7. A. Acharya, B. R. Badrinath, T. Imielinski, Impact of mobility on distributed computa-
tions. Operating Systems Review, April 1993.

8. A. Acharya, B. R. Badrinath, T. Imielinski, Structuring distributed algorithms for mobile
hosts. In Proc. Of 14th International Conference on distributed computing systems, June
1994.

9. Z.J. Haas and S. Tabrizi, "On Some Challenges and Design Choices in Ad-Hoc Communi-
cations,"IEEE MILCOM'98, Bedford, MA, October 18-21, 1998.

10. A.Tsirigos and Z.J. Haas, "Multipath Routing in Mobile Ad Hoc Networks or How to
Route in the Presence of Topological Changes," IEEE MILCOM'2001, Tysons Corner,
VA, October 28-31, 2001.

An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks 41

11. J. Haas and B. Liang, "Ad-Hoc Mobility Management with Randomized Database
Groups," IEEE ICC'99, Vancouver, BC, Canada, June 6-10, 1999.

12. Z.J. Haas and M.R. Pearlman, "The Performance of Query Control Schemes for the Zone
Routing Protocol," ACM DialM 1999, Seattle, WA, August 20, 1999.

13. B. Liang and Z.J. Haas, "Virtual Backbone Generation and Maintenance in Ad Hoc Net-
work Mobility Management," IEEE INFOCOM'2000, Tel Aviv, Israel, March 26-30,
2000.

14. G. LeLann, “Distributed Systems: Towards a formal approach.” In Proc. Information
Processing ’77, B. Gilchrist (ed.), North-Holland, 1977.

15. Kevin Fall, Kannan Varadhan. NS user manual, “The VINT project”. A Collaboration be-
tween researches at UC Berkeley, LBL, USC/ISI, and Xerox PARC.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 42–49, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Distributed Balanced Tables: A New Approach

Amiya Tripathy1, Tripti Negi2, and Anil Singh3

1 M N National Institute of Technology, Allahabad, India
t_amiya@yahoo.com

2 Indian Institute of Technology, Kanpur, India
negi@iitk.ac.in

3 M N National Institute of Technology, Allahabad, India
singhak@mnnit.ac.in

Abstract. Distributed Hash Tables (DHT) implements a distributed dictionary,
supporting key insertion, deletion and lookup. They use hashing to enable effi-
cient dictionary operations, and achieve storage balance across the participant
nodes. Hashing can be inappropriate for both problems, as it destroys data or-
dering, thus making sequential key access and range queries expensive, and
fails to provide storage balance when keys are not unique. We propose general-
izing DHTs to create Distributed Balanced Tables (DBTs), which eliminate the
above two problems. To solve problem, we discuss how DHT routing struc-
tures can be adapted for use in DBTs, while preserving the costs of the standard
dictionary operations and supporting efficient range queries. To solve problem,
we describe an efficient algorithm that guarantees storage balance, even against
an adversarial insertion and deletion of keys.

1 Introduction

Distributed Hash Tables (DHTs) [11, 12, 14, 15] provide a distributed implementa-
tion of a Dictionary ADT allowing efficient inserts, deletes and lookups of keyed
data. Nodes and keys are both hashed into a circular ID space. The IDs of nodes de-
termine both the partitioning of the hash space among the nodes, as well as the rout-
ing interconnections between nodes. We argue that DHTs suffer from the following
two problems.

Hashing Destroys Data Ordering: Hash tables are effective for enabling fast queries
for individual keys. However, many applications desire to exploit the ordering of
keys and pose queries over key ranges. For example, a node querying an auction
system might desire a list of all computers for sale, priced between 20000 and 3500.
As another example, in a distributed cache where keys are page URLs, an application
may desire to look up all pages with a specific URL prefix. It is well known [4] that
hash partitioning is inefficient for answering queries over ad hoc ranges of data.

Hashing Does Not Provide Storage Balance: A lot of recent work [1, 9, 11] has
shown that it is possible to ensure that the hash-space partitions managed by DHT

Distributed Balanced Tables: A New Approach 43

nodes remain well balanced. However, such hash-space balance is insufficient when
the keys being hashed are not unique. For example, when using a DHT to build an
inverted index over documents, terms are used as keys, and the number of data items
with a particular term follows a Zipfian distribution. Thus, there can be a severe stor-
age imbalance even if the hash-space partitions are balanced.

In this paper, we present initial results from designing Distributed Balanced Ta-
bles (DBTs), which solve the above problems by the use of range partitioning. The
data domain is partitioned into multiple contiguous ranges, with each node managing
one of the ranges. Nodes are then interconnected using an overlay network to allow
efficient lookup of a specific key, as well as a sequential retrieval of keys. Our solu-
tion consists of two parts:

Designing the Overlay Network: The use of DHT routing structures over range-
partitioned data is undesirable for a variety of reasons. In Section 3, we discuss hur-
dles in using these well-studied structures. We then build upon recent work on skip
graph routing topologies to produce a modified version of Chord that can be used
with range-partitioned data.

Balancing Storage Load: We can quantify the storage imbalance in a network using
the imbalance ration σ ; defined to be the ratio of the number of data items in the
most and least loaded nodes. In Section 4, we present an online algorithm that guar-
antees that σ is at most 32 at all times, even against adversarial (any sequence of)
insertion and deletion of data items. Thus, no node is ever too overloaded or too un-
der loaded. We also show that the amortized cost of moving data to maintain balance,
when data is inserted and deleted, is a small constant. Finally, in Section 5, we show
that the imbalance ratio is smaller in non-adversarial scenarios.

In summary, we design an overlay network (DBT) that offers the same asymptotic
bounds as DHTs for the standard dictionary operations (data insertion, deletion,
lookup), as well as node joins and leaves. In addition, it supports a range query opera-
tion with the cost of retrieving a fraction k of the data being O(kn) where n is the
number of nodes in the network.

2 Related Work

Range Queries: There have been multiple solutions offered for performing range
queries in P2P systems. Some offer storage balance, but at the price of data-
dependent query cost and data fragmentation [13], or at the price of having to live
with approximation [2]. Others [3, 5, 7] offer exact and efficient queries, but run the
risk of arbitrarily unbalanced distribution of data across nodes.

Storage Balance: Recent work has focused on ensuring the uniformity of the hash-
space partitions [1, 9, 11, 14] as nodes join and leave the system. Byers et. al. [6]
address the problem of non-uniform allocation of keys to the different partitions. All
the above works assume that keys are unique in order to offer storage balance. Rao et.
al. [10] perform dynamic load balancing by the use of multiple “virtual” nodes per
actual node. When a node is overloaded, it attempts to exchange a heavily loaded

A. Tripathy, T. Negi, and A. Singh 44

virtual node for a lightly loaded one. However, their work offers no guarantees on the
load imbalance ratio, while the use of virtual servers increases routing state as well as
query costs.

In a concurrent work, Karger and Ruhl [8] provide an alternative solution to the
storage balance problem. They mention that their scheme can be adapted for balanc-
ing range-partitioned data. The scheme is a randomized algorithm that offers a high-
probability bound on the imbalance ratio, and is analyzed under a non-adversarial
setting. However, the best achievable bound on imbalance ratio using this algorithm
appears to be more than 200. The amortized cost of key insertions and deletions in
their scheme, though constant, also appear an order of magnitude more expensive
than ours.

3 Designing the Overlay Network

In this section, we consider how to interconnect nodes for answering range queries
efficiently. Each node stores data in a particular range, and range may be arbitrarily
sized in order to achieve storage balance. A straightforward solution is to use skip
graphs [5, 7], which arranges nodes sequentially by their data ranges, and giving each
node O(log n) additional links. This enables efficient routing to the left endpoint of a
range query using O(log n) messages. Data in the required range can then be effi-
ciently retrieved.

Let us dig a little deeper to understand why skip graphs work and explore alterna-
tive solutions. One may initially imagine that standard DHTs, built with the ID of a
node being the left/right endpoint of the range it manages, also offer the efficient
routing. However, the tying together of node IDs with the data ranges they manage
has serious repercussions. When data ranges are arbitrarily sized, node IDs are not
uniformly distributed in the ID space. In fact, node IDs will reflect the data distribu-
tion. Consequently, routing between a pair of nodes is not guaranteed to be in O(log
n) hops, and there may also be great skew in node in-degrees. Additionally, any re-
partitioning of data across nodes necessarily involves modifying node IDs, which
necessitates changes in the link structure.

Skip graphs escapes the above hurdles by making the link structure rely solely on
the ordering of the nodes in the data space, rather than on the values of their range
endpoints. In fact, skip graphs can be viewed as an adaptation of the Pastry DHT
structure [5, 12]. This leads us to the question: Can other DHTs be modified to elimi-
nate the above problems and retain the standard DHT routing properties? We show
that the answer is “Yes”, by modifying the Chord DHT structure. We show later that
our modification of Chord is an improvement on skips graphs.

Imagine a circular sequence of n nodes, ordered clockwise by the data ranges they
store. We define the data distance from node N to node N1to be the number of nodes
on the clockwise path from N to N1 in this sequence. Each node chooses a random ID
in a circular 2 numeric space [0, 2D]. We define the ID distance from node N to node
N1 as the clockwise distance from N’s ID to N1’s, a la Chord. Each node N forms a
logarithmic number of links as follows. For each i from 0 to D, node N consider the

Distributed Balanced Tables: A New Approach 45

set of nodes Si that are in the ID distance range [2i, 2i+1] from N. It then forms a link to
the node in Si that is nearest to N in terms of data distance.

This structure forms the basis of Modula, our modified version of Chord that en-
ables any node to route to the node responsible for any key using only O(log n) mes-
sages, while each node maintains only O(log n) links to other nodes. Note that the
above bounds are completely independent of the exact ranges of keys stored by each
node. Moreover, Modula can be maintained efficiently, with insertion or deletion of
nodes requiring only O(log n) messages. Finally, Modula improves on skip graphs by
allowing each node to maintain an arbitrary number of links, say k, to other nodes and
provides a smooth trade-off between the number of links used and the number of
routing hops necessary.

4 Storage Balance

In this section, we discuss how to ensure that a dynamic set of data items can be parti-
tioned among a dynamic set of nodes while ensuring that the imbalance ratioσ is
small. We first consider a setting where there is a static set of n nodes. As mentioned
earlier, data is assigned to nodes by the use of range partitioning. When a data item is
inserted, it is stored at the appropriate node. In reaction to this insertion or deletion,
the node may execute the balancing algorithm and move data items in order to restore
storage balance. Similarly, the deletion of a data item may cause the node involved to
execute the balancing algorithm. The total number of data item movements per-
formed can measure the cost of the algorithm.

We will show that our balancing algorithm requires only a constant amount of
data movement per insert or delete operation (in an amortized sense), while guaran-
teeing that the imbalance ratio σ is at most 32.

We assume that nodes are labeled N1,N2,….,Nn, in the order of the data ranges they
manage. We refer to nodes managing adjacent ranges as neighbors. Let L(Ni)denote
the load (the number of data items stored) at node Ni. Storage balance is achieved by
altering the ranges managed by the different nodes as data is inserted and deleted. It
uses the following two simple mechanisms:

Neighbor Adjustment: A pair of neighbor nodes, Ni and Ni+1 may perform a neighbor
adjustment, by transferring some amount of data from the node with higher load to
the node with lower load, and adjusting the ranges they manage appropriately. Ob-
serve that this adjustment does not necessitate any changes in the overlay-network
structure interconnecting nodes.

Stranger Adjustment: A stranger adjustment involves three nodes, a node Ni, and a
pair of neighbor nodes Nk and Nk+1. Assume w.l.o.g. that L(Nk) L(Nk+1). When the
total load on Nk and Nk+1 is less than the load of Ni, node Nk can transfer its data over
to Nk+1. The node Nk then takes over half the load of node Ni instead, thus becoming
its neighbor. Observe that this step causes a change in the ordering of nodes due to Nk
changing its position, and may require O(log n) messages to restructure the overlay
network appropriately.

A. Tripathy, T. Negi, and A. Singh 46

The balancing algorithm makes careful use of neighbor and stranger adjustments
in order to ensure storage balance, while making sure that only a small number of
such adjustments are performed, thus limiting the cost of performing balancing.

Let us start with a scenario where there are no data deletions. Each node Ni at-
tempts a balance operation whenever its load crosses a power of two. Say, Ni’s load

increases to 2x+1. If Ni has a neighbor with load at most 2x , it performs a neighbor

adjustment to “top up” the neighbor to load x. If not, and neither of Ni’s neighbors
have a load more than 4x, Ni finds the lightest loaded node in the system, say Nk. (We

describe later how such an Nk may be found.) If Nk’s load is at most 4x , Ni per-

forms a stranger adjustment with Nk and one of Nk±1. In consequence, Nk’s load be-
comes x.

This simple load-balancing algorithm proves sufficient to guarantee that load im-
balance is at most 16 even against an adversarial insertion sequence. Moreover, the
amortized cost of inserting a data item, measured as the number of data items that are
moved in order to achieve load balance, is at most 4.

The deletion of data items is handled in a symmetric “inverse” scheme. Each node
attempts to rebalance itself when its size reaches a power of two, say x, and it has lost
at least half its data. If the node has a neighbor with load at least 8x, it tops itself up to
load 4x from this neighbor. Otherwise, it, together with its neighbor, attempts a
stranger adjustment with the most loaded node in the system. The amortized cost of
the deletion operation is again constant, although somewhat higher, and we state the
following theorems about load imbalance and the costs of insertion and deletion.

Definition 4.1. Let x be the smallest power of 2 greater than or equal to x.

Lemma 4.1. The following invariants hold after any sequence of data insertions and
deletions:

 (a) For any pair of neighbor nodesN and N1, L(N) • 8 8 1LN .

 (b) For any pair of nodes N and N1, L (N) •16 16 1LN

Theorem 4.1. After any sequence of data insertions and deletions, the imbalance
ratioσ is at most 32.

Theorem 4.2. The amortized cost of an insertion is 4 and that of a deletion is at most
28.

Note that the cost of deletion is higher than that of insertion, which is not too sur-
prising since it is easier to make a system unbalanced by halving the load of the least-
loaded node, while it requires more insertions to double the load of the most loaded
node. In future work, we hope to perform tighter analysis to lower the deletion cost.

Given the above algorithm for load balancing, we can easily adapt it to a dynamic,
distributed setting where nodes may join and leave the system. First, insertion and
deletion of nodes from the system can be handled easily. A new node is inserted to
split the largest partition, while node deletion may be handled by handing over rele-

vant data to a neighbor of the deleted node. Both these operations incur O(nD) data

Distributed Balanced Tables: A New Approach 47

movement cost, where D is the total amount of data in the system. Second, the move-
ment of data for storage balance takes a finite amount of time in a real system, and
data insertions and deletions may continue to occur while balancing takes place. We,
therefore, need to assume that the rate of data insertion and deletion is never so high
as to swamp the system’s resources and prevent it from completing storage balancing
steps. We are currently characterizing the rates of dynamism that the above algorithm
can handle gracefully.

Finally, we need to explain how nodes may find the least or most loaded node for
stranger adjustments. Both these operations are easily implementable by the use of
Modula as described earlier, and do not alter the asymptotic bounds on the number of
messages necessary for insertion and deletions of data items and nodes. Alternatively,
we can use a random sampling of nodes to identify lightly loaded candidates for
stranger adjustments and avoid maintaining these structures. We postpone details of
such randomization to future work.

Fig. 1. Data movement due to load balancing

5 Preliminary Results

We now present preliminary results that demonstrate the promise of our storage load-
balancing algorithm. The simulations reported here were performed on a static set of
n nodes. We generated a sequence of item inserts in which keys follow a Zipfian
distribution. The simulation starts with each node responsible for an equi-partition of
the key space, ensuring that the network does not have a priori knowledge of the
incoming data skew. Each item i with key k that is inserted into the network is ini-
tially routed to the node Ni with the appropriate partition. Node Ni initiates load bal-
ancing steps when its L(Ni) crosses a power of 2 as outlined in Section 4.

Figure 1 plots data movement caused by load balancing steps. The X-axis plots
the number I of items that were inserted into the network against a cumulative count
M of item movements on the Y -axis. Both the axes are plotted on a logarithmic scale
for clarity. The different curves are for different network sizes n. We see that the
curves are almost linear, which indicates that each item moves, on average, a constant

A. Tripathy, T. Negi, and A. Singh 48

number of times. In fact, the constant is seen to be quite small, ranging from 21 to

2, for the Zipfian distribution. For a given I value, there is a greater data movement
for a larger number n of nodes. This result is not surprising as a fixed amount of data
spread over a larger number of nodes results in a greater variance in load at nodes.

Fig. 2. Threshold distribution for insert sequence

We now study the distribution of load across nodes as items are inserted into the
network. Each curve labeled (lo,hi] in Figure 2 plots the number of nodes (Y -axis)
with a load in the corresponding interval observed as the number of items (X-axis) in
the network increases. For example, when the number of items I = 213, there are about
300 nodes with loads in the interval (8, 16] and about 700 nodes with loads in the
interval (4, 8]. We note that for each I value, node loads exist only in three consecu-
tive intervals. This indicates that all nodes in the network are within a (worst-case)
factor of atmost 24. The curves also shift smoothly to the right with increasing I as the
network adapts to more data.

6 Conclusions and Future Work

We have outlined a promising alternative to DHTs that allows efficient range queries,
while providing strong storage balance. Our work is by no means complete. Among
the various issues to be explored in future are:

• Adapting a variety of standard DHT structures t o enable efficient routing over
range partitions.

• Offering load balance when data items are weighted, which may be used to
model data items of different sizes or with different query rates.

• Exploring the effects of replication on load balance.
• Studying randomized versions of our load-balancing algorithm.
• Identifying lower bounds on the imbalance ratio achievable by any constant-cost

online algorithm for load balancing.

Distributed Balanced Tables: A New Approach 49

References

1. M. Adler, E. Halperin, R. M. Karp, and V. V. Vazirani. A stochastic process on the hyper-
cube with applications to peer to- peer networks. In Proc. of STOC, 2003.

2. A.Gupta, D.Agrawal, and A.El Abbadi. Approximate range selection queries in peer-to-
peer systems. In Proc. CIDR, 2003.

3. 3. A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid information ser-
vices. In Proc. of P2P, 2002.

4. A.Silberschatz, H.F.Korth, and S.Sudarshan. “Database System Concepts”, chapter 17,
pages 566–169. McGraw-Hill, 2002

5. J. Aspnes and G. Shah. Skip graphs. In Proc. of SODA, 2003.
6. J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed hash

tables. In Proc. of IPTPS, 2003.
7. N. J. A. Harvey, M. Jones, M. Theimer, and A. Wolman. Skipnet: A scalable overlay net-

work with practical locality properties. Proc. of USITS, 2003.
8. D. R. Karger and M. Ruhl. New algorithms for load balancing in peer-to-peer systems. In

Prog. IRIS Student Workshop, 2003.
9. M. Naor and U. Wieder. Novel architectures for p2p applications: The continuous-discrete

approach. In Proc. of SPAA, 2003.
10. A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in struc-

tured P2P systems. In Proc. Of IPTPS, 2003.
11. S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A Scalable Content-Addressable Net-

work (CAN). In Proc. of SIGCOMM, 2001.
12. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for

large scale peer-to-peer systems. In Proc. of MIDDLEWARE, 2001.
13. S.Ratnasamy, J.M.Hellerstein, and S.Shenker. Range queries over dhts. Technical Report

IRB-TR-03-009, Intel Tech Report, 2003.
14. I. Stoica, R. Morris, D. Karger, M. Fran Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proc. of SIGCOMM, 2001.
15. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-

tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, U. C.
Berkeley, Computer Science Division, 2001

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 50–59, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Performance Evaluation of Gigabit Ethernet and SCI in
a Linux Cluster

Rajesh Kalmady and Digamber Sonvane

Computer Division, Bhabha Atomic Research Centre,
Trombay, Mumbai-400085, India

{rajesh, sonvane}@barc.ernet.in

Abstract. Clusters are now one of the most preferred architectures for building
high performance computing systems. The emergence of high speed commodity
microprocessors, network technologies and Open Source operating systems
have propelled the cluster concept to an unparalleled high. Even though most
clusters nowadays use LAN technologies such as Fast and Gigabit Ethernet as
the interconnect, there is a growing breed of new interconnection technologies
called SAN (System Area Network) specifically designed for HPC. These new
technologies boast characteristics such as high bandwidth, low latency for
communications and scalability to large number of nodes that are so essential
for most HPC applications. In this paper, we compare the performance of
Gigabit Ethernet (LAN), and Scalable Coherent Interface (SAN) on a 128-
processor Linux cluster. We present the raw bandwidth and latency figures of
the two networks and then discuss the performance of several benchmark
programs.

1 Introduction

Parallel computers are considered as a cheaper alternative to conventional
supercomputers. It is possible to achieve supercomputing speeds by interconnecting
large numbers of commodity microprocessors through an interconnection network.
The success of this concept is borne by the fact that the leading computers in the
Top500 list are all parallel computers. Parallel computing has successfully replaced
the traditional concepts of supercomputing such as vector processing. In the last few
years, a new wave of change is sweeping parallel computing itself. This is the rise of
the clusters. Once considered as a cheaper alternative to ‘conventional’ parallel
architectures such as MPP, the cluster has now emerged out of the labs of academic or
research institutions to become one of the most preferred architectures for high
performance computers. The growth of the cluster has been fuelled by the availability
of high-speed commodity processors and high bandwidth commodity interconnection
networks. Fast Ethernet, which operates at 100 Mbps, has been a traditional favourite
for clusters for several years due to its inexpensiveness and widespread availability.
But Fast Ethernet is now proving a serious bottleneck for today’s fast processors such
as the Pentium-4, Xeons and Itaniums, forcing cluster builders to look for higher
bandwidth alternatives. The logical step would, of course, be to choose the successor

Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster 51

to Fast Ethernet, Gigabit Ethernet with a bandwidth of 1 Gbps as the cluster
interconnect. But there are several new alternatives to Gigabit Ethernet such as
Myrinet, SCI and Quadrics, which are collectively called SAN (for System Area
Network). These SANs are specifically designed for building large clusters with
hundreds and thousands of nodes with a pretty good bandwidth of the order of several
Gbps and a latency of a few microseconds.

Bhabha Atomic Research Centre (BARC) has been working in the field of HPC
over the last decade, developing a series of parallel computers using various
processors and interconnect technologies ranging from Intel 860 to Pentium-4 and
Multibus to Fast Ethernet. Over the last 5 years, several Linux clusters were built
ranging from small 8 cpu clusters to 128 processor configurations. These clusters
have mostly been built using personal computers with Intel processors such as
Pentium-II, III and IV. Fast Ethernet has been the interconnect of choice in most
systems we have built. In order to build larger systems with faster processors, a
choice has to be made on which networking technology to use. Hence an effort was
made to evaluate cluster performance for two interconnect technologies – Gigabit
Ethernet and SCI [1].

2 Test Setup and Methodologies

2.1 Test Setup

The setup on which the performance tests were conducted is the latest in the series of
parallel computers developed by BARC. This is a 64 node Linux cluster with each
node comprising dual Intel Xeon processors @ 2.4 GHz and 2 GB of memory. This
128 cpu cluster has two networks – Fast Ethernet and SCI. Each node runs a copy of
Redhat Linux 8.0 operating system. There is a set of file servers from which file
systems are NFS mounted on the nodes. The Fast Ethernet network caters mainly to
the NFS traffic whereas the SCI interconnect handles the message passing traffic from
parallel applications. For these tests, a third network, Gigabit Ethernet was added to
the system. Details of Gigabit Ethernet and SCI interconnects are given below.

Gigabit Ethernet. Gigabit Ethernet is the logical progression after Fast Ethernet in
the Ethernet family. It uses the same protocols and frame formats as Fast Ethernet but
with 10 times the speed. Gigabit Ethernet is available on many physical media such as
twisted pair and fiber. Though there is no theoretical scalability figure for Gigabit
Ethernet, the largest Gigabit Ethernet switch available today has 576 ports. Moreover,
it is not just the port count of a switch that matters but also the switching speed of the
switch’s fabric. For best results, the fabric switching speed should be 2*(number of
ports) Gbps. But in practice, the fabric switching speed of large Gigabit Ethernet
switches is less than the above figure, which matters when communication intensive
applications are run. Nowadays, most server motherboards have built-in Gigabit
Ethernet ports. The main strength of this technology is that it is Ethernet and there is
enormous support for Ethernet in hardware and software.

The Gigabit Ethernet setup for our tests consists of a 64 port Gigabit Ethernet
switch with a switching speed of 128 Gbps. Each node consists of a PCI Gigabit
Ethernet adapter, which is plugged into a 64 bit, 66MHz PCI slot. CAT5E cables are

R. Kalmady and D. Sonvane 52

used for the interconnection from node to switch. LAM is the MPI implementation
used for the tests on Gigabit Ethernet.

SCI. Scalable Coherent Interface is an interconnect standard (IEEE 1596) for high
performance networking which aims to provide high bandwidth, low latency and low
cpu overhead for communication operations. An SCI interconnect is defined to be
built only from unidirectional point-to-point links between participating nodes. This
feature of the SCI links makes it possible to achieve high bandwidths. In contrast to a
LAN, the SCI provides hardware based physical distributed shared memory (DSM),
thus exhibiting some characteristics of a NUMA machine. Because of this
architecture, internode communication translates into simple cpu load and stores into
DSM segments which are mapped from remote node memories. Hence there is no
need for a protocol stack, which results in low latencies for communication. The SCI
standard specifies a bandwidth of 1 GB/s but current implementations achieve a link
speed of 667 MB/s. The theoretical maximum number of nodes in a SCI cluster is
64K with current implementations limiting it at around 256. SCI clusters can have
many topologies such as ring, switch and torus.

The SCI network for our tests consists of 64 Dolphin [2] D336 2-D cards and
associated cables. The 64 nodes are connected in an 8*8 2-D torus. The SCI cards too
are inserted in 64 bit, 66 MHz PCI slots in the nodes. We have used Scali’s SCAMPI
as the MPI implementation on SCI.

2.2 Test Methodology

The test procedure comprises a set of benchmark programs in MPI, which were run
on both networks. Each program was run on increasing numbers of processors. GCC
was used as the compiler for C programs and Absoft compiler for Fortran programs.
The programs are described below

Nwtest. This is a simple MPI application written to measure the bandwidth and
latency obtained from a MPI application using the networks. The transfer mode is
ping-pong where data is sent and received to and from a remote node. Data is sent in
varying packet sizes from 4 bytes to 4 MB. Latencies are measured by sending and
receiving a zero byte packet and dividing the round trip time by two. For Gigabit
Ethernet, we have also measured the bandwidth for varying MTU sizes from 1500 to
9000 bytes.

High Performance Linpack. High Performance Linpack (HPL)[3] is a well-known
benchmark program used for measuring performance of parallel computers. This
program solves a system of simultaneous equations using LU decomposition method
and involves high amount of computation and communication. We have conducted
two kinds of HPL tests – one with a fixed problem size (matrix size) of 40000 and the
other with problem sizes varying with the number of processors used such that the
amount of memory consumed per processor would remain constant.

NAS Parallel Benchmarks. NAS Parallel Benchmarks [4] is a widely used
benchmark suite for parallel computers. There are eight programs in this suite and
each program has several classes with increasing problem sizes. We have chosen class
C of each problem to run on the system.

Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster 53

3 Results

Here we present the results obtained from our tests. Following is a set of graphs that
depict the readings.

3.1 Nwtest

Figure 1 shows the performance of the ‘nwtest’ program on Gigabit Ethernet and SCI
networks. For GbE, this program was run with different MTU settings. The standard
MTU for Gigabit Ethernet is 1500 bytes, but many adapter cards and switches support
Jumbo frames up to 9000 bytes. The uppermost curve in the graph shows the SCI
performance in which the peak bandwidth obtained was about 250 MB/s. For GbE,
the peak obtained was around 90 MB/s for 1500 byte MTU (the second curve in the
figure). Surprisingly, setting a higher MTU proved detrimental to the performance of
the network. This goes against the common perception of jumbo frames and we
suspect that TCP stacks and Ethernet drivers are now most optimized to run at an
MTU of 1500 bytes. Therefore, going by the raw bandwidth figures, we found that
SCI performs at about 3 times the speed of Gigabit Ethernet.

SCI is impressive in latency figures too. The ‘nwtest’ program was also used to
measure the latency of each network, measured as half the round trip time for a zero
byte packet. Since latency figures for a network also include the latency for the protocol
stack such as IP as the data travels through it, we have also measured this value by
running ‘nwtest’ within two processes in the same node. Table 1 lists these figures.

0

50

100

150

200

250

300

8 32 128 512 2K 8K 32K 128K 512K 2M

Packet sizes (bytes)

B
an

dw
id

th
 M

B
/s

SCI

GbE MTU=1500

GbE MTU=3000

GbE MTU=4500

GbE MTU=6000

GbE MTU=7500

GbE MTU=9000

Fig. 1. Curves showing bandwidth figures achieved on Gigabit Ethernet with different MTU
sizes (the lower 6 curves) and the SCI network (the topmost curve)

Table 1. Latency figures in microseconds obtained on Gigabit Ethernet and SCI networks. It
can be seen from the figures that the higher latency for Gigabit Ethernet within a node is due to
the IP protocol stack in each node that is absent in SCI

Gigabit Ethernet SCI
Total

latency (µs)
Latency within

node (µs)
Total

Latency (µs)
Latency within

node (µs)
44.93 16.88 5.55 1.61

R. Kalmady and D. Sonvane 54

3.2 High Performance Linpack

The graphs in figures 2 and 3 depict the performance of the HPL benchmark on
Gigabit and SCI in two kinds of tests. The first test, with a fixed problem size of
40000x40000, shows us how the performance of the program saturates with
increasing number of processors. The other test involved increasing the problem size
with increasing numbers of processors such that the memory utilization per node
would remain constant. In the first test, the curve should rise almost linearly and then
flatten at some point. In the second test, the curve should be linear all the way through
because we are scaling up the workload along with the processor count.

Figures 2 and 3 show the graphs for the two tests. The curves are as expected. But
the interesting observation that can be made here is that the 1:3 ratio of bandwidths
between the two networks does not make significant difference in the HPL ratings.

0

50

100

150

200

250

16 32 48 64 80 96 112

No. of processors

G
F

L
O

P
S

Gigabit

SCI

Fig. 2. HPL over Gigabit and SCI for fixed problem size (matrix size), 40000x40000

0

50

100

150

200

250

300

350

16
 (

40
00

0)

24
 (

48
00

0)

32
 (

56
00

0)

40
 (

62
00

0)

48
 (

68
00

0)

56
 (

74
00

0)

64
 (

80
00

0)

72
 (

85
00

0)

80
 (

88
00

0)

88
 (

94
00

0)

96
 (

96
00

0)

10
4

(1
02

00
0)

11
2

(1
05

00
0)

No. of processors (HPL matrix size)

G
F

L
O

P
S

Gigabit

SCI

Fig. 3. HPL over Gigabit and SCI for varying problem sizes and fixed memory usage per
processor. The sizes of the HPL matrices are taken such that it occupies 800 MB of memory per
processor

Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster 55

There is at best a difference of about 15% or about 30 GFLOPS between the two
readings. HPL is a program with heavy communication but it also has a massive
computation load and the two balance each other very well.

3.3 NAS Parallel Benchmarks

The NAS Parallel benchmark suite consists of eight programs, all related to aerospace
applications, each having four classes A, B, C and D out of which class C (large size)
was chosen for the system. The parallelism in these programs range from
embarrassingly parallel to highly communication intensive [5]. For each program,
runs were taken on Gigabit and SCI networks and the results are presented in the
following set of graphs. The programs EP, BT, SP, LU and MG are compute intensive
with moderate communication and the programs CG and IS are more communication
than compute intensive.

0

2000

4000

6000

8000

10000

12000

14000

16000

9 19 29 39 49 59 69 79 89 99

No. of processors

M
F

L
O

P
S

Over Gigabit
Over SCI BT

SPMG

Fig. 4. Performance curves of the BT, SP and MG benchmarks on Gigabit and SCI
interconnects

The BT, SP and MG programs are application benchmarks that have large
granularity and send fewer messages. This shows up in Figure 4 where the Gigabit
and SCI curves for BT, SP and MG overlap each other showing that there is no
dependence at all on the type of network used.

The conjugate gradient kernel CG has extensive communication load and this is
reflected in Figure 5 where we see that the SCI network outperforms Gigabit Ethernet
by as much as 50% at higher number of processors and 25% at lower cpu counts.

EP is a Monte Carlo kernel that generates a large set of random numbers in parallel
over number of nodes. This is an embarrassingly parallel program which consists of
no communication except for 4 calls to ‘MPI_Allreduce’ at the end of the program,
which are called only once [6]. Interestingly, for this program, Gigabit Ethernet
performed better than SCI for 32 or more processors (Figure 6). On profiling
the program, it was found that in SCI, the first collective communication call
(for example, MPI_Allreduce) takes an enormous amount of time (about 14 seconds
in our test setup) though only a scalar data was communicated. Further measurements

R. Kalmady and D. Sonvane 56

showed that this was true even for the first point-to-point call between any pair of
nodes even though the overheads were less than that for the collective calls. The
overheads for collective calls increase with the number of processes involved. This
overhead in SCI communication is because of the procedure for setting up
communication channels, which involves creation of shared DSM segments between
the participating nodes. This is done only during the first communication between a
pair of nodes.

0

500

1000

1500

2000

2500

3000

3500

4000

4 12 20 28 36 44 52 60

No. of processors

M
F

L
O

P
S

Over Gigabit

Over SCI

Fig. 5. CG Class C over Gigabit and SCI. The SCI network (dotted line) performs better than
Gigabit Ethernet (solid line)

0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

No. of processors

M
ill

io
n

O
pe

ra
ti

on
s

pe
r

se
co

nd

Over Gigabit

Over SCI

Fig. 6. EP Class C over Gigabit and SCI. Gigabit performs better than SCI due to the heavy
setup overhead time in SCI

IS is another communication intensive program in the suite and from the graph in
Figure 7, it is evident that SCI outperforms Gigabit Ethernet by about 25 %
throughout.

LU is a simulated application that solves systems of linear equations using LU
decomposition. The program is sensitive to cache availability and MPI message

Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster 57

latencies. Hence it can be observed from the curve in Figure 8 that after 32
processors, the whole problem fits into the cache and there is a super linear increase
in speedup. This is more pronounced in SCI where the superior latency figures make a
large difference in the readings compared to Gigabit Ethernet.

0

20

40

60

80

100

120

140

160

180

200

4 12 20 28 36 44 52 60

No. of processors

M
ill

io
n

K
ey

s
pe

r
se

co
nd

Over Gigabit

Over SCI

Fig. 7. IS Class C over Gigabit and SCI. SCI beats Gigabit Ethernet here due to the heavy
communication pattern in IS

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4 12 20 28 36 44 52 60

No. of processors

M
F

L
O

P
S

On Gigabit

On SCI

Fig. 8. LU Class C over Gigabit and SCI. LU is a matrix operation application that is both
cache and latency sensitive

Summarizing, we find that programs – BT, SP and MG do not show appreciable
difference between their performances using SCI and Gigabit Ethernet. This is
because the programs do not fully utilize the available bandwidth of the networks.
The other two programs CG and IS are communication intensive and SCI outperforms
Gigabit by about 25% in IS and 50% in CG. LU performs better on SCI on large
number of nodes. EP performs worse in SCI than Gigabit Ethernet because of the high
overheads involved in setup of communication channels.

R. Kalmady and D. Sonvane 58

4 Conclusions

The tests and measurements of performance of various programs on Gigabit Ethernet
and SCI interconnects shows that at this point of time, it is hard to prefer one network
over the other. Going by the raw bandwidth and latency figures of the networks, it
would appear that applications would fare much poorer when run on Gigabit Ethernet
than on SCI. But in the above test cases, only two programs CG and IS perform
significantly well on SCI than on Gigabit Ethernet. In other applications, SCI
performs slightly better than Gigabit Ethernet. In the case of HPL, the massive
computational load of the application offsets the large amount of communication.
Though in all tests, SCI has fared better than Gigabit Ethernet, it makes a significant
difference only in communication intensive applications.

A few years back, when Gigabit Ethernet was initially developed, the bandwidths
obtainable from a MPI program was of the order of 300-400 Mbps and the latencies
about 150 microseconds. But with PCI 64/66 and PCI-X interfaces available, the
bandwidths obtained has risen to 700-800 Mbps and latencies of about 45
microseconds are achievable. It is evident from these figures that Ethernet technology
is not too far away from the SANs.

The current SCI links operate at 667 MB/s out of which we are able to achieve
about 250 MB/s. This arises because of the bottlenecks in PCI 64/66. In the future, we
expect to see PCI-X based cards where higher speeds can be achieved. The SCI
standard prescribes a peak bandwidth of 1 GB/s and over the next few years the
hardware for such speeds may be available.

If the size of the cluster is small, Gigabit Ethernet would be the logical choice for
the interconnection network. It is easy to setup, inexpensive, there is plenty of choice
in the hardware such as adapters and switches with excellent switching speeds and
whole lot of applications and tools available for Ethernet. Conversely, SCI hardware
comes mostly from a single source, Dolphin, it is expensive and comparatively more
difficult to setup and manage.

When the objective is to build a large cluster of hundreds of nodes, the choice is
not very clear. Gigabit Ethernet switches with hundreds of ports are hard to come by.
In this case, SCI, which is designed to scale up to 64 K nodes seamlessly, would be a
good choice.

Making a choice of interconnection networks for a large cluster is a difficult
problem. Benchmarking is a way of estimating the performance of a system or a
network but it should not be the only criteria. Characteristics of the applications to be
run in a production environment and non-performance issues such as availability of
the networking infrastructure, complexity of the setup and ease of use are also factors
to be considered.

Acknowledgements

The authors gratefully acknowledge the help received from Pankaj Saksena and
Vaibhav Kumar of Computer Division, BARC in setting up the test environments.

Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster 59

References

1. Hermann Hellwagner, “The SCI Standard and Applications of SCI”, SCI: Scalable Coherent
Interface, Architecture and Software for High Performance Compute Clusters, Springer,
1999.

2. Marius Christian Liaanen, Hugo Kohmann, “Dolphin SCI Adapter Cards”, SCI: Scalable
Coherent Interface, Architecture and Software for High Performance Compute Clusters,
Springer, 1999.

3. A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary, “HPL - A Portable Implementation of the
High-Performance Linpack Benchmark for Distributed-Memory Computers”, http://www.
netlib.org/benchmark/hpl/

4. “The NAS Parallel Benchmarks”, http://www.nas.nasa.gov/Software/NPB/
5. Frederick Wong, Richard Martin, Rmezi Arpaci-Dusseau, and David Culler, “Architectural

Requirements and Scalability of the NAS Parallel Benchmarks”, Proc. of SC99 Conference
on High Performance Networking and Computing, Nov. 1999.

6. Ahmad Faraj and Xin Yuan “Communication Characteristics in the NAS Parallel
Benchmarks,” Fourteenth IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS 2002), pages 729-734, Cambridge, MA, November 4-6,
2002.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 60–64, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Performance Evaluation of a Modified-Cyclic-Banyan
Based ATM / IP Switching Fabric

V.S. Tripathi1 and S.Tiwari2

1 Department of Electronics and Communication Engineering,
MMMEC, Gorakhpur, India
vijay_s_t@yahoo.com

2
Department of Electronics Engineering,

MNNIT, Allahabad, India
sudarshan_tiwari114@hotmail.com

Abstract. This paper focuses on designing a large N X N high-performance
Fast Packet switch suitable for mixed ATM and IP traffic. It is a Banyan
network using cyclic interconnection among switching elements of the same
stage. We employ deflection-routing algorithm in each switching element. The
proposed routing is as simple as that of the generic Banyan network, and all the
switching elements (SE’s) have a uniform structure. To design the proposed
network and to develop its self-routing property we observe that all the SE’s of
the Banyan network are arranged in a regular pattern topologically. We, thus,
present a growable switch architecture based on the topological properties of
Banyan Networks. As a result, we show that the new network has a far better
performance than the other networks.

1 Introduction

Fast Packet switches route the packets towards their respective destinations at a high
speed of a few Giga Bits per second. They provide low bit-error rates, and are well
supported for use on high-speed fiber links. They find their application in Broadband
Integrated Services Digital Networks (B-ISDN) and Asynchronous Transfer Mode /
Internet Protocol Integrated Networks (A/I Net)[1 – 3]. An ATM/IP fast packet switch
is shown in figure 1.

The core of a fast packet switch, which influences both the performance and the
cost, is its switching fabric. Banyan network is a popular choice due to its suitability
to VLSI implementation and its self-routing capability [7]. The switching fabrics
based on Banyan Networks are self-routing, simple and modular but they are blocking
type switches.

To treat the problem of blocking, deflection routing is used in high-speed
networks, since it gives a good performance and is easy to implement. Deflection
routing in Delta networks was proposed by Park, Yoon and Lee for implementation of
a Cyclic Banyan Network [8]. It requires complex routing decisions at switching
element level, which increases delay.

Performance Evaluation of A Modified-Cyclic-Banyan 61

We present a high-performance Modified-Cyclic-Banyan (MCB) Network based
Fast Packet switch. It is a cyclic-deflection self-routing Banyan network. The
proposed network has a far better performance and scalability than other networks.

2 Architecture of MCB Network Based ATM / IP Switching
Fabric

Banyan networks belong to the class of Multistage Interconnection Networks (MINs).
They were defined in [5] and are characterized by the property that there is exactly
one path from any input to any output. This network consists of Switching Elements
(SE) and links. Each SE is a 2 X 2 crossbar switch, which can receive packets at each
of its two input ports and send them through each of its two output ports. The SEs are
joined in a systematic manner to form stages of SEs. Each SE in stage j is connected
to SEs in stages j -1 and j +1 through links. In an N X N Banyan network, there are
log2N stages and each stage has N/2 SEs.

2.1 Cyclic Banyan Network

Topological properties of Banyan network were first studied in [8]. Each stage of
the Banyan network is composed of a sequence of the cyclic group, realized with
SEs.

The cyclic Banyan network can be obtained from the basic Banyan network by the
addition of links chaining all SE’s of a stage. Park et. al. proposed a destination-tag
based routing algorithm for this network. They also illustrate fully adaptive routing
control algorithm. This Algorithm is good for Delta network, which has a uniform
pattern for links between successive stages. When link pattern is stage-dependant, as
in Banyan network, this routing algorithm will take huge amount of time. Moreover, a
packet destined to last output port of an n stage Banyan network can not reach there in
a short time, if it is somehow de-routed to first SE at the (n-1) th stage.

0

1 A ATM / IP S it h

ATM / IP
Switch
Fabric

n-1

1

In
pu

t
po

rt
s

O
ut

pu
t P

or
ts

Fig. 1. ATM/IP Switch

V.S. Tripathi and S.Tiwari 62

2.2 Modified Cyclic Banyan (MCB) Network Based ATM / IP Switching Fabric

Modified Cyclic Banyan network based ATM / IP Switching fabric has following
properties and advantages: simplicity, self-routing property, modularity, systematic
link pattern, reliability and robustness. The MCB network can be obtained from the
basic Banyan network by addition of lateral links at all Switching Elements (SE’s) of
a cyclic group in the stage. Starting from the first (0th) stage, kth stage has 2k number
of cyclic groups within it. The number of switching elements in each cyclic group of
kth stage is (n/2k+1), where n is number of ports. Implementation of additional links
requires augmented SE’s, each having lateral-in links and lateral-out links along with
the input and output links. SE is thus a 4X4 crossbar switch. Figure 2 shows an
example of an 8X8 MCB network.

2.3 Routing Algorithm

When the SE’s are grouped in the given way, the routing decision becomes very
simple. A blocked packet will try to start from next SEs situated in the same cyclic
group. Whenever a path is found, the packet is transmitted otherwise it keeps trying
from next SE in a cyclic manner. All SE’s have a single algorithm, independent to the
stage, so its implementation in VLSI for all SE’s is universal and therefore, simple.

3 Performance Evaluation

Following the analytical tool presented in [6] we can assume that:

(i) Loading is balanced. With a balanced load the state of each switching
network in stage k should be statistically the same.

(ii) The states of the two buffers within a switching element are statistically
independent. We can make some definitions as follows:

Fig. 2. MCB Network based ATM/IP switching fabric

Performance Evaluation of A Modified-Cyclic-Banyan 63

p0(k,t)=the probability that the switching element buffer at stage k is empty at the
beginning of the tth clock.

p1(k,t)=1-p0 (k,t)
q(k,t)=the probability that a packet is ready to enter a switching element buffer at

stage k during the tth clock period.
r(k,t)=the probability that a packet in a switching element buffer at stage k is able

to move (forward) into the next stage during the tth clock period.
The set of equations that models the dynamics of the system is:

q(k,t)=8/9×p1(k-1,t).p1(k-1,t).p1(k-1,t).p1(k-1,t)+10/13×p1(k-1,t).p1(k-1,t).p1(k-1,t)
p0(k-1,t) + 9/12 ×p1(k-1,t).p1(k-1,t). p0(k-1,t).p0(k-1,t) + 1/2 × p1(k-1,t).p1(k-1,t) . p1(k-
1,t) .p0(k-1,t); k=2, 3, 4………n . …………...(1)

r(k,t)=[p0(k,t)+8/9p1(k,t)]×[p0(k+1,t)+p1(k+1,t) r(k+1,t)],
 k=1,2,3,……,n-1.
r(n,t)=[p0(n,t)+8/9 . p1(n,t)] …...………(2)
p0(k,t+1)=[1-q(k,t)] [p0(k,t)+p1(k,t)r(k,t)],

p1(k,t+1)=1-p0(k,t+1) ………...…(3)

If there is an equilibrium solution, these quantities should converge to time-
independent values for q(k),r(k),p0(k) and p1(k). The two performance measures of
most interest - normalized throughput and delay can be calculated after solving these
equations iteratively for the equilibrium values.

4 Results and Conclusion

The results of analysis and simulation of a 16X16 MCB network based switch are
shown in figures 3 and 4. The graphs clearly depict that the MCB network has very
good delay/throughput performance as compared to simple Banyan network. The
basic building blocks are small modules, and can be used to construct a large-scale
ATM / IP Switching fabric. This modular architecture can provide multicast services

 Fig. 3. Normalized Throughput Fig. 4. Normalized Delay

PERFORMANCE EVALUATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Load

N
o

rm
al

iz
ed

 T
h

ro
u

g
h

p
ut

Banyan simulation

Banyan analysis

MCB simulation

MCB analysis

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Input Load

N
o

rm
al

iz
ed

 D
el

ay

Banyan simulation

Banyan analysis

MCB simulation

MCB analysis

V.S. Tripathi and S.Tiwari 64

also. Routing is very simple and easy to implement. Physically, it can be realized as
an extension of existing Banyan Networks. This flexible and distributed architecture
is the key to simplify the operation of the whole switching system. The modularity
implies less stringent synchronization requirements, and makes higher speed
implementation possible.

References

1. C. Y. Tsui, LC. Kwan, and C. T. Lea, “VLSI Implementation of a switch fabric for Mixed
ATM and IP Traffic”, Design Automation Conference, 2000. Proceedings of the ASP-DAC
2000. Asia and South Pacific, pp. 5-6, 25-28 Jan. 2000.

2. C. T. Lea, C. Y. Tsui, L. C. Y. Kwan, S. K. M. Chan and A. H. W. Chan, “A/I Net: A
network that integrates ATM and IP”; IEEE Network, pp 48-55, January, 1999.

3. J. Schmitt, M. Karsten, R. Steinmetz; “Design and implementation of a flexible, QoS-aware
IP/ATM adaptation module”, High Performance Switching and Routing, 2000. ATM 2000.
Proceedings of the IEEE Conference on, Pages: 267 – 274, 26-29 June 2000.

4. R. Onvural, “Asynchronous Transfer Mode Networks: Performance Issues”, Norwood, MA,
Artech House, Inc., 1995.

5. G. R. Goke and G. J. Lipovski, “Banyan Networks for partitioning multiprocessor systems”,
in Proc. 1st Annu. Symp. Compu. Arch., pp.21 -28, 1973.

6. Y. C. Jenq, “Performance analysis of a packet switch based on single-buffered Banyan
Network”, IEEE Journal on Selected areas in Communication, Vol SAC-1, no. 6, pp.1014-
1021, December 1983.

7. S. Cheneemalavagu and M. Malek, “ Analysis and simulation of banyan interconnection
networks with 2 x 2 , 4 x 4, and 8X 8 switching elements, In proc. Real-Time Syst. Symp.
LA, CA, Dec, 1982.

8. J. H. Park, H. Yoon, H. K. Lee, “The cyclic banyan network: a fault tolerant multistage
interconnection network with the fully-adaptive self-routing”, 7th IEEE Symposium on
Parallel and Distributed Processing, Texas, pp 702, October, 1995.

9. H. S. Laskaridis, G. I. Papadimitriou, A. S. Pomportsis; “Reconfigurable ATM switch
fabrics using traffic history”; IEEE Communications Letters, Volume: 6 , Issue: 7,
Pages:300 – 302 , July 2002.

A Scalable and Robust QoS Architecture for
WiFi P2P Networks

Sathish Rajasekhar, Ibrahim Khalil, and Zahir Tari

School of Computer Science and Information Technology,
RMIT University, Melbourne - 3000

(sathish, ibrahimk, zahirt)@cs.rmit.edu.au

Abstract. Peer-to-Peer (P2P) resource sharing between mobile devices
in Wireless Fidelity (WiFi) hot-spots environment is a challenging prob-
lem. This would require an infrastructure with automated process for
registering new mobile devices, as well as authentication and authori-
sation of existing devices. Further, issues such as maintenance, and up-
dating the state information, as devices join and leave the P2P network;
optimising route selection and protection of the existing mobile devices
from malicious devices are crucial. To address these issues, we propose a
generalised architecture and a dynamic protocol for effective and optimal
file transfer between devices. We use quality of service (QoS) capacity-to-
hop count ratio, routing algorithm, to find an optimal mobile device for
a service request. The goal and contribution of this paper is to provide
a scalable, robust and reliable architecture incorporating QoS; effective
and optimal communication for P2P networks in a cooperative manner.

1 Introduction

Internet is exponentially exploding and as changes to the electronic technology
evolve, P2P will play a pivotal role in enduring information sharing, resource
management enabling interoperability and QoS. 80% of data collected on an
edge router at France Telecom IP backbone network was P2P traffic [2]. Also
on the Sprint IP backbone P2P and unknown traffic type was about 80% [6].
As the processing power and memory of mobile devices such as personal digital
assistant (PDA) is increasing, resource sharing between these devices becomes
more rampant in the near future and users will start demanding QoS. Unfortu-
nately, current P2P technology does not provide a stable, scalable, reliable and
robust architecture addressing QoS issues.

We propose a super-peer based architecture for P2P resource sharing in
the core network addressing signalling, reliability, scalability and QoS issues.
A super-peer is a static and powerful device, which intelligently and collectively
manages the entire operation of file transfer and assists peers in finding opti-
mal QoS path. Most peer devices exhibits different characteristics with respect
to their capabilities such as bandwidth, storage, and processing power. These
capabilities are exploited by super-peers. Peer devices update their location and
state information to super-peers. Each device has the same range to send and
receive information. These devices form a connected multi-hop wireless network.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 65–74, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

66 S. Rajasekhar, I. Khalil, and Z. Tari

Fig. 1. Mobile Devices in WiFi Hot-spots

For example, let us consider an airport where passengers with hand held de-
vices wants to share resources. Super-peers SP1, SP2, SP3 and SP4 as shown
in Figure 1 are connected to the core network through the wireless access point
(WAP). If a passenger within SP1 wants to download a file, the passenger’s de-
vice is sensed by the WAP router. SP1 initiates a file search in the network. If
the file is found in devices that belong to SP2 and SP3, an optimal QoS path
based on capacity-to-hop count [12] is selected.

Most of the existing work done in P2P systems are to effectively look for data
[3][15]. Napster [1], Gnutella [1] and Freenet [1] are P2P technologies developed
and have problems such as single point of failure, signalling and scalability issues.
A. Klemm et al in [11] propose a protocol called Optimised Routing Indepen-
dent Overlay Network (ORION). This protocol works on a centralised approach
leading to a central point of failure. In [4] the authors define XREP protocol,
but repositories on peers cause load burden. None of these existing approaches
address scalability, reliability, load sharing and QoS path selection criterion.

Our goal is to provide a generalised scalable, reliable and robust architec-
ture for resource sharing incorporating QoS path selection for P2P systems.
We propose a Mobile Authentication and Resource eXchange (MARX) pro-
tocol for this purpose. Resource sharing is done using the state information
obtained by IDMaps [5]. IDMaps provides the network distances in terms of
available bandwidth between two hosts. The available bandwidth information
obtained by IDMaps is used by capacity-to-hop count ratio routing [12] algo-
rithm to help super-peers find optimal QoS paths. We also incorporate caching
schemes for efficient information retrieval and replicate super-peer database, to
encounter single point failure. Our objective is to propose a QoS architecture and

SP 4
SP 3

SP 2SP 1

WAP Access

Cluster 4
Cluster 3

Cluster 2

Cluster 1

Core Network

Point Routers9

86

7

4

52

1

3

A Scalable and Robust QoS Architecture for WiFi P2P Networks 67

investigate such issues. We also show that use of super-peer based QoS architec-
ture helps in authentication and authorisation of devices.

This paper is organised as follows. Section 2 is related work and puts our work
in context. The architecture is detailed in section 3. In section 4, the protocol and
routing issues are discussed with an example to illustrate capacity-to-hop count
routing algorithm. We conclude in section 5 with directions for future work.

2 Related Work

A huge body of work has been done in efficient information retrieval systems
such as CAN [13], Chord [15], Pastry [14], and Tapestry [9]. These information
retrieval approaches implement distributed hash tables (DHT). A query is as-
sociated with a key and the query is routed to a peer holding the key value in
DHT to locate information. Napster [1], Gnutella [1], Freenet [1] etc are some of
the early P2P approaches. Napster, a centralised scenario, leads to single point
failure. In Gnutella, a decentralised model, peers generate redundant signals all
over the network. Freenet tries to overcomes these issues to some extent, but do
not address QoS issues.

A protocol for dynamic file sharing was proposed by Klemm et al [11], called
ORION. This protocol has redundant data at nodes and is prone to single point
failure. A cluster based architecture was proposed in [10], where peers are clustered
based on content awareness. This defeats the purpose of a mobile environment as
peers should be allowed to move freely from one WiFi hot-spot to another. Also,
the authors indicate that the quality of the clusters formed is not guaranteed.

Damiani et al in [4] propose a secure and robust reputation mechanism for
choosing reliable resources using XREP protocol. They emphasise on two repos-
itories, a resource repository and a servant repository on every peer device. In
a WiFi environment, holding two repositories by a mobile device is a daunting
task and is not achievable.

Our approach attempts to eliminate the above pitfalls by providing a a
scalable, robust, reliable architecture and protocol ensuring QoS path selection
amongst peer devices in WiFi hot spots.

3 WiFi P2P File Sharing Architecture: An Overview

Mobile devices are capable of exchanging information using Wireless Fidelity.
WiFi defines the wireless technology in the IEEE 802.11 specification including
the wireless protocols 802.11a, 802.11b, and 802.11g in a WiFi hot-spot. A WiFi
hot-spot is a location in which 802.11 wireless technology exists and is available
for use to consumers [8]. We propose to build a generalised architecture with
existing technologies. The main components of our proposed architecture are
detailed in Figure 2 and discussed below.

Super-Peer: A new wave in P2P systems, providing advancements of having
a centralised database in a decentralised environment. They are responsible for

68 S. Rajasekhar, I. Khalil, and Z. Tari

Fig. 2. Internal Architecture Overview

servicing a request from a peer. Super-peers are powerful static devices that
helps in selecting optimal QoS paths. Also, super-peers help in registration,
authorisation, authentication and accounting of a device.

Query Information Module: The functions are two fold. Module Valid checks
for peer authorisation. This is done by checking the super-peer database. The
module Query initiates search to find suitable resources that satisfies the QoS
requirements of the generated query.

Update Information Module: The availability of the optimal peer device
for file transfer based on the QoS requirements is updated. The module Stats
updates the cache with the most popular files accessed based on the frequency
of down-load.

Caching: A popular file may be accessed more frequently. Instead of searching
the same file every time, these files are cached. We classify cache as file cache
(F-Cache) and location cache (L-Cache). F-Cache stores the most frequently
accessed files. L-Cache stores the most frequently accessed location. Caching
reduces signalling and overhead traffic.

QoS Module: This module consists of QoS interface and IDMaps Interface.
QoS Broker ensures that the QoS requirements between the service requester
and the device that is offering service is met. It establishing a reliable connection
in an optimal manner using capacity to hop count ratio routing algorithm [12].
QoS broker thus updates the information regarding the file and its statistics to
update info module. Internet Distance Map Service (IDMaps) a global architec-
ture for Internet host distance estimation and distribution [5], provides quickly
and efficiently the network distances in terms of metrics such as latency or band-

TapestryPastry

CHORD CAN

Lookup Module

QoS Broker

IDMaps

Peer

Super

Stats.

Update Info

 Module

QueryValid

 Module

Query Info

Applications Interface

L−CacheF−Cache

 Cache

Rgd. DevicesAct. Devices

SLA Profile

LISSP

A Scalable and Robust QoS Architecture for WiFi P2P Networks 69

width between Internet hosts. Higher level services collect distance information
and bandwidth to build a virtual distance map of the Internet and estimate the
distance between any pair of IP addresses. For example in Figure 1, a device
in SP1 requests for a resource that is found in SP2 and SP3. IDMaps provides
the available bandwidth information between SP1 and SP2, and SP1 and SP3
respectively. Based on the information provided, a routing decision is made by
the QoS broker using capacity to hop count routing algorithm. Thus IDMaps
provides network distance in terms of latency or bandwidth and it is scalable.

Lookup Module: A search for requested resource is carried on using any one of
the existing lookup modules such as CAN, Pastry, Chord, Tapestry algorithms.

LISSP: The Local Information Source Super Peer, is a centralised information
database. This aids in authentication of a mobile device. The services for any peer
device is processed though LISSP. It contains a list of active devices Act devices
and registered devices Rgd devices. Act. devices are devices currently present
in the super-peer cluster. Rgd. devices are devices registered in the super-peer
but currently not available. SLA is the service level agreement between WiFi
customers and WiFi service providers. The SLA profile is maintained in the
LISSP module.

A device requesting service is called service receiver, and that offering the
service is called as service provider. The LISSP checks the device’s profile for
authorisation. If the device is registered in the WAP database or the LISSP,
then file request query is generated and serviced. The F-Cache and L-Cache is
checked for the resource. The update info module informs the service receiver
regarding the requested file or its location. Else, the lookup module initiates
search for the requested resource. IDMaps gathers available bandwidth of service
providers and informs the QoS broker. The broker selects an optimal device
based on capacity to hop count ratio algorithm, which is discussed in the routing
sub-section. In the next section, we discuss the properties and working of the
proposed protocol.

4 Mobile Authentication and Resource eXchange
(MARX) Protocol

The proposed dynamic MARX protocol aids in le discovery, connection setup
and maintenance, le transfer and termination of connection. The protocol takes
into consideration the search initiated by the lookup module through IDMaps
and selects the optimal peer based on capacity-to-hop count routing algorithm.

4.1 MARX Overview and Assumptions

For example, from Figure 1 a mobile device in super-peer SP1 wants to down-
load a file. The steps involved are summarised as follows:

1. The device is registered and authenticated with a unique address under SP1
or some other super-peer.

70 S. Rajasekhar, I. Khalil, and Z. Tari

2. MAC address of a new device is made known to the local super-peer.
3. The device requests its super-peer (SP1) for a file.
4. The device gets a response from SP1 regarding the file availability; after

initiating a search, QoS broker identifies the service provider, which may be
within SP1 or a different super-peer.

5. QoS Broker selects the optimal peer based on capacity-to-hop count ratio.
6. The device requests for connection from the identified service provider.
7. The device receives data from the service provider peer.
8. The device disconnects from service provider after file transfer.

Some basic assumptions are made to define our protocol. The communicating
peer devices may be in the same or different cluster of the same super-peer or in a
different super-peer altogether. The clusters are independent and may be under
one super-peer. Sharable information from peer devices are periodically updated
to their super-peer LISSP database. A cluster of peer devices connected to the
super-peer through a WAP is depicted in Figure 3. The peer devices are sensed
through the WAP and its database for authentication as they enter the cluster.

WAPWAP WAP

ClusterClusterCluster

SP

Fig. 3. Logical Overview of Clusters and
Super-Peer Connectivity

Database
WAP

OTHER

SUPERPEERS

6

1

LISSP

Database

4
5

2

3

Fig. 4. Global Device Authentication

During the process of authentication, one of the three possibilities rise. The
device information can be found in the clusters WAP or LISSP database of
the super-peer; if not found, a search is initiated amongst other super-peers as
shown in Figure 4. Steps 1 and 2 of Figure 4 fail to authenticate the peer device
and hence the other super-peers are queried for authentication as shown in step
3. The steps 4, 5 and 6 informs the device regarding its authenticity; thirdly,
the device may be a new device accessing the WAP. The new device has to
register first with a super-peer. Once a query is generated by a device, a search
is initiated in the super-peer cache, within the super-peer or a device in different
super-peers.

Resource in Cache: Figure 5 illustrates how communication between the de-
vice and cache takes place. Once a query is initiated (step 1), the cache is checked
for the requested resource (step 2). Steps 3 and 4 confirm that the resource is

A Scalable and Robust QoS Architecture for WiFi P2P Networks 71

present in cache. The device (service requester) requests for the file (step 5) and
establishes a connection. Step 6 represents file transfer between the cache and
the service receiver. Step 7 indicates disconnection.

2

3

5

6

4

7

1

LISSP database

CacheQuery

Fig. 5. Cache Access

2

3

5

6

4

7

1
 LISSP SPn

Fig. 6. Cluster Access

Resource Within Cluster: If the cache does not contain the requested file,
query is passed on to the lookup module. The lookup module initiates a search
within its LISSP database (step 1) and the super-peer (step 2) as shown in
Figure 6. If one or more devices within the cluster has the file (step 3), then
the QoS broker identifies the optimal peer, based on certain policies, such as
distance, load, how long the device was in the cluster and informs the service
receiver. Load is defined as the number of devices that are using the services of
the device identified. Based on the QoS broker information, update info module
informs the service receiver, regarding service provider (step 4). Steps 5, 6 and
7 of Figure 6 represents file transfer request, the file transfer and termination of
connection amongst peer devices within a cluster.

Resource in different Super Peer: The service provider at times cannot
be found in the same vicinity or in the same super-peer. Also, peers may not
respond due to other activities. Hence, a request is issued to other super-peers
and networks as shown in Figure 7. The QoS broker gets an updated list of
super-peers that are willing to share information through IDMaps. The QoS
broker decides the optimal super-peer based on certain parameters such as delay,
available bandwidth, and hops in terms of capacity to hop count ratio [12]. The
information is then passed on to update info module and data transfer takes
place. Step 1 in Figure 7 initiates a query. Step 2 issues a search. Step 3i return
multiple hits. The QoS broker selects optimal service provider device and informs
the service requester through update info module as in step 4 of Figure 7. Steps
5, 6 and 7 indicate file transfer and its completion.

72 S. Rajasekhar, I. Khalil, and Z. Tari

1

2

4

5

6

7

3i

LISSP Provider

Fig. 7. Access to Different Networks Fig. 8. LISSP Database and Connectivity

LISSP Replication: LISSP database prohibits unauthorised users from gain-
ing access to the network resources. Figure 8 depicts a LISSP database, SLAs
between different clusters and the mobile access devices (MAD). Each MAD
holds information in the LISSP database regarding its identity (MAC address),
super-peers visited, and list of sharable information. Devices update the LISSP
as and when they have new information to share. Also the devices inform LISSP
where they were first registered. Any centralised system is prone to single point
of failure. Hence we propose replication of the LISSP database in super-peers.
Each super-peer node will have its nearest two neighbouring super-peer LISSP
databases as backups thus eliminating single point failure.

4.2 Routing

QoS path selection is the process of selecting a path based on QoS requirements
such as bandwidth or delay [7]. Our QoS routing algorithm maximises the avail-
able path capacity to hop count as described in [12]. The objective of QoS routing
is to eliminate the inaccurate state information, the proposed QoS routing can
achieve higher efficiency and better optimisation. As we increase the number of
hops, the ratio path capacity to hop count is applied. Mathematically,

Cavl(P)
h(P)

(1)

The available capacity is denoted as Cavl, P a path and h(P) the hop count
of a path P . The available capacity to hop count ratio is computed as follows:

Cavl(P) = minl∈P (bavl(l)) (2)

The routing algorithm uses the available capacity to hop count ratio as the
criterion for optimality, and its correctness is proved in [12]. This algorithm
obtains paths with maximal ratio of available capacity to hop count from the
source super-peer node to all the other super-peer nodes. We illustrate QoS

SP 3

SP 1

SP 1

 P

 P

 N

 FF

Mac Id

WiFi

Cloud
OtherDyn IP

 01

MAD 1

..

MAD N

MAD 2

SLA
L−Cache

F−Cache

Database
Super−Peer

 00

1−n3

1−n2

1−n1SP 3

SP 2

SP 4

Visit

MAD N

MAD 2

MAD 1

UId Regd @FshareP/NDevice

A Scalable and Robust QoS Architecture for WiFi P2P Networks 73

Fig. 9. Routing Illustration using Capacity-to-Hop Ratio Algorithm

path selection using an example as shown in Figure 9. If super-peer SP0 wants
to route to super-peer SP3, the optimal route has to be determined. Initially
bandwidth (B) at the super-peer SP0 is set to ∞ and all the other super-peers,
SP1, SP2 and SP3 to zero. Predecessor of all super-peers are set to NIL. After
the first hop from SP0, we have B[SP1]=50, B[SP2]=4 and B[SP3]=0. We
also have the hop count h[SP1] = h[SP2] = h[SP3]=1. After the second hop
from SP0, there is no change for SP1, while B[SP2]=25 and h[SP2]=2. The
details for SP3 are successively updated to B[SP3]=5 and h[SP3]=2, followed
by B[SP3]=10 and h[SP3]=3. The complexity of the algorithm is similar to
that of Bellman-Ford algorithm.

5 Conclusion

In this paper, we have described a scalable, robust, reliable, generalised QoS ar-
chitecture for P2P systems. We provide an optimal QoS path selection based on
capacity-to-hop count ratio routing algorithm for efficient file transfer between
devices in a P2P network. We propose a dynamic protocol MARX, to effectively
carry out file transfer using customer-provider SLAs. Our super-peer based ar-
chitecture do not allow unauthorised devices to access the network and protects
existing devices from malicious devices. A new device is registered and the whole
process is automated without any human intervention.

While we have not carried out simulation on P2P networks to show the effec-
tiveness of our proposed architecture, the QoS path selection algorithm applied
in our current approach was validated in IP networks [12]. In our future work,
we would like to further simulate/emulate our QoS architecture and QoS path
selection algorithms for P2P networks. We envisage a prototype model for vali-
dation and verification purposes. Also, we would like to investigate and propose
new techniques for load balancing among peer devices in a P2P network.

SP0

50

4

SP1

SP2

SP360

30

10

74 S. Rajasekhar, I. Khalil, and Z. Tari

Acknowledgement

This work is proudly supported by the Australian Research Council (ARC),
under discovery Scheme, DP 0346545.

References

1. K. Abeer and M. Hauswirth. “Peer-to-Peer information systems: concepts and
models, state-of-the-art, and future systems,” Proceedings of ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 26, Issue 5, pp. 326-327, 2001.

2. N. B. Azzouna and F. Guillemin, “Experimental analysis of the impact of peer-
to-peer applications on traffic in commercial IP networks,” [Online]. Available:
http://perso.rd.francetelecom.fr/guillemin/PDFfiles/paper20.pdf

3. H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica, “Looking
Up Data in P2P Systems” Proceedings of Communications of the ACM, Vol. 46,
No. 2, pp. 43-48, 2003.

4. E. Damiani, S. De. C. Vimercati, S. Paraboschi, P. Samarati and F. Violante,
“A Reputation-Based Approach for choosing Reliable Resources in Peer-to-Peer
Networks,” Proceedings of ACM Conference on Computer and Communications
Security, pp. 207-216, 2002.

5. P. Francis, S. Jamin, C. Jin, D. Raz, Y. Shavitt, L. Zhang, “IDMAPS: A Global
Internet Host Distance Estimation Service,” IEEE/ACM Transactions on Net-
working, 2001.

6. C. Fraleigh et al, “Packet-Level Traffic Measurements from the Sprint IP Back-
bone”, IEEE Network, 17(6), pp. 6-16, 2003.

7. R. Guerin and A. Orda, “Computing Shortest Paths for Any number of Hops”,
IEEE/ACM Transactions on Networking, 10(5), pp. 613-620, 2002.

8. C. Hesselmen, H. Eertink, I. Widya and E. Huizer, “A Mobility-aware Broadcasting
Infrastructure for a Wireless Internet with Hot-spots,” Proceedings of WMASH,
pp. 103-112, 2003.

9. K. Hildrum, J. Kubiatowicz, S. Rao and B. Zhao, “Distributed Object Location in
a Dynamic Network,” In Proceedings of 14th ACM Symp. on Parallel Algorithms
and architectures, 2002.

10. I. A. Klampanos and J. M. Jose, “An Architecture for Information Retrieval over
Semi-Collaborating Peer-to-Peer Networks,” Proceedings of ACM Symposium on
Applied Computing, pp. 1078-1083, 2004.

11. A. Klemm, C. Lindemann, and O. P. Waldhorst, “A Special-Purpose Peer-to-Peer
File Sharing system for Mobile Ad Hoc Networks.” [Online]

12. S. Rajasekhar, B. Lloyd-Smith, and Z. Tari, “QoS Path Routing based on Capacity
to Link Ratio in Networks,” Proceedings of International Conference on Networks,
Parallel and Distributed Processing, and Applications, Japan, pp. 188-142, 2002.

13. S. Ratnaswamy, P. Francis, M. Handley, R. Karp and S. Shenker, “A Scalable
content-addressable network,” In Proceedings of ACM SIGCOMM, 2001.

14. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” In Proceedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms, 2001.

15. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek and H. Balakrishnan, “Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications,” Proceedings of
SIGCOMM, pp. 149-160, 2001.

NEC: Node Energy Based Clustering Protocol
for Wireless Sensor Networks with

Guaranteed Connectivity�

Shilpa Dhar1, Krishnendu Roy2, and Rajgopal Kannan3

1 Department of Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA

sdhar1@lsu.edu
2 Department of Electrical and Computer Engineering, Louisiana State University,

Baton Rouge, LA 70803, USA
kroy1@lsu.edu

3 Department of Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA

rkannan@csc.lsu.edu

Abstract. Wireless sensor networks are continually being deployed in
various application areas which are posing various new challenges. Yet,
one problem that still remains central to the operability and applicability
of sensor networks is the limited energy of the sensor nodes which directly
limits the network lifetime. Various schemes have been proposed to opti-
mize the energy conservation, some of which use network-redundancy to
switch off the radios of some nodes. Ensuring minimum connectivity in
such a case is the main objective, which the existing papers address inad-
equately. We propose a scheme of topology control based on the concept
of strong and weak nodes. In our protocol clustering is done keeping in
mind the lifetime of all the nodes that are awake and not just the lifetime
of the cluster-head hence ensuring that minimum connectivity is always
guaranteed.

Keywords: Wireless sensor networks, Energy conservation, Strong nodes,
Weak nodes, Connectivity.

1 Introduction

Wireless sensor networks are increasingly being used in varied applications. Some
of the potential applications of wireless sensor networks are environmental moni-
toring, smart spaces, military, medical systems, robotic explorations etc. A wire-
less sensor network usually consists of a large number of sensor nodes that self-
configure themselves into a multi-hop network. These nodes are untethered [2]

� This work was supported in part by NSF grant IIS-0329738 and an ITR grant
#0312632.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 75–84, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

76 S. Dhar, K. Roy, and R. Kannan

and have to rely on local battery power. Thus the single most important met-
ric that dominates these wireless sensor networks is energy consumption in the
nodes as it directly influences the network lifetime. In a densely deployed wireless
sensor network node redundancy is used to optimize the energy consumption in
the network and increase the operational lifetime of the network.

Previous research shows that the radio in the sensor nodes consumes energy
while sending, receiving, overhearing and listening to the medium. The large
amount of energy consumed by the nodes while idle listening and overhearing
leads to the conclusion that energy consumption can be optimized only if the
radio in the sensor nodes is periodically powered off. In a densely deployed
large sensor network multiple paths exists between the nodes hence minimum
connectivity in the network can still be ensured even if some of the intermediate
nodes are selectively powered off [2, 5, 6].

Clustering is one of the most fundamental ways used to design scalable sensor
networks. A clustering algorithm arranges the network into subsets of nodes
with a cluster-head at the center of each cluster. A regular high level structure is
obtained from good clustering [1]. It is easier to design efficient energy conserving
protocols for this high level structure than at the level of individual nodes.
Localized algorithms can be used in these clusters which reduce the centralized
coordination necessary and require that nodes interact with only their neighbors
thus reducing the communication costs.

In this paper we propose Node Energy based Conserving Protocol (NEC), a
new protocol for clustering in wireless sensor networks which conserves energy
as well as ensures minimum connectivity in the network. NEC takes into account
the energy of the cluster-head and all the nodes in the cluster which are awake
at any time to ensure minimum network connectivity. For the purpose of energy
conservation only the cluster-head and the nodes of the cluster which provide
reachability to other clusters are powered on. Thus to provide connectivity in
the network the cluster-head as well as the nodes in the cluster which provide
reachability to other clusters have to be operational for the same amount of time
before re-clustering takes place. In NEC the energy of communicating nodes has
to be monitored so that minimum network connectivity is ensured.

2 Related Work

For the last few years optimizing energy consumption has been the focus of
research in sensor networks. LEACH [3] (Low-Energy Adaptive Clustering Hi-
erarchy), is one such clustering based protocol that uses randomized rotation
of cluster-heads to evenly distribute the energy load among the sensors in the
network. In order to avoid the energy drainage of cluster-heads, the cluster-head
positions are not fixed and are self elected at different time intervals.

We studied the Cluster-based Energy Conservation (CEC) protocol [5] which
directly and dynamically measures the network connectivity so that energy can
be conserved by identifying the nodes which can be selectively powered off. In
CEC cluster formation takes place in a distributed fashion and clusters are inter-

NEC: NEC for Wireless Sensor Networks with Guaranteed Connectivity 77

connected to each other through overlapping nodes. Each cluster has a cluster-
head and all the members are within direct radio range of the cluster-head. In
CEC initially each node broadcasts a discovery message that contains its node
ID, cluster ID and estimated lifetime. Here a node which is a member of more
that one cluster is called a gateway. CEC first selects the cluster-head and then
the gateway nodes connecting the clusters. A node elects itself as the cluster-
head if it has the longest lifetime of all its neighbor, breaking ties by node ID.
Gateway selection from multiple gateways is done on the basis of rules like the
gateway with the longest lifetime has highest priority.

We observed that if the gateway node between two clusters has a very small
lifetime then that node may die and in that scenario the network connectiv-
ity is lost till the re-clustering is done again. Figure 1 shows the formation of
clusters on the basis of CEC. Now we consider the situation where different
node have different lifetimes. Here the wakeup time TS [5] after which all the
nodes in the cluster are powered on again is set to enlt/2 where enlt is the es-
timated lifetime of the cluster-head. Thus the lifetime of the cluster (LTcluster)
depends on the lifetime of the cluster-head. Hence if the lifetime of any gateway
(LTgateway) of the cluster is less than the lifetime of that cluster, then there
will not be any connectivity in the network for LTcluster – LTgateway amount
of time. Our protocol ensures that the connectivity in the network is main-
tained even in the case of the above stated scenario while consuming minimum
energy.

3 Node Energy Based Clustering Protocol (NEC)

In this paper we propose NEC a clustering protocol which ensures minimum
connectivity in the network and optimizes energy consumption. In this protocol
we propose and define the concept of strong and weak sensor nodes based on
their operational lifetime.

First we define the following :

– A cluster is defined as a set of nodes that are mutually reachable in at most
two hops. Each cluster has a cluster-head which is directly reachable from
all members of the cluster.

– A gateway is defined as a node which is a member of more than one cluster
and provides interconnection between the clusters.

– Re-clustering Interval (I) is defined as the time after which re-clustering is
initiated in a cluster.
I = α × Estimated lifetime of the cluster head, where 0< α <1.
Both the value of the estimated lifetime of the cluster-head as well as I
change with time. Each cluster has its own re-clustering interval.

– Strong and weak nodes : A node is defined as a strong node if its lifetime ≥ I
when it operates at full power for the entire duration of its lifetime otherwise
it is defined as weak node.

78 S. Dhar, K. Roy, and R. Kannan

cluster−head node

gateway node

1

2 3

4 5

6
7

8

9

10

11

12

ordinary node

Fig. 1. Example of clustering. The dotted circles show the radio transmission range of
the cluster-heads

3.1 Cluster Formation

1. Potential Cluster-Head Selection
Initially each node broadcasts a discovery message which contains its node
ID, its Cluster ID, and estimated lifetime [5]. A node elects itself as a poten-
tial cluster-head if it has the longest lifetime among all its neighboring nodes
(ties are broken by node ID). After a node elects itself as a potential cluster-
head it broadcasts this information along with its lifetime to all its neighbors.

2. Gateway Selection
A node which is directly reachable from more than one cluster-head is called
a primary gateway. A node which is connected to the cluster- head of another
cluster through a member of that cluster is called a secondary gateway.
When a node receives messages from more than one potential cluster-heads
it knows that it is a gateway and then decides whether it is a strong node or
a weak node with respect to the potential cluster-heads. The gateway node
then passes the information whether it is a strong or a weak node to the po-
tential cluster-heads. A gateway node between two potential cluster-heads
can thus be a strong node with respect to one potential cluster-head and
weak with respect to the other potential cluster-head. In this case it sends
two different messages to the two different potential cluster-heads.

NEC: NEC for Wireless Sensor Networks with Guaranteed Connectivity 79

3. Cluster-Head Selection and Cluster Formation
If a potential cluster-head receives the information that all its gateways are
strong then it elects itself as the cluster-head and broadcasts this to all its
neighbors which set their cluster Id to that of the cluster-head and a cluster
is formed. The cluster-head broadcasts the value of I to all the members of
the cluster.
If a potential cluster-head receives the information that one or more of its
gateways are weak nodes it elects itself as the cluster- head but while broad-
casting this information to its neighbors it reduces the value of α hence
reducing the re-clustering interval.
After the cluster formation except for the cluster-head and the gateways all
the other cluster members switch off their radios for the re-clustering interval
to minimize the energy consumption.

Figure 2. shows an example of a cluster formation according to NEC. Here
node 2 and node 3 are strong gateways since their remaining energy will allow
them to survive the usual re-clustering interval (when α = 0.50) while node 7
is a weak gateway since its remaining energy will not allow it to survive the
re-clustering interval I if α = 0.50.

An alternative approach can be once a gateway discovers that it is a weak
node with respect to a cluster-head it sends intermediate node search messages
containing its cluster ID to all its neighbors at some fraction of its maximum
transmission power (minimum transmission power is preferred so that the node
can last for a longer time) [7]. If it gets a reply from its neighbors having the same
cluster ID it then uses this neighbor as a bridge node between the cluster-head
and itself so that it can be operational for a longer duration of time.

4 Simulation of NEC

We simulated the node energy based clustering algorithm (NEC) proposed in
this paper. We also ran CEC on the same simulation scenario and compared
NEC to the CEC protocol in terms of the impact of node energy level on network
connectivity. We also studied the node lifetime as well as the network operational
lifetime in the two protocols. We showed that selecting gateways and cluster-
heads based on strong/weak nodes as proposed in NEC increased the amount of
time the network remains connected compared to CEC. The simulations were
performed on a simple topology consisting of eleven nodes. We first ran NEC on
this simple topology and initially obtained three clusters with one weak and one
strong gateway. For simulation purposes we assumed for both the protocols that
a constant amount of energy is expended for transmitting a message as well as
for receiving a message. In the definition of re-clustering interval (I) We used a
value of α = 0.50 for strong gateways and α = 0.25 for weak gateways.

From the results of our simulation for the above stated scenario we found
that the first node dies at 19 secs in our NEC protocol. As the re-clustering
interval for the cluster to which this node belonged to was 23 secs, the network

80 S. Dhar, K. Roy, and R. Kannan

cluster−head node

1

2 3

4 5

6
7

8

911

12

(84.4)

(78.2)

10
(80.0)

(56.0)(61.7)

(20.0)

(65.0)(37.2)

(12.0)

(72.0)
(49.7)

(74.2)

ordinary node

weak gateway node

strong gateway node

Fig. 2. Example of NEC. The numbers within the parenthesis denote the energy of
each node

was partitioned and connectivity was lost for 4 secs in this case. For CEC under
the same simulation scenario we found that the network was disconnected for
a longer period of time of about 23 secs. Figure 3, which shows the connectiv-
ity/disconnectivity of the network, is an illustration of this result. This happens
because NEC takes into consideration the effect of the energy level of the gate-
way node during cluster formation and if the energy level of the gateway node
is low, NEC causes the cluster to re-cluster according to a reduced re-clustering
interval. Thus in the case of NEC a weak node is not usually selected either
as a gateway or a cluster-head during re-clustering and behaves as an ordinary
node which is powered off after the cluster formation. Thus the energy of the
weak nodes is conserved. NEC thus balances the energy usage of the nodes in
the network. Figure 4 plots the number of active nodes in NEC with respect to
time. From this figure it is evident that in NEC, for a long period of time the
majority of the nodes remain alive.

Thus from the simulations results of NEC we see that when the first node of
the network dies the node being a part of the cluster causes a disconnection in
the network, But NEC usually causes the cluster to go into re-clustering before
the weak gateway node dies or shortly after the weak gateway node dies resulting

NEC: NEC for Wireless Sensor Networks with Guaranteed Connectivity 81

0
0

1

15 30 45 60

Simulation time(sec)

1: All clusters are connected

C
lu

st
er

 c
on

ne
ct

iv
ity

0: Some clusters are disconnected

0
0

1

15 30 45 60

Simulation time(sec)

1: All clusters are connected

C
lu

st
er

 c
on

ne
ct

iv
ity

0: Some clusters are disconnected

CEC

NEC

Fig. 3. The status of the network (connected/disconnected) with time in case of NEC
(top) and CEC (bottom)

in the network being disconnected for a very small amount of time. But in other
protocols like CEC the energy of the gateway is not taken into account and the
cluster waits for a long time before re-clustering even after the weak gateway
node dies.

We have carried out simulations for a simple topology with a small number
of sensor nodes. We expect that for a topology with a large number of densely
deployed sensor nodes NEC will also show better performance in terms of energy
balancing in the network and increase the network operational lifetime. This is
because NEC tries to conserve the energy of the weak nodes and by using them
sparingly as compared to the strong nodes. Hence analytically with a lower value
of the constant α in the re-clustering interval the first node death in NEC should
occur at a later time compared to other protocols.

82 S. Dhar, K. Roy, and R. Kannan

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

N
o.

 o
f A

ct
iv

e
N

od
es

Simulation Time(sec)

NEC

Fig. 4. No. of nodes alive with time in NEC

5 Alternative Energy Tree Based Approach

We can consider a scenario where there are several distinct energy ranges/bands
in the network and the energy of every node in the network falls into any one
of the given distinct energy ranges. These energy bands/ranges are fixed before
the deployment of the sensors and all the sensor nodes know the values of these
energy bands so that at any instant each sensor node can map its own energy
level to one of the given energy bands. The assumptions made here are that each
sensor node can determine its own energy level and also that each sensor node
has information about its own location in the x-y plane(through GPS or any
other mechanism).

In case of the above stated scenario we can think of another topology control
approach that greatly facilitates data aggregation in the sensor network at low
energy overhead. The data sensed/collected by the sensors has to be transmitted
to the base station. In this case instead of having each node transmitting the
data to the base station it is much more desirable in terms of energy and com-
munication overhead to have an approach where a set of sensor sends data to an
aggregator and aggregator then performs data aggregation and the aggregated
data is then sent to the base station. Optimal data aggregation is known to be
an NP complete problem [4]. We assume that the network is graph G(V, E)
where V denotes the sensor nodes and E denotes the set of edges where an edge
exists between two node if they are within each others radio range. We propose
a new topology control approach where a single tree or a number of trees can be
constructed such that for any two given tree nodes u and v, u being the parent
of v, it is ensured that u has a higher (or equal) energy level than that of v.

Some of the benefits of a tree based topology control approach are as follows:

– Once one or more trees are formed in the network, even after the energy of
any node in a tree runs out the probability of the tree being connected is
higher, this is because the tree is formed in such a way that the lower energy
nodes are at a lower level and there are no high energy nodes at a level below

NEC: NEC for Wireless Sensor Networks with Guaranteed Connectivity 83

a low energy node. Hence usually a leaf of the tree will run out of energy
before that happens to a internal node which is at a higher energy.

– The tree structure is inherently suitable for data aggregation. Tree nodes
of subsequently higher levels can aggregate data they receives from their
children and so on.

– Various security measures can be implemented at various levels while aggre-
gating data as one goes higher up the tree.

– If multiple trees are formed only the root nodes can send the final aggregated
data in each tree to the base station leading to further conservation in energy.

The following section briefly describes a heuristics to form such an energy
tree. We assume that there are n energy bands (E1, E2, · · · , En) numbered as 1
to n. Band 1 corresponds to the lowest energy band and band n corresponds to
the highest energy band. We also assume that each node knows its own location.

Directed Graph Formation
In the first phase an imaginary weighted directed graph is formed by the sensor
nodes by local communication. Each node sends a message to all of its neighbors
containing its node ID, energy band number Ei and geographic location. A node
ignores the message if it is from a node with lower energy band number. When
a node receives a message from a node with a higher or equal energy band
number, it store the node ID of that node and also calculates a weight for the
edge between that higher or equal energy node and itself. The edge between
node i and node j is directed form i to j if j has a higher or equal energy band
number than i. The weight wij for any edge between nodes i and j is calculated
as follows,

wij = k × distij / differenceij where k is some constant

distij = Euclidean distance between i and j

differenceij =
{

Ej − Ei, if Ej > Ei

1, if Ej = Ei

i can calculate distij as j’s location information is contained in the message from
j to i.

Tree Formation
In the second step when an underlying weighted directed graph has been created
amongst the nodes in the network an algorithm generating a minimal spanning
tree in the directed graph is initiated in the network.

Once the tree formation step is complete, the sensor nodes which will become
a part of some tree will know who their parents are in the tree and will send any
data that it senses or receives from any of its children to that parent.

84 S. Dhar, K. Roy, and R. Kannan

6 Conclusion

In this paper we have proposed the node energy based clustering protocol (NEC),
a protocol which conserves energy as well as ensures minimum connectivity in
the network. As opposed to CEC, the primary characteristics of NEC is the use
of the concept of strong and weak nodes to decide which nodes should be selected
as cluster-heads and gateways. NEC requires that the energy of communicating
nodes in the network be taken into consideration to ensure network connectivity
at minimum energy expenditure at the nodes. We also showed that selecting
gateways and cluster-heads based on strong/weak nodes as proposed in NEC
increased the amount of time the sensor network remains connected compared
to CEC. NEC does not require geographic location information or any kind of
distance or directional estimation between nodes. NEC is completely distributed
and does not require knowledge of the global network in order to operate. NEC
relies only on local communication between neighbors and hence can dynamically
adapt to the changes in the network.

We have presented preliminary simulation results and analysis to show that
the NEC conserves energy while ensuring minimum network connectivity com-
pared to other conventional protocols. In NEC if the network is disconnected at
all it is so for a much shorter period of time compared to CEC. In order to verify
our assumptions about the performance of NEC we are currently extending the
network simulator ns-2 to simulate NEC. This will verify our assumptions and
give us a more accurate picture of the advantages and disadvantages of using
NEC compared to other clustering protocols.

References

1. Chan, H., Perrig, A.: ACE: An Emergent Algorithm for Highly Uniform Cluster
Formation, Proceedings of European Workshop on Wireless Sensor Networks 2004,
Berlin, Germany (2004) 154–171

2. Estrin, D., Girod, L., Pottie, L., Srivastava, M.: Instrumenting the world with wire-
less sensor networks, Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Salt Lake City, Utah, USA (2001)

3. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-Efficient Commu-
nication Protocol for Wireless Microsensor Networks, Proceedings of the 33rd Hawaii
International Conference on System sciences, Maui, Hawaii (2000)

4. Krishanamachari, B., Estrin, D., Wicker, S.: The Impact of Data Aggregation in
Wireless Sensor Networks, Proceedings of the International Workshop of Distributed
Event Based Systems (DEBS), Vienna, Austria (2002)

5. Xu, Y., Bien, S., Mori, Y., Heidemann, J., Estrin, D.: Topology Control Protocols
to Conserve Energy in Wireless Ad Hoc Networks, CENS Technical Report UCLA,
Number 6 Los Angeles, USA (2003)

6. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficeint MAC Protocol for Wireless
Sensor Networks, Proceedings of the IEEE Infocom, New York, USA (2002) 3–12

7. Zuniga, M., Krishnamachari, B.: Optimal Transmission Radius for Flooding in Large
Scale Sensor Networks, Proceeding of 23rd International Conference on Distributed
Computing Systems Workshops, Providence, Rhode Island, USA (2003) 697

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 85–95, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Energy Efficient Cache Invalidation in a Disconnected
Mobile Environment

Narottam Chand, Ramesh Joshi, and Manoj Misra

Electronics and Computer Engineering Department,
Indian Institute of Technology,

Roorkee – 247 667 India
{narotdec, joshifcc, manojfec}@iitr.ernet.in

Abstract. Caching at mobile host is a prominent technique for improving the
performance of wireless data dissemination. It can reduce number of uplink re-
quests, server load, query latency and can increase data availability. A cache in-
validation strategy ensures that cached data in a host has same value as on the
origin server. Due to battery energy constraints of mobile host and unreliable
limited bandwidth over the wireless channel, the host may disconnect from the
server. Frequent disconnections of a host add many challenges to the cache in-
validation process. In this paper, we present a Synchronous Stateful (SS) cache
maintenance strategy with the objectives to minimize the overheads for mobile
hosts to validate their cache on reconnection, reduce the use of wireless channel
and conserve the host energy. Simulation experiments are performed to evaluate
the proposed strategy and compare it with Asynchronous Stateful (AS) scheme.
Results show that our strategy performs better in terms of reconnection over-
heads, bandwidth utilization and host energy consumption.

1 Introduction

The prodigious advances in the field of portable hardware and wireless technology
have made the mobile computing a reality. Mobile computing suffers from limited and
unreliable bandwidth, limited client resources and frequent disconnections of hosts
from the network. Users of mobile devices wish to access dynamic data, such as stock
quotes, news items, current traffic conditions, weather reports, email and video clips
via wireless networks independent of location and time. However, limited battery
energy and scarce wireless bandwidth hinder the full realization of ubiquitous data
access in mobile computing. Caching at mobile client can relieve bandwidth con-
straints imposed on wireless and mobile computing. Copies of remote data from server
can be kept in the local memory of the mobile client, thus, substantially reducing user
requests for retrieval of data from the origin server. This not only reduces the uplink
and downlink bandwidth consumption but also the average query latency. Caching
frequently accessed data in mobile client can also save energy used to retrieve the
repeatedly requested data at client side.

Cache invalidation strategy is used to ensure that the data items cached in a mobile
client are consistent with those stored on the server. Frequent disconnections of mo-

N. Chand, R. Joshi, and M. Misra 86

bile client make the task of cache invalidation more complex since the cache mainte-
nance strategy must optimally utilize limited wireless bandwidth and client energy.
The client may voluntary switch off to save energy, or a client may be involuntary
disconnected due to network failure, processor failure or battery failure.

Recently, we [20] addressed various cache invalidation issues in mobile environ-
ment and introduced the concept of Cache Directory (CD) based invalidation. To
evaluate the effectiveness of the CD strategy, it was compared with TS [4] and counter
based scheme [1], [15], and it has been shown that our strategy performs better in
terms of client tuning time, query latency and client energy consumption.

This paper presents a Synchronous Stateful (SS) cache maintenance strategy where
cache consistency is maintained by broadcasting update reports. The cache state for
each client is maintained at the home MSS in the form of cache vector (CV). Use of
cache vectors enables the server to filter out non-cached items from an IR, handle
arbitrarily long disconnection and support client mobility. In IR based strategies, even
though many clients cache the same updated data item, all of them have to query the
server and get the data from the server separately. It wastes a large amount of wireless
bandwidth and battery energy. To minimize uplink requests and downlink broadcasts,
we use a broadcast strategy, called update report (UR), where all the recently updated
or requested items are broadcast immediately after the invalidation report (IR). To
further conserve the client energy, the proposed strategy uses selective tuning.

The rest of the paper is organized as follows. Section 2 gives a description of the
related work. In section 3, we present our caching strategy. In section 4, we describe
simulation experiments for establishing the performance of our methodology. Conclu-
sion is given in section 5.

2 Related Work

Caching in mobile environment is complicated by the fact that the caches need to be
kept consistent. A number of broadcast based cache invalidation strategies have
been proposed for mobile environments. Barbara and Imielinski [14] provided three
cache invalidation schemes, namely Broadcasting Timestamps (TS), Amnesic
Terminals (AT) and Signatures (SIG), which use different invalidation reports for a
stateless server. Jing et al. [10] proposed a Bit-Sequence (BS) scheme that uses a
hierarchical structure of binary bit sequences with an associated set of timestamps
to represent clients with different disconnection times. Tan [7] reexamined the BS
method and studied different organizations of the invalidation report. These new
organizations facilitate clients to selectively tune to the portion of the report that are
of interest to them. Hue et al. [12] proposed a scheme to reduce the false invalida-
tion rates based on BS reports. Wu et al. [6] proposed a scheme which modifies the
TS or AT algorithms to include cache validity checks after reconnection. Hu and
Lee [3] have proposed a family of invalidation algorithms. The essence of these
algorithms is that the type of invalidation report to be sent is determined dynami-
cally based on system status such as disconnection frequency and duration as well
as update and query pattern. G. Cao in [4], [5] addresses the problem of long query
latency with a UIR based approach. In this approach, a small fraction of the essen-

Energy Efficient Cache Invalidation in a Disconnected Mobile Environment 87

tial information (called updated invalidation report (UIR)) related to cache invali-
dation is replicated several times within an IR interval, and hence the client can
answer a query without waiting until next IR. However, if there is a cache miss, the
client still needs to wait for the data to be delivered. In [1], [15], author addresses
various problems associated with the IR based cache invalidation strategies. To
improve the query latency and cache hit ratio, clients intelligently prefetch the data
that are most likely used in the future. Kahol et al. [2], [9] present an asynchronous
stateful (AS) scheme to maintain cache consistency. Each mobile client maintains
its own Home Location Cache (HLC) to deal with the problem of disconnections.
Yuen et al. [8] proposed a cache invalidation scheme based on absolute validity
interval (AVI) for each data item. To solve the problem of large size invalidations
reports and duplicate uplink requests, K. Y. Lai et al. [18], [19], proposed two
techniques Validation-Invalidation Reports (VIR) and Delayed Request Scheme
(DRS). Wang et al. [21] proposed an invalidation strategy called Scalable Asyn-
chronous Cache Consistency Scheme (SACCS), which is hybrid of both stateful and
stateless algorithms. Unlike stateful algorithms, SACCS maintains only one flag bit
for each data item in MSS and unlike the existing synchronous stateless approaches,
it does not require periodic broadcast of IRs. Because of asynchronous nature of
SACCS approach, it does not provide any guarantee on waiting time of clients and
hence they can rarely switch to power save mode. Authors in [22] describe the
cache consistency maintenance for intra- and inter-roaming MHs. Three strategies:
homogenous IR, inhomogeneous IR without roaming check and inhomogeneous IR
with roaming check are applied to TS and SACCS strategies.

3 The Proposed Cache Invalidation Strategy

In this section, we present our synchronous stateful (SS) caching strategy. The strategy
concentrates on reducing the number of uplink requests, downlink broadcasts, over-
heads due to reconnection after an arbitrarily long disconnection, tuning time and
client energy consumption.

3.1 Mobile Caching Model

The environment consists of two distinct sets of entities: Mobile Hosts (MHs) and
Fixed Hosts (FHs). Some of the FHs called Mobile Support Stations (MSSs), are aug-
mented with a wireless interface in order to communicate with the mobile hosts, which
are located within a radio coverage called a cell. Each MSS stores a complete copy of
the database and also acts like a database server. Henceforth, we use the terms MSS
and server interchangeably. An MH communicates with a server over asymmetric
wireless communication link (i.e. the uplink bandwidth is much less than that of
downlink). An MH can move within a cell or between cells while retaining its network
connection. It either connects to an MSS through a wireless link or disconnects from
the MSS by operating in a power save mode [2].

It is assumed that the database is updated only by the server. The servers them-
selves form a wired distributed system in which a fully replicated database resides.

N. Chand, R. Joshi, and M. Misra 88

The database D comprises a set of N data items and each item is identified by unique
id. For each item di, two time stamps ti and r

it are maintained at the server. ti is the
most recent timestamp when di got updated and r

it , called latest request time, repre-
sents the most recent time when di was last requested.

A client sends an uplink request to the server for the data it needs and the server
responds by broadcasting the requested data on the downlink. In order to minimize the
number of uplink requests, the client caches a portion of the database in its local
memory. We assume that the cache at mobile client is a nonvolatile memory such as
hard disk so that after a long disconnection, the content of the cache can still be re-
trieved. To ensure cache consistency and serve the client requests, server periodically
broadcasts update reports (URs). All active mobile hosts while roaming listen to the
reports and invalidate/update their cache contents accordingly.

Following assumptions are made:

− Database D is collection of N data items and is replicated at each server. An item is
identified by unique identifier di (1 ≤ i ≤N). Di denotes the actual data of an item di.
Each item has same size Sdata (in bits).

− Unique identifier is assigned to each MH. The system has total of M hosts and MHi
(1 ≤ i ≤M) is a host identifier. Each MH has cache capacity of C items.

− CV (details in Section 3.2) stored in the local disk of server, maintains the state
information for a host. An MH informs its server before it stores any data item in
its local cache and the server updates the CV accordingly.

− Servers are reliable i.e. they handle the failure with some fault tolerance tech-
niques.

3.2 Using Cache Vectors (CVs) to Maintain State Information

In a stateless strategy when an item updates at the server, its id is broadcast as part of
IR irrespective of whether the item has been cached or not. Including a non-cached
item as part of IR, makes poor utilization of the available wireless bandwidth and it
also increases the client energy consumption since they have to listen to the broadcast
channel for longer duration to download the report. To filter out all those recently
updated items from an IR which are not cached by any client, we have used a stateful
strategy.

To keep the state information, for each MH a binary cache vector (CV) is main-
tained at the home MSS. The vector has N bits, each bit representing one item. Con-
sider a cell with H hosts (MHi, 1 ≤ i ≤H) at any given time. For any j, CVj for MHj, as
maintained on its home MSS, keeps track of what data has been locally cached at
MHj. In general CVj = (1 0 1 . . . 0)T, if CVj[k] = 1, then the host MHj has cached the
item dk. Using CV, the MSS includes only those recently updated items as part of IR
which have been cached by one or more clients. When a host moves to a new cell, the
copy of its CV is replicated at the new MSS.

3.3 Broadcast UR to Utilize Bandwidth

To reduce the number of uplink requests and downlink broadcasts, we introduce the
concept of update report (UR). A similar technique using Lbcast has been described by

Energy Efficient Cache Invalidation in a Disconnected Mobile Environment 89

G. Cao [1], [4], [5], [15]. Update reports (URs) are broadcast synchronously with
period L. The structure of a UR is shown in Fig. 1.

IR INDEX DATA

Fig. 1. Structure of a UR

At interval Ti:
IRi = {(dx, tx)|(dx∈D)∧(nx > 0)∧(Ti - w.L < tx ≤ Ti)}

INDEXi = {dx|((Ti -1 < tx ≤ Ti) ∧(nx>0))∨(Ti –1 < r
it ≤ Ti)}

DATAi = {Dx|dx∈INDEXi}

Where nx is number of clients who have cached the item dx. INDEXi defines the
order in which data appears in DATAi. IR contains the update history of past w
broadcast intervals whereas DATA contains actual data value for the items which
have been updated during previous interval. In most IR based algorithms [2], [3],
[6], [7], [8], [10], [11], [13], [14], [16], [17], updating a data item that has been
cached, may generate many uplink requests and downlink broadcasts, and thus
make poor utilization of available wireless bandwidth. This is due to the reason that
when an item is updated and IR is broadcast, each client who has cached that item
will generate an uplink request for the item and the server responds to each request
by broadcasting the item. For example, for an item with id dx which is cached by nx
clients, there will be nx uplink requests and nx downlink broadcasts due to update.
We address the problem by asking the server to broadcast all the data items which
have been recently requested or updated and are cached by one or more clients. So,
in comparison to nx uplinks and downlink broadcasts for an updated item, our strat-
egy makes only single broadcast without any uplink request. Also, during one UR
interval, due to cache miss an item may have been requested by many clients, but
our scheme broadcasts the item only once. Thus, reducing the number of uplink
requests and downlink broadcasts due to recent updates or cache misses, the UR
strategy heavily saves on wireless bandwidth.

3.4 Saving Client Energy by Making Synchronous Broadcasts

In asynchronous invalidation methodology, there is no guarantee on how long a
client must wait for the next report and hence the clients those are in doze mode
may lose some of the reports, thus compromising the cache consistency or further
increasing the query latency. We use a synchronous approach where clients may
wake up during the UR broadcast time and selectively tune to the channel to save
energy. After broadcasting IR, the server broadcasts INDEX followed by actual
data DATA. Every client listens to the IR if not disconnected. At the end of IR, a
client downloads INDEX and locates the interesting item that will come, and

N. Chand, R. Joshi, and M. Misra 90

listens to the channel at that time to download the data. This strategy saves energy
since the client selectively tunes to the channel and can stay in doze mode most of
time.

3.5 Handling Host Disconnection

Since a UR contains information about all the changes occurred during past w.L time,
the SS strategy handles the disconnection of hosts less than w.L without any additional
overhead. When a host reconnects after a disconnection time longer than w.L, it sends
an uplink request with the last received UR time stamp Tl (before disconnection) to
the server. On receipt of the request, the server constructs a binary vector DIV called
disconnection information vector. DIV is of size C bits and contains the validity in-
formation about the cached items by a host. For a host MHi, the server constructs DIVi
as follows:

1. Scan the cache vector CVi. If CVi[j] = 1, MHi has cached the item dj otherwise not.
2. For an item dj, cached by MHi, compare its last update timestamp (tj) with Tl. If tj >

Tl, the item dj has been updated since MHi received last UR before disconnection.
In case, tj > Tl, then set DIVi[k] = 1, where MHi has stored the item dj at kth cache
location (1 ≤ k ≤ C). If tj ≤ Tl, then set DIVi[k] = 0.

Once the DIVi has been constructed, the server sends DIVi to MHi over the
downlink channel. After downloading DIVi, MHi finds whether a particular cached
item is still valid. If DIVi[k] = 1, then the kth cached item is invalid otherwise it is still
valid. After checking for each cached item, the host will send an uplink request for all
the invalid items and the server responds by broadcasting the requested items during
following UR.

As compared to previous caching strategies [1], [2], which handle disconnection
by sending the ids for updated items, our strategy uses only one bit for an item, thus
reducing the reconnection overheads tremendously. For our strategy the reconnection
overhead is C bits, which is very less as compared to [1], [2]. Because of smaller size
of overhead, our strategy is also very much effective in terms of bandwidth utilization,
client tuning time and energy consumption.

Following example illustrates the working of the strategy to handle host disconnec-
tion:

Example
Consider a database having 10 items with the shown last update timestamp ti.

di 1 2 3 4 5 6 7 8 9 10

ti 20 16 17 13 5 6 2 9 23 19

Let a host MHx of cache size C = 4, has cached the items with id 1, 2, 4 and 7. Let
MHx got disconnected at time 17 such that it has received the last UR at Tl = 15 and
wakes up again at time 30.

Energy Efficient Cache Invalidation in a Disconnected Mobile Environment 91

Then

CVx = 1 1 0 1 0 0 1 0 0 0

DIVx = 1 1 0 0

While MHx receives DIVx, it is interpreted as: 1st cached item i.e. d1 is invalid, 2nd
cached item i.e. d2 is invalid whereas d4 and d7 are still valid.

The reconnection overhead for our strategy is 4 bits. For [1], [2], the overhead =
number of cached items invalidated during disconnection*Item id size (Sid). Generally Sid
= 32 bits, therefore the overhead value = 64 bits.

3.6 Handling Host Mobility

When MHi moves from old cell to a new cell, it will be registered in the new cell and
a copy of CVi from the home MSS will be replicated at the new MSS. If the old MSS
is not the home MSS, it (old MSS) deregisters MHi by deleting CVi from its local disk
and transfers pending request (if any) of MHi to the new MSS. MHi resumes its opera-
tion in the new cell and more requests can be directed to the new MSS after the pend-
ing data items have been received. While away from the home cell, the changes which
occur in the contents of CVi at current MSS will also be propagated back to the home
MSS so that both the copies are consistent.

The above scheme can be easily integrated with Mobile IP (MIP) where home
MSS and new MSS also handle the functions of home agent (HA) and foreign agent
(FA) respectively.

4 Performance Evaluation

To evaluate the performance of the proposed scheme, we have developed a simulation
model as shown in Fig. 2. Table 1 shows the system parameters and their correspond-
ing values. The rational behind the choices is as follows. These values are very similar
to the corresponding ones in [1], [2], and represent a realistic asymmetric wireless
environment. The simulation model consists of a single server per cell serving multi-
ple clients. The database can only be updated by the server, while the queries are
generated by the clients following an exponential distribution. The mean inter-arrival
time of queries generated by all clients is Tq. The inter-arrival time of updates at the
server is distributed exponentially with a mean of Tu. A client has a probability pd to
enter the disconnection mode only when the outstanding query has been served. A
client follows exponential distributed disconnection with mean time Td. The server
periodically broadcasts update reports (URs) every L seconds. The IR part of UR
covers a broadcast window of w broadcast intervals.

N. Chand, R. Joshi, and M. Misra 92

Fig. 2. The simulation model

Table 1. Simulation parameters

Parameter Value Parameter Value
Server database size (N) 1000 items Broadcast window (w) 10 L
Item size (Sdata) 4096 bits Mean query generate time (Tq) 2 sec
Client cache size (C) 30 items Mean update arrival time (Tu) 1 - 10000 sec
Maximum clients per cell (H) 30 Mean disconnection time (Td) 0-400 sec
Item id size (Sid) 32 bits Disconnection probability (pd) 0.10
Timestamp size (Tdata) 32 bits Uplink bandwidth (Bup) 19.2 Kbps
Broadcast interval (L) 20 sec Downlink bandwidth (Bdown) 100 Kbps

In the experiments, we study the effect of different disconnection times on the
overhead. The overhead considered is the additional number of bits transmitted on
downlink channel due to items those have become invalid during the period of discon-
nection. Since our strategy has no overhead due to disconnection time less than 200
sec (w.L), the comparison between AS and SS strategies has been shown for
disconnection time longer than 200 sec. Fig. 3 shows that the AS strategy has always
higher overhead than SS strategy. As SS strategy uses disconnection information
vector (DIV) of size C (number of cached items), the overhead is same at all the
disconnection times. In AS strategy, the number of invalid items increases with the
increase of disconnection time, thus increasing the reconnection overhead.

To evaluate the effectiveness of SS strategy to bandwidth utilization and conserv-
ing client energy, we study the effect of update arrival time over number of uplink
requests and tuning time, and compare the results with AS based invalidation strategy.
In Fig. 4, the mean number of uplink requests per 100 queries is plotted against the
mean update arrival time. At low update arrival time (i.e. high update rate), the num-

Energy Efficient Cache Invalidation in a Disconnected Mobile Environment 93

ber of uplinks is higher because more items are invalidated. The SS scheme performs
better than AS scheme, as in SS most of the uplink requests are generated because of
cache miss whereas in AS both the cache miss and invalidation cause the uplink re-
quests. As shown in Fig. 5, the SS scheme which uses selective tuning, performs better
under all update rates than AS scheme, and thus, conserves the client energy.

Mean disconnection time (sec)

200 250 300 350 400

O
ve

rh
ea

d
(b

it
s)

20

40

60

80

100

120

140

160

180 AS scheme
SS scheme

 Mean update arrival time (sec)

1 10 100 1000 10000

N
um

be
r

of
 u

pl
in

k
re

qu
es

ts
 p

er
 1

00
 q

ue
ri

es

70

75

80

85

90

95

100

AS scheme
SS scheme

Fig. 3. Overhead as a function of mean Fig. 4. Uplink requests as a function of mean
disconnection time update arrival time

Mean update arrival time (sec)

1 10 100 1000 10000

T
un

in
g

ti
m

e
pe

r
ac

ce
ss

 (
se

c)

0

5

10

15

20

AS scheme
SS scheme

Fig. 5. Tuning time as a function of mean update arrival time

5 Conclusions

The paper presents a Synchronous Stateful (SS) cache invalidation strategy to mini-
mize the overheads for mobile clients to validate their cache on reconnection, reduce
the use of wireless channel and conserve the client battery energy. Simulation experi-
ments show that our strategy performs better than Asynchronous Stateful (AS)
scheme. Future work will consider the comparison of proposed SS scheme with Scal-

N. Chand, R. Joshi, and M. Misra 94

able Asynchronous Cache Consistency Scheme (SACCS) [21]. To further enhance the
performance of SS, use of prefetching in integration with caching is also a considera-
tion during our future research.

References

1. Cao, G.: On Improving the Performance of Cache Invalidation in Mobile Environments.
ACM/Kluwer Mobile Network and Applications, 7(4). (2002) 291-303.

2. Kahol, A., Khurana, S., Gupta, S.K.S., Srimani, P.K.: A Strategy to Manage Cache Con-
sistency in a Disconnected Distributed Environment. IEEE Transaction on Parallel and
Distributed Systems, 12(7). (2001) 686-700.

3. Hu, Q., Lee, D.K.: Cache Algorithms Based on Adaptive Invalidation Reports for Mobile
Environments. Cluster Computing, 1(1). (1998) 39-50.

4. Cao, G.: A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.
ACM Intl. Conf. on Computing and Networking (Mobicom), (2001) 200-209.

5. Cao, G.: Proactive Power-Aware Cache Management for Mobile Computing Systems.
IEEE Transactions on Computers, Vol. 51, No. 6 (2002) 608-621.

6. Wu, K.L., Yu, P.S., Chen, M.S.: Energy-Efficient Mobile Cache Invalidation. Distributed
and Parallel Databases, Kluwer Academic Publishers, Vol. 6. (1998) 351-372.

7. Tan, K.L.: Organisation of Invalidation Reports for Energy-Efficient Cache Invalidation in
Mobile Environments. Mobile Networks and Applications, 6 (2001) 279-290.

8. Yuen, J.C., Chan, E., Lam, K., Lueng, H.W.: Cache Invalidation Scheme for Mobile Com-
puting Systems with Real-Time Data. SIGMOD, (2000) 34-39.

9. Kahol, A., Khurana, S., Gupta, S., Srimani, P.: An Efficient Cache Maintenance Scheme
for Mobile Environment. Int. Conf. on Distributed Computing Systems, (2000) 530-537.

10. Jing, J., Elmagarmid, A., Helal, A., Alonso, R.: Bit-Sequences: An Adaptive Cache Invali-
dation Method in Mobile Client/Server Environments. Mobile Networks and Applications
(1997) 115-127.

11. Yao, J.F., Dunham, M.H.: Caching Management of Mobile DBMS. Journal of Integrated
Computer-Aided Engineering, Vol. 8, No. 2 (2001).

12. Hou, W.C., Su, M., Zhang, H., Wang, H.: An Optimal Construction of Invalidation Re-
ports for Mobile Databases. In Proceedings of CIKM, (2001) 458-465.

13. Nam, S.H., Chung, Y., Cho, S.H., Hwang, C.S.: Asynchronous Cache Invalidation Strat-
egy to Support Read-Only Transactions in Mobile Environments. IEICE Trans. Inf. and
Syst. Vol. E85-D, No. 2 (2002).

14. Barbara, D., Imielinski, T.: Sleepers and Workaholics: Caching Strategies in Mobile Envi-
ronments. ACM SIGMOD Conference on Management of Data, (1994) 1-12.

15. Cao, G.: A Scalable Low-Latency Cache Invalidation Strategy for Mobile Environments.
IEEE Trans. on Knowledge and Data Engineering, Vol. 15, No. 5 (2003) 1251-1265.

16. Lee, S.K.: Caching and Concurrency Control in a Wireless Mobile Computing Environ-
ment. IEICE Trans. Inf. and Syst. Vol. E85-D, No. 8 (2002).

17. Tan, K.L., Cai, J., Ooi, B.C.: An Evaluation of Cache Invalidation Strategies in Wireless
Environments. IEEE Trans. on Parallel and Distributed Systems, Vol. 12, No. 8 (2001).

18. Lai, K.Y., Tari, Z., Bertok, P.: Cost Efficient Broadcast Based Cache Invalidation for
Mobile Environments. SAC, (2003) 871-877.

19. Lai, K.Y., Tari, Z., Bertok, P.: An Analytical Study of Broadcast Based Cache Invalidation
in Mobile Computing Networks. CoopIS/DOA/ODBASE, (2003) 554-572.

Energy Efficient Cache Invalidation in a Disconnected Mobile Environment 95

20. Chand, N., Joshi, R. C., Misra, M.: An Energy Efficient Cache Invalidation Strategy in
Mobile Environment. Proceedings of National Seminar, Advances in Computer Commu-
nication Networks (IE – India), (2004), 188-196.

21. Wang, Z., Das, S. K., Che, H., Kumar M.: Scalable Asynchronous Cache Consistency
Scheme (SACCS) for Mobile Environments. ICDCS, (2003) 797-802.

22. Wang, Z., Kumar, M., Das, S. K., Shen, H.: Investigation of Cache Maintenance Strategies
for Multi-cell Environments. Mobile Data Management (MDM), (2003) 29-44.

An Efficient Data Dissemination Schemes for
Location Dependent Information Services

KwangJin Park, MoonBae Song, and Chong-Sun Hwang

Dept. of Computer Science and Engineering, Korea University,
5-1, Anam-dong, Seongbuk-Ku, Seoul 136-701, Korea

{kjpark, mbsong, hwang}@disys.korea.ac.kr

Abstract. Location dependent information services (LDISs) produce
answers to queries according to the location of the client issuing the
query. In LDIS, techniques such as caching, prefetching and broadcasting
are effective approaches to reducing the wireless bandwidth requirement
and query response time. However, the client’s mobility may lead to
inconsistency problems. In this paper, we introduce the broadcast-based
LDIS scheme (BBS) for the mobile computing environment. In the BBS,
broadcasted data items are sorted sequentially based on their location
and the server broadcasts the location dependent data (LDD) along with
an index segment. Then, we present a data prefetching scheme and OBC
(Object Boundary Circle), in order to reduce the query response time.
The performance of the proposed scheme is investigated in relation to
various environmental variables, such as the distributions of the data
items, the average speed of the clients and the size of the service area.

1 Introduction

In today’s increasingly mobile computing world, people wish to be able to access
various kinds of services at any time any place. However, the mobile computing
environment is characterized by narrow network bandwidth and limited battery
power. Furthermore, the changes in locations of the mobile clients can be dif-
ficult to handle in an LDIS, particulary in the areas of query processing and
cache management [1]. Techniques such as caching, prefetching and broadcast-
ing provide effective means of reducing the wireless bandwidth requirement and
can also save the client’s battery power consumption.

Location dependent data is a data whose value depends on the location. The
answer to a query depends on geographical location where the query originates.
Let’s consider an example in which a salesman drives a car and has to visit all
of his customers. The salesman sends a query, such as, “what are the names
and addresses of the markets near to my current location?”, using his mobile
device. Once the salesman gets the answer from the server, he will visit the
other markets by the nearest order, and the markets that visits already is going
to except in the visiting list. To handle such a query, the positions of the objects
and the clients must be found.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 96–105, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Efficient Data Dissemination Schemes 97

In this paper, we propose the broadcast-based LDIS scheme under a geomet-
ric location model. We first introduce the broadcast based location dependent
data delivery scheme (BBS). In this scheme, the server periodically broadcasts
reports, which contains the IDs of the data items (e.g., building names)and the
values of the location coordinates to the clients. The broadcasted data objects
are sorted sequentially based on their location before being broadcasted. Then,
we introduce the prefetching scheme in LDIS for the mobile computing environ-
ment. By using the proposed schemes, the client’s access and tuning times are
significantly reduced.

The rest of the paper is organized as follows: Section 2 gives the background
of the broadcast model and LDIS scheme. Section 3 describes the proposed BBS
scheme and prefetching method. The performance evaluation is presented in
section 4. Finally, section 5 concludes this paper.

2 Background

With the advent of high speed wireless networks and portable device, data re-
quests based on the location of mobile clients have increased in number. However,
there are several challenges to be met in the development of LDISs [1], such as
the constraints associated with the mobile environment and the difficulty of
taking the user’s movement into account. Hence, various techniques have been
proposed to overcome these difficulties.

2.1 Broadcast Model

Data broadcasting in a wireless network constitutes an attractive approach in
the mobile data environment. However, the wireless broadcast environment is
affected by the narrow network bandwidth and the battery power restrictions
of the mobile clients. Air indexing is one of techniques that attempts to address
this issue, by interleaving indexing information among the broadcast data items.
At the same time, the client can reduce its battery power consumption through
the use of select tuning [6, 7]. Air indexing techniques can be evaluated in terms
of the following factors:

– Access Time: The average time elapsed from the moment a client issues a
query to the moment when the required data item is received by the client.

– Tuning Time: The amount of time spent by a client listening to the channel.

The Access Time: consists of two separate components, namely:

– Probe Wait : The average duration for getting to the next index segment. If
we assume that the distance between two consecutive index segment is L,
then the probe wait is L/2.

– Bcast Wait : The average duration from the moment the index segment is
encountered to the moment when the required data item is downloaded.

The Access Time is the sum of the Probe Wait and Bcast Wait. These two
factors work against each other [6, 7]. There are several indexing techniques such

98 K. Park, M. Song, and C.-S. Hwang

as the distributed indexing approach [6], the signature approach [9], and the
hybrid approach [10].

2.2 LDIS Schemes

In the mobile computing environment, caching data at the client’s side is a
useful technique for improving the performance. However, the frequently discon-
nection and mobility of the clients may cause cache inconsistency problems. In
[2], authors propose location dependent cache invalidation schemes for mobile
environments. In this scheme, they use bits to indicate whether the data item
in the specific area has been changed. For instance, if there are eight service
areas and the values of the bit vector are 00010011, this means that the data
item is valid in 4th, 7th, and 8th only. And they organize each service area as a
group in order to reduce the overhead for scope information. In [3], authors pro-
posed a PE (Polygonal Endpoint) and AC (Approximate Circle) schemes. The
PE scheme records all the endpoints of the polygon representing the valid scope,
while the AC scheme uses an inscribed circle from the polygon to represent the
valid scope of the data.

3 Proposed Algorithms

In this section, we present two schemes for LDIS. We first introduce the broadcast-
based LDIS scheme (BBS). In this scheme, the server broadcasts reports which
contains the IDs of the data objects (e.g., building names) and the values of the
location coordinates. The data objects broadcast by the server are sorted based
on the locations of the data objects. Then, we present a data prefetching scheme
and OBC in order to reduce the client’s tuning time.

3.1 BBS (Broadcast Based LDIS) Scheme

An index gives the ability of selective tuning. The drawback of this solution is
that the client has to wait and listen for an index segment in order to identify
the nearest data object. In the BBS method, the sever broadcast data objects
are sorted sequentially according to the location of the data objects. Moreover,
based on the distance between the data objects, we assign the difference weight
values to each data object, by using the OBC (Object Boundary Circle). Also,
the data objects can be sent using different broadcast frequencies, by classifying
them into hot and cold groups [4]. For instance, the data objects selected as a hot
group will broadcast more frequent than the other groups. We discuss this issue
in the section concerning the performance evaluation. In the BBS method, since
the data objects broadcasted by the server are sequentially ordered based on
their location, it is not necessary for the client to wait for an index segment, if it
has already identified the nearest object before the associated index segment has
arrived. In this method, the structure of the broadcast affects the distribution
of the data objets. For example, as shown in Fig. 1, if the data objects are hor-
izontally distributed, the server broadcasts data objects sequentially, from the

An Efficient Data Dissemination Schemes 99

leftmost data object to the rightmost data object. A simple sequential broadcast
can be generated by linearizing the two dimension coordinates in two different
ways: i.e. horizontal broadcasting (HB) or vertical broadcasting (VB). The client
uses the following algorithm to identify the nearest object:

Notations :

– S: server data set
– O: broadcast data object, where O ∈ S
– Oc: current broadcast data object (initially Oc regarded as an On), where

Oc ∈ S
– Op: previous broadcast data object, where Op ∈ S
– On: nearest data object
– Cl: client’s location

Algorithm 1. Client Algorithm Used to Identify the Nearest Object

if (current data item is an index segment)
find k-NN using index segment

else
{ for each object O ∈ S

{
do {

compare dist|Oc − Cl| and dist|On − Cl|
if (Oc is the first broadcast data object

or dist|Oc − Cl| < dist|On − Cl|)
then On = Oc

else if (dist|Oc − Cl| > dist|On − Cl|)
then On = Op

} while (getting to the index segment or dist(Oc, Cl) < dist(On, Cl))
}

}

Since it does not have the location information of all of the data objects,
the client cannot estimate which data will be broadcast next. Hence, even if the
server delivers data objects sequentially based on their coordinate values, it is
difficult to determine which data object is the nearest to the client. If the client
loses the desired data object, it has to wait until the next broadcast period.

In our scheme, the client maintains a queue and determines the size of window
w (hereafter referred to as wq), which indicates the number of data objects that
will be left in the queue. The client maintains objects in the queue based on the
size of wq and this queue can be represented as follows:

Notations :

– Oj : an object in the map
– To: the timestamp of an object
– Tc: the timestamp of the current broadcasted object

100 K. Park, M. Song, and C.-S. Hwang

Fig. 1. An example of Horizontal Broadcast

– S: set of objects in the map
– Sq: set of objects in the queue
– wq: size of the windows in the queue

Then Sq = {〈Oj , To〉|(Oj ∈ S) ∧ (Tc − wq ≤ To ≤ Tc)}.

3.2 Prefetching Scheme

The result of the NN query is changed if the client moves. Thus, the client has
to tune its broadcast channel every time it moves. Data prefetching has been
proposed as a technique for hiding the access latency of data item that defeat
caching strategies. In this section, we present a prefetching method for use in
LDIS. In this method, the client prefetches the data object for future use. Let wp

be the size of prefetched data objects. The client adjusts the size of wp according
to the speed and size of the cache. Moreover, in order to adjust the value of k
based on the k-nearest objects, the proposed scheme simply adjust the size of
wp. Let client’s current location be point q and object’s location be point p. And
we denote the Euclidian distance between the two points p and q by dist(p, q).
In the map, we have dist(p, q) :=

√
(px − qx)2 + (py − qy)2.

Let P := {p−n . . . , p−2, p−1, p0, p1, p2 . . . , pn} be a set of n distinct points
that represent the data objects, and q represents a query point.

Notations :

– w, n ≥ 0 and (w − n) ≥ 0
– target= an object p0, where p0
= pn and {p−n, p0, pn} ∈ P then dist(p0, q) ≤

dist(∀p−n, q) or dist(p0, q) ≤ dist(∀pn, q)
– pmin = an object p−w, where dist(p−(w−n), q) ≤ dist(p−w, q) ≤ dist(p−(w+n),

q)

An Efficient Data Dissemination Schemes 101

– pmax = an object pw, where dist(pw−n, q) ≤ dist(pw, q) ≤ dist(pw+n, q)

A query can be categorized as the nearest or the k-nearest based on the
number of returned objects. The number of returned objects depends on the
value of wp. If we regard the value of wp as n, the number of returned objects
is 2n + 1. Hence, wp= set of 2n + 1 points. In order to adjust the value of k of
the k-nearest objects, the proposed scheme simply adjusts the size of wp. The
formal description of the algorithm used for prefetching at the client side is as
follows:

Algorithm 2. Client Algorithm for Data Prefetching

while (a client looking for the nearest object) {
active mode (listen to the broadcast channel)
if (desired data comes from the server) { // use algorithm 1

then current broadcast data object= p0(target object)
and prefetch a data object from pmin to pmax

} else
wait until the desired data comes from the server

}
doze mode

4 Performance Evaluation

In this paper, we evaluate the performance with various kinds of parameters set-
tings such as the client’s speed and the distributions of the data objects. Then,
we compare the performance of the BBS scheme and the R-Tree index scheme.
We assume that the broadcast data objects are static such as restaurants, hos-
pitals, and hotels. We use a system model similar to that in [3, 5]. In this paper,
two datasets are used in the experiments (see Fig. 2(a)). The first data set D1
contains data objects randomly distributed in a square Euclidian space. The sec-
ond data set D2 contains the data objects of hospitals in the Southern California
area, which is extracted from the data set at [8]. Table 1 shows the notations
and default parameter settings used in the simulation.

4.1 Latency

In this section, we present the Object Boundary Circle (OBC) which represents
the distance between the objects as shown in Fig. 2(b). The radius of circle
represents a distance between objects. And a circle which has the longest radius
is selected as a hot data object such as c and d in Fig. 2(b). The server broadcasts
data objects with different frequency such as hot and cold data objects [4].

Effect of the Client’s Speed. In this section, we study the effect of the client
speed. First, we vary the client’s speed from 5 to 50 in D1. When the client’s

102 K. Park, M. Song, and C.-S. Hwang

Table 1. Simulation Parameters

Parameter Description Setting
ServiceArea Service area 1000(km)*1000(km)

GroupServiceArea % of service area 30-100
NoObj No. data objects 10-1000
SizeObj Size of data object 256 bytes - 8192 bytes

BroadBand Broadcast bandwidth 144kbps
No Client No. of clients 0-90
MinSpeed Minimum moving speed of the client 10
MaxSpeed Maximum moving speed of the client 90
size Wq size of Wq 0-5
size Wp size of Wp 0-5

NoPeriod No. of broadcast period 50-100
Size max OBC Size of max OBC longer than 900m

Fig. 2. Scope distributions and OBC

speed is the lowest, broadcast size of 10% (of the coverage area) is the best.
However, as the client’s speed increases, its performance is degraded in compar-
ison with that of others since the most of the client’s speed exceeds the service
coverage area as shown in Fig. 3(a). Second, we study the performance for dif-
ferent parameters such as min OBC, max OBC and uniform (see Fig. 2(b)) in
D2. In this experiment, we assume that the clients are uniformly distributed in
the map. Fig. 3(b) shows the result as the client speed increases from 5 to 50.
And Fig. 3(c) shows the result as the number of clients increased from 15 to 90.

Effect of the Distribution of Data Objects and the Clients’ location.
In this section, we study the effect of the distributions of the data objects and

An Efficient Data Dissemination Schemes 103

Fig. 3. Access latency

the clients’ location. First, we assume that the clients are crowded in a specific
region such as downtown. Those data objects which are located in such a region
are selected as hot data objects. In this experiment, we evaluate the performance
in relation to four different parameters as follows:

– uniform 100%: The server broadcasts data objects with the same frequency
and the service coverage area is the whole geographic area.

– hot 100%: The server broadcasts data objects with different frequencies such
as those corresponding to hot and cold data objects and the service coverage
area is the whole geographic area.

– uniform 50%: The server broadcasts data objects with the same frequency
and the service coverage area is set to 50% of the whole geographic area.

– hot 50%: The server broadcasts data objects with different frequencies such
as those corresponding to hot and cold data objects and the service coverage
area is set to 50% of the whole geographic area.

Fig. 3(d) shows the result as the number of client is increased from 15 to 90
in D1. As shown in figure, the hot 50% outperform compare to others as the
number of client increases. Second, we assume that the clients are uniformly
distributed in D2. Fig. 3(e) shows the result as the number of client increases
from 15 to 90. As shown in figure, in this case, the broadcast hot data object does
not affect the query response time since the clients are uniformly distributed in
the map. However, the size of the service area affect the query response time.

104 K. Park, M. Song, and C.-S. Hwang

Fig. 4. Compare the Performance of BBS Scheme and R-Tree Index

4.2 Comparison of the Performance of the BBS Scheme and the
R-Tree Index

In this section, we compare the BBS scheme with the R-Tree index. First, we
vary the size of the data item from 256 bytes to 8192 bytes in D1 and D2. In this
experiment, the server broadcast 506 data items periodically to the clients. In
D2, we also evaluate BBS with max OBC (see Fig. 2(b)). Since the clients do
not need to wait and tune an index segment if they have already identified the
nearest object, the BBS shows lower latency compare to the R-Tree index as the
data size increases as shown in Fig. 4(a). The BBS with max OBC outperform
the R-Tree index and BBS in D2 as shown in Fig. 4(b). Second, we vary the
number of clients from 50 to 300. As shown in Fig. 4(c) and Fig. 4(d), the BBS
shows lower latency compare to R-Tree index in D1 and the BBS with max OBC
shows the lowest latency compared to the R-Tree index and BBS in D2.

5 Conclusion

In this paper, we studied the broadcasting and prefetching schemes for LDIS.
For broadcasting in LDIS, we present the BBS and prefetching methods. The
BBS method attempts to reduce the access time for the client. Furthermore,
the proposed prefetching and OBC can also reduce the query response time and
tuning time respectively. We do not change the previous index schemes, such as
R-tree index [11] and D-tree index [12]. Rather, we sort the data objects based

An Efficient Data Dissemination Schemes 105

on their locations and the server broadcasts the data objects sequentially to the
mobile clients.

With the proposed schemes, the client can performs the k-NN query process-
ing while it moves without having to tune the broadcast channel, if the desired
data items have already been prefetched into the cache. Therefore, the client
can reduce its query response time and the battery power consumption. The
proposed schemes were investigated in relation to various environmental vari-
ables such as the distributions of the data objects, the average speed of the
client and the size of the service area. The experimental results show that the
proposed BBS scheme significantly reduces the access latency compared to the
R-tree index since the client does not always have to wait for an index segment.

In this paper, we are not consider the moving data objects in LDIS. Hence,
we are planning to extend this study to the case of a moving object database.

References

[1] Dik Lun Lee, Jianliang Xu, and Baihua Zheng, “Data Management in Location-
Dependent Information Services,” IEEE Pervasive Computing, 1(3), 2002.

[2] Jianliang Xu, Xueyan Tang, and Dik Lun Lee, “Performance Analysis of Location-
Dependent Cache Invalidation Schemes for Mobile Environments,” IEEE Trans.
Knowledge and Data Eng, 15(2), 2003.

[3] Baihua Zheng, Jianliang Xu, and Dik L. Lee, “Cache Invalidation and Replacement
Strategies for Location-Dependent Data in Mobile Environments,” IEEE Trans.
Comp., 51(10), 2002.

[4] Swarup Acharya and Michael Franklin, “Broadcast Disks: Data Management for
asymmetric communication environments,” In Proc. of SIGMOD, 1995.

[5] Daniel Barbara, “Sleepers and Workaholics: Cashing Strategies in Mobile Envi-
ronments,” In Proc. of SIGMOD, 1994.

[6] T. Imielinski, S. Viswanathan, and B.R.Badrinath, “Data on Air: Organization
and Access,” IEEE Trans. Knowledge and Data Eng, 9(3), 1997.

[7] T. Imielinski, S. Viswanathan, and B.R.Badrinath, “Energy efficient indexing on
air,” In Proc. of SIGMOD, 1994.

[8] Spatial Datasets, http://dias.cti.gr/~ytheod/research/datasets/spatial.
html.

[9] W.-C. Lee and D. L. Lee, “Using signature techniques for information filtering
in wireless and mobile environments,” Distributed and Parallel Databases, 4(3),
1996.

[10] Q. L. Hu, W.-C. Lee, and D. L. Lee, “A hybrid index technique for power efficient
data broadcast,” Distributed and Parallel Databases, 9(2), 2001.

[11] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” In Proc.
of SIGMOD, 1984.

[12] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee, “Energy Efficient Index for Querying
Location-Dependent Data in Mobile Broadcast Environments,” In Proc. of ICDE,
2003.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 106–116, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Publish / Subscribe Based Architecture of an Alert
Server to Support Prioritized and Persistent Alerts1

Sharma Chakravarthy and Nishant Vontella

Computer Science and Engineering Department and Information Technology Laboratory,
The University of Texas at Arlington, Arlington, TX 76019-0015

sharma@cse.uta.edu

Abstract. This paper discusses the design and development of a
publish/subscribe based distributed alert server whose requirements include:
priority-based delivery, persistence, recovery, time-to-live and various other
features. The approach described in this paper provides a lightweight
implementation that is general-purpose and can be used for a number of
applications. A new efficient sweeping algorithm is used to make sure alerts are
delivered correctly and satisfy several requirements such as priority, sending
existing alerts to new subscribers, and regular expression based subscription.

1 Introduction

Enterprise messaging products (or as they are sometimes called, Message Oriented
Middleware products or MOM) [4] are becoming an essential component for
integrating intra-company operations. They allow separate business components to be
combined into a reliable, yet flexible, system. In addition to the traditional MOM
vendors, several database vendors and a number of Internet related companies also
provide enterprise-messaging products. Message-oriented middleware (MOM) is a
client/server infrastructure that increases the interoperability, portability, and
flexibility of an application by allowing the application to be distributed over multiple
heterogeneous platforms.

This paper discusses the design and implementation of one such messaging system
called the Alert Server. Alert Server is a general-purpose alert and acknowledgement
message queue and distribution mechanism. It maintains transaction logs for a
comprehensive audit trail of alerts, acknowledgements and receipts. At the alerts
server, the alerts are logged and queued and if necessary persisted. The Alerts Server
determines if there are any subscribers for this alert and if so, forwards it to the
destination. An alert producer could be a human operator who “fills in the blanks” of
an alert message through a GUI or other means. Alert producers can also be software
components that execute “under the hood”, invisible to human operators. An alert
producer assembles the alert in reaction to some system condition and then sends for
distribution. Alert consumers are those applications that are interested in receiving (a

1 This work was supported, in part, by the Office of Naval Research, the SPAWAR System

Center-San Diego & by the Rome Laboratory (grant F30602-02-2-0134), and by NSF (grant
IIS-0123730).

A Publish / Subscribe Based Architecture of an Alert Server 107

subset of) alerts. This is always accomplished via “registering” or “subscribing” for
alerts that contain a particular pattern in the alert destination or topic data element by
specifying a filter (in the form of a regular expression) during alert registration. This
Server has been designed to handle C/C++ as well as Java clients.

Alert Server Objectives: If our Alert Server provided a union of all the existing
features of messaging systems it would be much too complicated for its intended
users. It is crucial that the Alert Server includes appropriate functionality needed to
implement sophisticated enterprise applications. Our design and implementation of
the alert server attempts to minimize the set of concepts a programmer must learn to
use enterprise-messaging products. It strives to maximize portability. We start with
the concept of alert producers, consumers and distributors that act as servers.

Alert Clients: A client can be either a producer or a consumer or both. The alert
producer does not necessarily need to know who the receiver(s) of the message will
be. The producer “publishes/sends” the messages to the Alert Server which is
responsible for the distribution of messages. Alert Consumers are responsible for
processing and responding to the alert (message) by subscribing/registering through
the alert server.

Alert Server: Alert Server manages the alert and acknowledges messages,
distribution of alerts, and crash recovery. Important goals of an alert server are:

1. Implement a publish/subscribe model. This model has been chosen over the point-
to- point model because point-to-point (PTP) models are built around the concept
of message queues. Each message is addressed to a specific queue; clients extract
messages from the queue(s) established to hold their messages. Clients have to pull
the message from the server rather than the server pushing it to the client after
processing the messages. Publish and subscribe (Pub/Sub) clients send messages to
the alert server. Publishers and subscribers are generally anonymous and may
dynamically publish or subscribe to the alert server. The alert server pushes the
messages arriving from a node’s multiple publishers to its (multiple) subscribers.

2. Insure delivery of alerts before it expires (time-to-live) based on priority.
3. Dynamic delivery of alerts between multiple producers and consumers based on

their registration/subscription topics.
4. Persistence of alerts and acknowledges to handle to crash recovery of clients.
5. Maintain the privacy and integrity of the messages.

2 Design of the Alert Server

First, we describe the functionality to be supported by the Alert Server and then
describe how the Alert Server has been designed to achieve this functionality. The
Alert Server should provide API to send messages from one application to another.
The client applications should also be able to register and unregister topics of interest.
They should be able to cancel messages and should also be able to send
acknowledgements and/or receipts. Besides, the Alert Server should have a delivery

S. Chakravarthy and N. Vontella 108

logic in order to send, and if necessary persist, messages to different destinations on
the basis of their priority. Finally, the alert server should be able to recover from
crashes. The next section describes the types of messages handled by the alert server.

Alert: An alert message contains an alert header as well as an optional alert body. All
messages support the same set of header fields. Header fields contain values used by
both clients and the Alert Server to identify and route messages. Body, on the other
hand, can be any Java Object for Java-based clients and an arbitrary string for C/C++
clients. A header of the alert message has the following data elements.

1. Destination: The destination field in the data element is the “topic” and
synonymous to, for example, a message “topic” or an email “subject”. It is the
value in this field the alert consumers register or unregister by specifying a
pattern in the registration request. The value of this field must begin with one of 3
prefixes (with colon included and all the letters capitalized) TAG:, PROFILE:,
USER:

2. Alert Type: This field in the header identifies the message type. There are
basically two types of alerts, alert itself and an acknowledgement for the alert.

3. Duration: Duration data element in the header helps in identifying the messages
that have expired. Alerts or acknowledgements will remain active and available
for distribution from the Alert Server according to its time-to-live indicator. Once
the alert server receives and forwards the message to any registered recipients, it
will remain in the Server’s queue for the specific duration. The Server deletes the
expired messages. Indefinite storage of messages in the queues is handled by
setting this data field to zero. These alerts should be explicitly cancelled by the
original producer or by any client.

4. Priority: This field in the header helps in priority based delivery of messages.
The priority levels are 0-9, where 0 is designated as the lowest and 9 as the
highest priority. Messages having the same priority are delivered in the order
they arrive.

5. Classification: This part of header information allows application specific
classification. Unclassified, Confidential, Secret and Top Secret are used.

6. Persistence: The producer designates messages as persistent, by setting this field
in the header. The Alerts Server stores persistent messages so that they are
reloaded in case of restart after recovery from a crash.

7. Acknowledge Policy: This field ensures the delivery of messages to the
destination. An alert can have one of the three acknowledgement policies attached
to it: None, Client Acknowledgement, and Receipt. A client acknowledgement
requires the receiving client to generate an acknowledgement alert where as a
client receipt is automatically constructed and submitted to the server after the
client is notified of an incoming alert. Client receipts are not stored as clients
make blocking calls when they send alerts that require receipts.

8. Cancel Policy: This field helps in the cancellation of alerts that persist indefinitely
on the server. An alert can be cancelled (i.e., deleted) from the queue on the
server by any client if the Cancel Policy field is set to ANY, or only by the
producer of the alert if it is set to the ORIGINATOR.

109

9. Alert ID: Alert ID is a unique integer that is generated by the alert server to
identify a particular alert or acknowledgment.

10. Body: The alert body is any JAVA object that can be sent with the message while
it is a character string in the case of C/C++ alert producers. The body in the case
of acknowledgement is a string “ACK”.

Subscription/Registration: As explained above every alert contains a destination
header field, the value of which starts with one of the prefixes: For example: TAG:
Alert, PROFILE: watch officer, USER: Smith. The TAG: prefix helps alert
consumers to subscribe to receive specific alerts by specifying a filtering mechanism
that employs regular expression masks. For example: .* specifies all alerts. ABC
specifies all alerts where destination contains the string ABC. ^A specifies all alerts
where destination begins with A. X$ specifies all alerts where destination ends with
X. PROFILE: prefix helps alert consumers to subscribe to any message that belong to
a specific profile. The USER: prefix as the name indicates helps in subscribing to a
message to a particular user.

When the Alert Server processes an incoming alert, it places the filtering mask
that the consumers subscribed upon the pattern contained in the alert’s destination.
For example, if there is a consumer subscribed to a filter of “TAG:Alert” and an alert
with the destination “TAG:AlertXYZ” comes in, then the subscription “TAG:Alert” is
matches against the topic or destination “TAG:AlertXYZ” because the regular
expression mask of “TAG: alert” placed against the topic “TAG: alertXYZ” matches
true (“TAG: alert is a sub string of “TAG:AlertXYZ”). In the case of the other
prefixes, the matching is performed by string comparing the subscription filter with
the destination in the alert header. Consumer clients have the option to subscribe to
multiple topics using separators. Multiple topics with the same prefix are submitted
by separating with commas, for example, TAG:a, b, c will produce three
subscriptions; TAG:a, TAG:b, and TAG:c. Similarly, multiple topics with multiple
prefixes are submitted using a semicolon to separate prefixes, for example, TAG:a,
b;USER:a, b will produce four subscriptions, TAG:a, TAG:b, USER:a, USER:b. The
next section discusses the alert server architecture. It tries to explain the reasons for
different decisions taken for designing the architecture.

3 Alert Server Architecture

Most messaging products support either point-to-point (PTP) or the publish/subscribe
approach to messaging. PTP is useful when the message needs to be processed
successfully by one consumer. As one of the objective of Alert Server is the delivery
of messages to multiple clients, it implements a publish-subscribe model. In a
publish/subscribe (pub/sub) product or application, clients address messages to atopic.
Publishers and subscribers are generally anonymous and may dynamically publish or
subscribe to the content hierarchy. The system takes care of distributing the messages
arriving from a topic’s multiple publishers to its multiple subscribers.

The Alert Server uses this messaging model as it has to delivery messages to zero,
one or many consumers that are anonymous. This timing dependency is relaxed by

A Publish / Subscribe Based Architecture of an Alert Server

S. Chakravarthy and N. Vontella 110

allowing the producers to create persistent alerts. Persistent alerts can be received
even when the subscribers are not active. Thus, persistent alerts provide the durability
and reliability provided by the queues and still allows clients to send alerts to many
consumers.

Message Consumption: Messages can be consumed in either of the two ways.

• Synchronously: A subscriber or a receiver explicitly fetches the message from the
destination by calling a method. The method can block until a message arrives, or
it can time out if a message does not arrive within a specified time limit.

• Asynchronously: A subscriber need not wait for the delivery of the message. Whenever
the message arrives, the server forwards it to the consumers that have registered for that
message. The consumers do not have to wait for the delivery of the message.

Message Delivery Mode: The producers send alerts to the Alert Server in two modes.
As already explained the producers can set the delivery mode of the message in the
persistent header field.

• The NON-PERSISTENT mode is the lowest-overhead delivery mode because it
does not require that the message be logged to stable storage. Alert Server failure
can cause a NON-PERSISTENT message to be lost.

• The PERSISTENT mode instructs the Alert Server to take extra care to insure the
message is not lost in transit due to its failure. Its logs the alerts and helps in
retrieving them during normal start ups as well as in the case of recovery after
crashing. The data structures used in the fast retrieval of alerts is explained in the
next section.

Logging and Retrieval of Alerts: The persistent mode delivery of the alerts causes
them to be stored to a stable storage (disk). The alerts are stored in files depending on
their priority. There is a file for each level of priority. Each file contains the following:

1. Index Table: The index table is a data structure stored in the log file for fast
retrieval of alerts. Each log file has its own index table to store and retrieve the
alerts belonging to its priority. The index table reduces the search time and thus
helps in the fast retrieval of alerts. The index table and the alerts are stored in a
serialized manner. The table has records that hold the information of the location
of the alert in the log. Each record has a log sequence number (LSN), pointer to
the position of storage of the alert in the file (fp), size of the alert (size) and a
cancel bit. The log sequence number helps in indexing into the table and obtains
the record that has information regarding the storage of alert. The record has file
pointer that points to the alert in the file and the size of the file.

2. BLSN: BLSN in each file is an integer stored in each log along with the index
table. BLSN is set to the ID of the alert that has recently been added to the priority
queue. There is a BLSN for each priority queue in its corresponding log.

3. DLSN: DLSN, like BLSN, is also an integer stored in each log for corresponding
priority queue. DLSN, unlike BLSN, is set to the ID of the alert that has been
recently sent from the priority queue.

4. CANCEL BIT: The cancel bit indicates whether the alert has been cancelled or not.

111

5. Both DLSN and BLSN help in the retrieval of NON-PERSISTENT alerts in case
of crash of the Alert Server. Instead of reading all the non-persistent alerts from
the log when the server recovers, only those alerts whose IDs fall between BLSN
and DLSN are read from the log and put into the priority queue, thus reducing the
number of alerts read from the logs. The serialized log files always contain
capacity of the index table at beginning followed by BLSN after 4L bytes. DLSN
is at 8L bytes followed by index table with its records at 12L bytes, followed by
storage of actual alerts from 20L bytes in each file. An example log file for one of
the priority levels is shown in Fig. 1.

1. Capacity of the log (0L)
2. BLSN (4L)
3. DLSN (8L)
4. Index Table (12L)

Alert with ID 1 Alert with ID 3

LSN fp Size

1 20L 24L

3 45L 27L

Fig. 1. Contents of a log file. LSN is the log sequence number, fp is the file position and size is
the size of the object

The alerts, after storing in the log, are sent to the queue for distribution to the
consumers who have subscribed to their topics. As acknowledgements are alerts with
just the correlation ID set to that of their alert, they are handled as if they are alerts.

3.1 Subscription and Unsubscription for Alerts and Acknowledgement

Consumers that have subscribed for specific alerts or acknowledgements are stored in
hash tables. There are three primary hash tables one for each prefix TAG, USER and
PROFILE. These hash tables have entries with alert type as key and another
secondary hash table as value. The secondary hash table has keys for each topic,
pointing to the consumer list as their values. This list contains consumer nodes that
hold information regarding different consumers registered with the Alert Server. Each
node in the list has unique ID. Apart from this, the list also contains information
regarding the number of consumers added and number of consumers deleted. For each
consumer added to the list, this attribute of the list increases by one while each
deletion decrements the other attribute by one. These attributes help in reducing the
sweep time of the priority queue. This is explained later in detail. Every consumer list
in the secondary hash table has a unique ID.

All consumers registered for alerts are stored in one hash table while all consumers
are registered for ACKs are stored in another secondary hash table. Consumers for a
specific topic are store in the same consumer list in the secondary hash table. All
consumers for an alert are obtained by using the alert topic as the key in the secondary
hash table. Every new consumer registration causes that consumer object to be added to
the beginning of its respective list. The primary hash table at the top level is for
indexing purpose. This reduces the search time in finding the consumers registered for a
specific alert type (ALERT or an ACK). The second level hash table is used for

A Publish / Subscribe Based Architecture of an Alert Server

S. Chakravarthy and N. Vontella 112

determining the consumers for a specific topic. A hash table has been chosen for the
first level over other possibilities of array of lists as it would be easier to add more keys,
such as CLIENT RECEIPT if needed in the future. The unsubscription for alerts and
acknowledgements by a consumer results in the deletion of that consumer from the
consumer list preventing the Alert Server from distributing any messages further.

The data structure with the hash table and consumer lists is shown in Fig. 2. The
primary hash table contains topics as keys while the secondary hash table
distinguishes the consumers registered for alerts and acknowledgements.

Fig. 2. Hash tables that store the consumers that are registered with alert server for a topic. All
consumers registered for an alert are stored in ALT and those registered for an
acknowledgement are stored in ACK table. A, B, C are the topics and C1, C2, C3… are the
consumers

3.2 Queuing and Distribution of Alerts

The alerts are stored in the logs if needed depending on their delivery mode and later
put in the priority queue. There are ten queues one for each priority level. The data
structure used for the queues is an array of queues. The alert priority level is used for
indexing into the array and getting the queue at that index. Every new alert is always
added at the beginning of the queue. Therefore insertion of the alert always takes a
constant time. Queuing and distribution of alerts are two independent operations.
Therefore they are handled simultaneously using two different threads. The data
structures used and the algorithm for sweeping are explained below.

Queuing: Producers publish alerts independently of the distribution of alerts on the
Alert Server. Therefore they are queued for delivery by the Alert Server. The queuing
of alerts is simple. Whenever a new alert comes in, it is indexed into the queues array
using its priority and then put in the beginning of its queue. After putting the alert into
the queue, the BLSN of the log file depending on the alert priority level is updated
with the id of the alert. Thus the alerts put into the queue are now available for
distribution. The queue is swept in order to distribute the alerts. Similarly, when an
alert is cancelled, the alert is removed from the queue. The canceling of the alert
depends on its cancellation policy. The expired alerts are removed when the queue is
swept. The queue array with queues for each priority level are shown below in Fig. 3.
The priority of alert is used as an index into this array of queues that will reduce the
time in searching and adding an alert at its proper position.

Consumer List Secondary Hash Table
A

B

C ALT
ACK

C3 C2 C1

C2 C1

C6 C1

C1 C5 C4

C1 C2

Primary Hash Table

B

X

113

Fig. 3. Priority queue data structure. Each alert is stored in its respective priority level queue.
A1, A2… are alerts with their Ids that are stored in this data structure

Distribution: Alerts are distributed to their respective consumers by comparing their
topic with the topic in the consumer object that is created and stored in the consumer
list data structure when the consumer registers. The priority queues are swept and the
alerts are distributed. It is during this sweeping of the priority queue that the expired
alerts are purged. Since the goal of distribution is the delivery of alerts on the basis of
priority, the higher priority level alerts are delivered before the lower ones. Higher
priority numbers indicate higher priority. Alerts of the same priority are delivered on
LCFS (last come first served) basis since the new alerts are added at the beginning of
the queue. The way in which the queues are swept is discussed next.

Sweeping Algorithm: The algorithm makes use of the information held in the alert
and consumer objects. The alert object, apart from the header and body field, contains
a hash table that holds mapping between each consumer list and max ID of the
consumer in the list that it has been sent. This hash table contains the consumer list id
as the key and the highest consumer ID that received the alert as its value. This
information is necessary in trying to stop sending the message to consumers that have
already received it. This also reduces the time for sweeping the priority queues. As
already explained, each consumer object in the consumer list has unique ID in that list
and similarly every consumer list also has its ID. Consumer list ID serves as an index
to the hash table of the alert message which indicates that the alert has been sent up to
this consumer in the list and needs to be sent to all the consumers before this
consumer in the list. Since new consumers are always added at the beginning of the
list, the consumers are always in decreasing order of their ID. This information is
used to prevent from resending the same message to the same consumer more than
once. The sweeping algorithm guarantees the delivery of alerts in the order of their
priority. The algorithm takes a queue of the highest priority from the priority queue
data structure and then traverses the queue to send the alerts to the registered
consumers. There are two possibilities of changes to the priority queue and consumer
table data structures: either an alert has been added or deleted from the one of the
queue resulting in change of state of the priority queue data structure or some
consumers might have been added or deleted from the consumer list resulting in a
change in consumer table.

index
Priority Queue

A# - Alerts with their IDs

A4 A3 A1

A8 A2

A9

A10 A6 A5A7

9

8
7
6
5
4

2
3

1

A Publish / Subscribe Based Architecture of an Alert Server

S. Chakravarthy and N. Vontella 114

The algorithm executes in three phases. In the first phase the alert is checked for
expiration. Expired alerts are removed from the queue. This is checked by comparing
current system time with the sum of the time at which alert was received on the server
and the time-to-live data field in the alert header. If the sum is greater than the system
time then it is removed from the queue. Phase two consists of finding the consumer
list. Comparing the alert destination with the keys in the consumer hash tables does
this. This phase also filters out consumers that have been registered for alerts that may
be published in future. The consumer lists thus obtained are used further in phase
three. In the absence of consumer list the sweeping algorithm continues with the next
alert in the queue and applies the same three phases. During the third phase, hash
table in the alert is used to reduce the traversal of the consumer list. This also prevents
resending of alerts to the same consumers. The unsubscription of consumers is not of
much concern as they are simply deleted from the consumer list and there is no need
to worry about the delivery of the alerts to them. During the third phase, the max ID
of the consumer the alert had been sent to is obtained from the hash table in the alert
by using the consumer list id which serves as a key. If this is zero, it means we have a
new alert in the queue and the alert is sent to all the consumers in the list. If the ID of
the consumer retrieved is more than zero, then the alert has been sent to some
consumers and needs to be sent to the newly added ones.

Algorithm: Sweeping algorithm is shown in Fig. 4. Initially, queue Q with the
highest priority is sent to the algorithm. Let A0, A1, A2… be the alerts in the queue.

Fig. 4. Sweeping algorithm that sweeps through the priority queue

SweepingAlgorithm (Q) {
1. Acurrent = A0
2. while (Acurrent != null) begin
3. if (expired (Acurrent) = false)
4. findconsumerlist(Acurrent)
5. else
6. Q = Q - Acurrent
7. Acurrent = Anext
8. end of while

findconsumerlist (Acurrent)
1. ST = PT (alerttype [Acurrent])
2. if (prefix = TAG)
3. for each key in ST begin
4. if (matches (key, topic [Acurrent]))
5. list = ST [topic [Acurrent]]
6. sendtoOutputQueue (list, Acurrent)
7. end
8. else
9. list = ST[topic [Acurrent]]

10. sendtoOutputQueue (list, Acurrent)
sendtoOutputQueue (list, Acurrent)

1. if (list != null)
2. consrecv = get (HT[ID[list]] [Acurrent])
3. if (consrecv = 0)
4. send to all the consumers between added [list] and

deleted[list]
5. put (HT [Acurrent], added [list])
6. else
7. if (added [list] > consrecv) {
8. send to all consumers between added [list] and consrecv
9. put (HT [Acurrent], added [list])

115

Their subscripts indicate their positions. Alerts are added at the beginning of the
queue. Acurrent be the current alert that is being distributed in the queue and Anext be the
alert after the current alert. ST and PT are the secondary and primary hash tables that
store the information about the consumers registered. The descriptions of these data
structures have been described in earlier sections. HT is another hash table in each
alert. This stores the consumer ID that has recently received the alert in that consumer
list. All the lists that have the same topic that match the alert topic have an entry in
this table. X[Y] indicates an attribute X of an object Y. For example, topic [Acurrent]

3.3 Multithreading the Server

The Alert Server uses Java Remote Method Invocation [RMI][3] in its
communication interface. RMI calls are blocking therefore these calls need to be
handled asynchronously. Client requests are queued. Since each request is
independent and there is no guarantee that they will arrive within a certain time there
is a queue for each type of request and a different thread handles each different
request. Multithreading also helps in making the server scalable.

Fig. 5. Alert Server Architecture Overview

The clients put the messages in the queue and continue with their processing.
Since each queue has a thread listening on it, the thread is awakened when the queue
is not empty. The data structures handled by each thread are shown in Fig 5.. There
are other threads for handling other requests like canceling an alert, unsubscribing for
a topic. The threads shown in Fig 5. are the threads that handle registration for a topic,
publishing an alert and the delivery of alerts to different consumers. The publish

Publish handler Thread
RMI call

OutputHandlerThread

MessageHandlerThread

RegistrationHandlerThread

Notify Buffer
Producers

Consumer 2 Consumer 1

 Priority Queue
A4 A3 A1

A8 A2

A9

A10 A6 A5 A7

9
8
7
6
5
4

2
3

1

RMI Call

Register Buffer
Consumers

Output Buffer

Primary
Hash table

Secondary
Hash table

Consumer List

Smith
Brian

John
ALERT

ACK

C3 C2 C1

C2 C1

C6 C1

C1 C5 C4

C1C2
Robert

Brian

A Publish / Subscribe Based Architecture of an Alert Server

S. Chakravarthy and N. Vontella 116

handler listens on the notify buffer that holds the alerts that are published by different
clients. It places these alerts in the priority queue data structure on the basis of their
priorities. On the other hand, registration thread handles the registration in the
registration buffer independent of publishes. This thread constructs consumer nodes
that hold consumer information that is used while sending the alert to the respective
consumers by the output handler thread and places them in their respective consumer
lists in the secondary consumer hash table. The Message handler thread runs
sweeping algorithm on the priority queues and places the alert and its consumers in
the output queue. The output handler thread picks up these alerts and delivers them to
the consumers. This thread makes RMI calls to the clients to deliver the messages.

4 Conclusions

This paper proposes a novel sweeping algorithm for the requirements of the alert
server based on the pub/sub paradigm. A number of requirements had to be satisfied
for the real-world application that was given to us. The sweeping algorithm is
efficient and is amenable to multi-threaded implementation.

References

[1] Rao, B. R. “Making the Most of Middleware.” Data Communications International 24, 12
(September 1995): 89-96.

[2] The Common Object Request Broker: Architecture and Specification, Version 2.0.
Framingham, MA: OMG, 1996. <URL: http://www.omg.org/> (1996).

[3] The Remote Method Invocation Specification
[4] Vondrak, C., Message-Oriented Middleware. 1997.
[5] Object Management, G., {CORBAServices: Common Object Services Specification v1.0}.

1995: John Wiley \& Sons Inc. NJ.
[6] Schmidt, D.C. and S. Vinoski, The OMG Events Service. C++ Report. 1997.
[7] http://msdn.microsoft.com/library/en-us/cossdk/htm/pgservices_events_20rp.asp?frame=

true, COM+ Events Architecture. 2001.
[8] Scarlett, S., Monitoring the Behaviour of Distributed Systems, in Cambrigde University

Computer Laboratory. 1996, University of London: London.
[9] Dasari, R., Events And Rules For JAVA: Design And Implemenation Of A Seamless

Approach, MS thesis. 1999, University of Florida: Gainesville.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 117–126, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Nested Transaction Model for LDAP Transactions

Debmalya Biswas and K. Vidyasankar1

Dept. of Computer Science, Memorial University of Newfoundland,
St. John’s, NL, Canada A1B 3X5

{debmalya, vidya}@cs.mun.ca

Abstract. Lightweight Directory Access Protocol (LDAP) directories have re-
cently proliferated with the growth of distributed computing. They are being
used in a variety of network based applications to store information about not
only people and organizations but also network resources and policies. Given
the diversity of its applications and its frequent use in conjunction with transac-
tion aware applications (databases, application servers), there is a great demand
for LDAP servers to support transactions. In this paper we focus on LDAP
servers using a relational database to store the data. We propose a nested trans-
action model for implementing LDAP transactions. The proposed model not
only simplifies the LDAP to SQL translation but also imposes minimum re-
quirements on the underlying relational database platform. We also present a
locking based concurrency control protocol and recovery mechanism for LDAP
transactions.

1 Introduction

Lightweight Directory Access Protocol (LDAP) is a standard, extensible client-server
protocol for accessing and managing directory information. LDAP has been around
for quite some time now. LDAP version 3 was approved as an Internet standard [12]
in Dec 1997. During the last few years, LDAP’s popularity has grown by leaps and
bounds, which explains the large number of LDAP implementations available nowa-
days from companies like IBM, Oracle, Microsoft, Novell (to name just a few). When
well established companies come up with a new product, they try to reuse their already
developed products as much as possible. This was perhaps responsible, in part, for
starting the trend towards using a relational database for LDAP data storage. Till then,
given the hierarchical nature of LDAP data, B-tree packages were the popular choice
for storing the LDAP data. Whatever the business strategy might have been, a rela-
tional database has some proven advantages in its favor when it comes to data storage
(more details in Section 3). From an LDAP perspective, the main concerns regarding
the use of a relational database are 1) LDAP to SQL translation complexity and 2)
performance issues.

1 This research is supported in part by the Natural Sciences and Engineering Research Council

of Canada Individual Research Grant OGP0003182.

D. Biswas and K. Vidyasankar 118

Also, the frequent use of LDAP in transaction oriented applications has led to a
demand for LDAP implementations to support transactions. In this paper, we propose
a nested transaction model for LDAP implementations. Our model allows simplifica-
tion of the LDAP-SQL translation, places minimum requirements on the underlying
relational database platform, and allows exploiting the inherent benefits of a nested
transaction model to overcome the performance issues.

As such, the model allows loose coupling with the underlying relational database.
Any transaction model would not be complete without a concurrency control and
recovery mechanism. We present an optimized concurrency control and recovery
mechanism which can be used by the LDAP layer irrespective of the mechanisms
supported by the underlying relational database. We also show that the mechanisms
need not be more complex than that required for a single (flat) transaction model.

The rest of the paper is organized as follows. LDAP concepts are introduced in
section 2. Section 3 focuses on LDAP data storage. In section 4 we discuss the current
status of LDAP transactions as well as introduce our nested transaction model. In
sections 5 and 6, we discuss a concurrency control protocol and recovery mechanism,
respectively, for the proposed model. Section 7 concludes the paper.

2 LDAP Concepts and Operations

Readers already familiar with basic LDAP concepts can skip this section. The material
in this section is mainly from [9], some taken directly and some expanded. LDAP is a
lightweight implementation of the X.500 Directory Access Protocol (DAP), first pub-
lished in 1990. LDAP runs directly over TCP/IP as compared to X.500 which runs
over the OSI networking stack.

As evident from Fig. 1, LDAP data is hierarchical in nature. A brief description
about how information is stored in a directory is as follows:

� Entries: In a directory, each collection of information about an object is called an
entry. This object may be a person, a printer or some other shared resource, a de-
partment within a company, or even the company itself. To name it and to identify
its location in the directory hierarchy, each entry is assigned a unique distinguished
name (DN). The DN of an entry consists of the entry itself, known as the relative
distinguished name (RDN), and its parent entries, connected in ascending order,
from the entry itself up to the root (top) entry in the tree. Collectively, these entries
form a directory information tree (DIT). Fig. 1 represents a portion of a DIT be-
longing to the educational institute “mun”, designated by the entry dc (domain
component)=edu, dc=mun. The highlighted DN “uid= debmalya, ou (organiza-
tional unit)=computer science, ou=people, dc=mun, dc=edu” is an entry within the
DIT.

� Attributes: An entry consists of a set of attributes, each describing a unique feature
of the entry. An attribute consists of two components, an attribute type and one or,
sometimes, more values. Some attributes that the entry “uid=debmalya …” might
contain are: “dn: uid=debmalya, ou=computer science, ou=people, dc=mun,
dc=edu”, “objectClass: myPerson”, “uid (unique identifier): debmalya”, “cn
(common name): Debmalya”, “sn (surname): Biswas”, “givenname: Deb”, “dept:

A Nested Transaction Model for LDAP Transactions 119

Computer Science”, “email: debmalya@cs.mun.ca, debmalyabiswas@hotmail.com
(Multivalued attribute)”.

� Object Classes: An object class is a collection of attributes that is used to define an
entry. Some of these attributes are mandatory; others are optional. If, for example,
we assign the LDAP-defined object class organizationalPerson to the entry
“uid=debmalya …” we must include common name (cn) and surname (sn) as at-
tributes for the entry. Rules for the object class organizationalPerson also allow us
to include the attributes telephoneNumber, uid, and userPassword, but these are not
required, they are optional.

Basically, LDAP operations can be grouped into two categories:

� Query: search and compare. These operations are used to retrieve information from
the directory. The search function allows the user to specify the search criteria,
scope and the starting point. The starting point is called the base DN. The scope of
the search can be a single entry (base level), the children of an entry (one level), or
subtree search.

� Update: add, delete, and modify. Users can use these operations to update the con-
tents of the directory. The modify operation allows the user to update/add/delete
multiple attributes of an entry simultaneously.

Fig. 1. LDAP Directory Information Tree (DIT)

3 LDAP Data Storage

Considering the hierarchical nature of LDAP data, B-trees or hierarchical databases
would seem as ideal options for storing the LDAP data. Recently, however, there has
been a trend towards storing the LDAP data in relational databases. [1] discusses an
implementation of LDAP that uses DB2 as the data store and query engine to meet the
directory service requirements. The main reason behind the trend is that databases
provide inherent solutions for most of the problems associated with any data store

D. Biswas and K. Vidyasankar 120

such as handling large amounts of data, complex search and indexing facilities, and
resilience against failures.

Below we outline a scheme, followed in [1], which allows efficient storage of the
LDAP data into relational tables. Each LDAP entry is assigned a unique identifier
(EID) by the backing store.

� Attribute Tables. There is one attribute table per searchable attribute.
� Entry Table. The Entry table holds the information about an LDAP entry. This

table is used to obtain the EID of the entry and to support base and one level search
scope. In order to support one level search, the Entry table contains a field PEID,
which is the unique identifier of the parent LDAP entry in the naming hierarchy.
For example, the LDAP entry with DN “ou=computer science, ou=people,
dc=mun, dc=edu” is the parent of the entry having DN “uid=debmalya,
ou=computer science, ou=people, dc=mun, dc=edu”.

� The purpose of the Descendant table is to support the subtree search feature of
LDAP. For each entry that is an ancestor of one or more descendant entries in the
hierarchy (that is, an ancestor entry AEID), there is a tuple for each of the descen-
dents, at any level in the hierarchy.

For example, the rows corresponding to the LDAP entry having DN
“uid=debmalya, ou=computer science, ou=people, dc=mun, dc=edu” in some of the
tables would be as shown in Fig. 2. Fig. 2 assumes that the LDAP entries with RDN
“dc=edu”, “dc=mun”, “ou=people”, “ou=computer science” and “uid=debmalya” from
Fig. 1 have EIDs 1, 2, 3, 4 and 5 respectively. In Fig. 2, we have shown only the impor-
tant columns of the relational tables. [1] gives more details and justification regarding
the storage model. The rest of the paper is based on the above storage model.

Fig. 2. Relational Table representation

4 Nested Transaction Model

[2] is the proposed specification outlining how LDAP can be extended to support
transactions. However, [2] considers transactions from an interface point of view and

A Nested Transaction Model for LDAP Transactions 121

does not give details regarding how LDAP servers are supposed to implement it inter-
nally. Currently, ACID properties in LDAP are restricted to the update operations.
The LDAP implementation discussed in [1] maps each query or update operation to a
single SQL statement.

In order to understand how we can map LDAP transactions to a nested transaction
model, let us start by having a look at an LDAP query operation example.

Example 1. ldapsearch -LLL –b “dc=edu” “(&(cn=Debmalya)
(sn =Biswas))” cn sn email performs a subtree search at the “dc=edu”
level for all entries having cn and sn attributes equal to “Debmalya” and “Biswas
respectively. The cn, sn and email attribute values are displayed as output.

Basically, any LDAP query operation can be divided into the following steps:

1. Obtain the EIDs matching the search filter from the attribute tables.
2. Retrieve the EID corresponding to the base DN. The corresponding children EIDs

can also be retrieved simultaneously in case of a one-level search. Retrieve the cor-
responding descendent EIDs from the Descendent table (subtree search).

3. Perform an intersection of the EIDs retrieved in steps 1 and 2 to get the EIDs satis-
fying both the filter and search scope criteria.

4. Once the relevant EIDs have been obtained, retrieve the data from the Entry table.

As can be observed, steps 1 and 2 can be executed concurrently. However, step 4
can occur only after steps 1, 2 and 3 have completed. Although, Step 3 is not a trans-
action read/write step, it can be considered as a synchronizing step. For the purpose of
allowing some subtransactions to proceed simultaneously and some sequentially, we
use the concept of synchronous and asynchronous transaction invocation [7]. If a
subtransaction is invoked synchronously, none of its sibling subtransactions can be
invoked till the time it finishes. On the other hand, invoking a subtransaction asyn-
chronously allows sibling transactions to execute concurrently.

Now, let us have a look at an LDAP Update operation example:
Example 2. ldapmodify –f /details, assuming that the file /details has the

following contents: “dn: uid=debmalya, ou=computer science, ou=people, dc=mun,
dc=edu; changetype: modify; replace: email; email: debmalya_biswas@yahoo.com; add:
title; title: Student; delete: dept”. The above operation replaces the contents of
“uid=debmalya” entry’s email attribute with the value “debmalya_biswas@yahoo
.com”, adds a title of “Student” and removes the dept attribute.

Similar to query operations, an LDAP Update operation can be divided into the
following steps:

1. Retrieve the EID corresponding to the DN of the entry to be modified from the
Entry table. For an add (delete) operation, this step might involve accessing the En-
try table to check for duplicates (check if the entry to be deleted is a leaf entry).

2. Update the relevant attribute tables and/or Entry table and/or Descendent table.

Although, steps 1 and 2 need to be performed sequentially. Step 2 in itself pro-
vides sufficient scope for concurrency as can be seen from Fig 4.

As can be observed from Fig. 3 and 4, since each SQL statement deals with a sin-
gle relational table, LDAP to SQL translation is considerably simplified. Also, the
only expectation from the underlying relational database is that the execution of SQL

D. Biswas and K. Vidyasankar 122

statements should satisfy ACID properties. From an LDAP point of view, this allows
the LDAP layer to consider the SQL statements as atomic operations (similar to the
read/write operations of traditional transactions).

Fig. 3. Nested transaction representation of the Query operation given in Example 1

Fig. 4. Nested transaction representation of the modify operation given in Example 2

5 Concurrency Control for the Nested Transaction Model

In this section, we present a concurrency control protocol for the nested transaction
model discussed above. Before discussing the rules, we would like to review the lock-

A Nested Transaction Model for LDAP Transactions 123

ing rules proposed by Moss [3] for nested transactions. Moss’s concurrency control
protocol for nested transactions is based on the concept of upward inheritance of
locks. A transaction can acquire a lock on object O in some mode M. Doing that, it
holds the lock in mode M until its termination. Besides holding a lock, a transaction
can retain a lock in mode M. When a subtransaction commits, its parent transaction
inherits its locks and then retains them. If a transaction holds a lock, it has the right to
access the locked object (in the corresponding mode). However, the same is not true
for retained locks. A retained lock is only a place holder and indicates that transac-
tions outside the hierarchy of the retainer cannot acquire the lock, but that descendants
potentially can. As soon as a transaction becomes a retainer of a lock, it remains a
retainer for that lock until it terminates. The actual rules:

1. A transaction may hold a lock in write mode if no other transaction holds the lock
and all retainers of the lock are superiors of the requesting transaction.

2. A transaction may hold a lock in read mode if no other transaction holds the lock in
write mode and all retainers of the lock are superiors of the requesting transaction.

3. When a transaction aborts, all its locks (held and retained, of all modes) are simply
discarded.

4. When a transaction commits, all its locks (held and retained, of all modes) are
inherited by its parent (if any). This means that the parent retains each of the locks
(in the same mode, as the child held or retained them).

In our case, lock management can be simplified by considering:

1. Locks are held at the table level (Please note that table level locking is not a re-
quirement for our model, as such other more complex mechanisms such as tuple
level locking can used to achieve further concurrency. To keep the model simple
and easy to understand, table level locking is assumed for the rest of the paper).

2. A subtransaction can read/write relational table data provided any of its superiors
holds a lock on the table in the corresponding mode. This is different from a tradi-
tional environment, where the subtransaction itself would be required to hold a
lock of the appropriate type on the object to access it.

Given the above rules, it is sufficient if the subtransactions at level 1 hold locks.
There is no need for subtransactions at any other level to hold locks. This should not be
confused with downward inheritance of locks [4], as it is not required for the descendent
subtransactions to acquire locks in this case. The subtransactions at level 1 represent the
LDAP operations. As such, it is reasonable to assume that level 1 subtransactions know
the read/write sets of their children. This enables the subtransactions at level 1 to acquire
and hold locks on behalf of their descendent subtransactions. Level 0 transactions would
retain the locks held by level 1 subtransactions in the same mode on their commit.

For the correctness proof of the above concurrency control algorithm, please refer
to [13].

6 Recovery

Nested transaction recovery has been studied extensively in literature. [8] discusses
an undo/redo log based approach while [6] proposes an approach based on compen-

D. Biswas and K. Vidyasankar 124

sating operations. Undo/Redo based approaches are widely used for single-level
transaction recovery. However, compensation based approaches seem to be more
popular for nested transactions because of the nature of subtransaction commits
which are relative to their parent/ancestor transaction’s commit. In this section, we
propose a simple mechanism for recovery which uses the concepts of both
undo/redo and compensation.

The motivation for using compensation here can be explained in terms of the
model’s loose coupling with the underlying relational database platform. Since SQL
statements are the only interface with the database, there is no option but to execute a
compensating SQL statement if some update operation needs to be undone. Also,
since the effects of SQL Update/Insert/Delete statements become permanent upon
execution, there is no need for the LDAP recovery algorithm to redo transactions. We
associate LDAP recovery with two components: LDAP Recovery Manager
(LDAP_RM) and LDAP log (LDAP_log). LDAP_RM is responsible for executing the
transaction operations like Begin, Commit/Abort, Read/Write and also acts as the
LDAP interface with the database. Although, we use the terms Read/Write as transac-
tion operations, in reality they would be SELECT, UPDATE, INSERT or DELETE
SQL statements as shown in Fig. 3 and 4. We also assume that all LDAP_log entries
are written to stable storage. LDAP_RM and LDAP_log should not be confused with
the Recovery Manager and log maintained by the underlying relational database for its
own recovery purposes. As such, we consider recovery from an LDAP, and not a
relational database, point of view. The algorithm below outlines the LDAP_RM steps
for each of the operations discussed above.

Undo/No-Redo LDAP Recovery algorithm

� RM-Begin (Ti, PTi) /* Applies to both transactions and subtransactions. PTi is
the identifier of Ti’s parent transaction or subtransaction. As such, would be blank
if Ti is a top level transaction */

 Append [Begin, Ti, PTi] to the LDAP_log; Acknowledge the processing of RM-
 Begin (Ti,PTi);
� RM-SQ-Select (Ti, SQS) /* SQS is the SELECT SQL statement */
 Execute the SELECT SQL statement SQS; Return the values read by executing the
 SQL statement;
� RM-SQ-Insert (Ti, SQI) /* SQI is the INSERT SQL statement */
 Add Ti to the active list, if it’s not already there; /* SQCI is the compensating SQL
 for SQI */ Append [Ti, SQCI] to the LDAP_log; Execute the INSERT SQL stat-
 ement SQI; Acknowledge the processing of RM-SQ-Insert (Ti, SQI);
� RM-SQ-Delete (Ti, SQD) /* SQD is the DELETE SQL statement */
 Add Ti to the active list, if it’s not already there; /* Get the values required to form
 the compensating SQL statement */ Execute the Select SQL statement correspond-
 ing to SQD; /* SQCD is the compensating SQL for SQD */ Append [Ti, SQCD] to
 LDAP_log; Execute the DELETE SQL statement SQD; Acknowledge the process-
 ing of RM-SQ-Delete (Ti, SQD);
� RM-SQ-Update (Ti, SQU) /* SQU is the UPDATE SQL statement */
 Add Ti to the active list, if it’s not already there; /* SQCU is the compensating
 SQL for SQU */ Append [Ti, SQCU] to LDAP_log; Execute the Update SQL stat-
 ement SQU; Acknowledge the processing of RM-SQ-Update (Ti, SQU);

A Nested Transaction Model for LDAP Transactions 125

� RM-Commit(Ti) /* Top level transaction commit */
 Add Ti to the commit list; Acknowledge the commitment of Ti; Delete Ti from the
 active list;
� RM-SubCommit(Ti,PTi) /* Subtransaction commit */
 Append [Commit, Ti, PTi] to the LDAP_log; Add Ti to the commit list; Acknow-
 ledge the commitment of Ti; Delete Ti from the active list;
� RM-Abort(Ti) /* Applies to both transactions and subtransactions */
 Construct a list L of the transactions to be aborted including Ti; Start processing
 the LDAP_log backwards till [Begin, Ti, PTi] is encountered {For each LDAP_log
 entry [Tj, SQC_], if L contains Tj, do /* _ may be U/I/D */ {Execute the SQL stat-
 ement SQC_. /* Undo */}} If any transactions in L are in the commit list, remove
 them from the commit list; Add all transactions in L to the abort list; Acknowledge
 the abortion of Ti; Delete Ti from the active list;
� System Restart
 Start with the last entry in the LDAP_log and scan backwards. Repeat the follow-
 ing steps until there are no more LDAP_log entries to examine {For each
 LDAP_log entry [Ti, SQC_], if Ti does not belong to the Commit list, then execute
 the SQL statement SQC_; For each LDAP_log entry [Commit, Ti, PTi], if PTi
 does not belong to the commit list, then remove Ti from the commit list;} For each
 Ti in the commit list, if Ti is in the active list, remove it from there; Acknowledge
 the completion of Restart;

Some comments regarding the algorithm are as follows:

� The algorithm maintains three lists stored as part of the LDAP_log. The lists
active, commit, abort contain the identifiers of the set of transactions that are ac-
tive, committed or aborted (respectively). Appending [Begin, Ti, PTi] to the
LDAP_log is required for the RM-Abort (Ti) procedure. Also, appending
LDAP_log entries of the type [Commit, Ti, PTi] is required for the System Re-
start procedure.

� Regarding Step 2 of RM-SQ-Delete (Ti, SQD), the step is required for creating the
compensating SQL statement for the Delete SQL statement. Some examples of
compensating statements are as follows:
Original: Insert into title values (‘5’,’Student’);
Compensating: Delete from title where EID=’5’;
Original: Delete from email where EID=’5’;
Compensating: Insert into email values (‘5’, ‘debmalya@cs.mun.ca’); Insert into
email values (‘5’, ‘debmalyabiswas@hotmail.com’);
Original: Update Entry set EntryData=’title:student…’ where EID=’5’ and En-
tryData= ’Old EntryData’;
Compensating: Update Entry set EntryData=’Old EntryData’ where EID=’5’;

� Techniques like checkpointing can be used to restrict the number of LDAP_log
entries to be examined during restart.

For the correctness proof of the recovery algorithm, please refer to [13].

D. Biswas and K. Vidyasankar 126

7 Conclusion and Summary

We started by having a look at LDAP in general and current LDAP implementations.
Then we looked at a nested transaction model for implementing LDAP transactions.
We have not considered the authentication part of LDAP operations. However, con-
sidering the fact that the access control attributes would be stored in attributes tables,
authentication can be easily incorporated into the model. We showed how the nested
transaction model simplifies LDAP-SQL translation. We then discussed how we can
use the semantics of LDAP operations to achieve concurrency comparable to non
serializable concurrency control protocols (snapshot isolation provided by Oracle).
Since, we use a locking based protocol the possibility of deadlocks cannot be ruled
out. However, deadlocks do not require any special consideration here. As such, any
of the standard deadlock prevention or elimination methods can be used to overcome
them. Finally, we presented a simple recovery algorithm for the proposed model. The
algorithm considers recovery from an LDAP perspective and is independent of the
recovery mechanism used by the underlying database.

References

[1] B. Shi, E. Stokes, D. Byrne, C. F. Corn, D. Bachmann, and T. Jones. An enterprise direc-
tory solution with DB2. http://www.research.ibm.com/journal/sj/392/ shi.html.

[2] Kurt D. Zeilenga. Internet Draft: LDAP Transactions. https://www1.ietf.org/internet-
drafts/draft-zeilenga-ldap-txn-06.txt.

[3] Moss, T.E.B. Nested Transactions: An Approach to Reliable Distributed Computing.
Ph.D. Thesis, MIT Laboratory for Computer Science, 1981.

[4] Theo Härder, Kurt Rothermel. Concurrency control issues in nested transactions. The
VLDB Journal, v.2 n.1, p.39-74, January 1993.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[6] Lomet D. MLR: a recovery method for multi-level systems. ACM SIGMOD Record 21:
185-194, 1992.

[7] Theo Härder, Kurt Rothermel. Concepts for transaction recovery in nested transactions.
In Proceedings of ACM-SIGMOD 1987, pages 239-- 248.

[8] Moss, J.E.B. Log-Based Recovery for Nested Transactions. Proc. 13th VLDB Confer-
ence, 1987.

[9] Oracle9i Directory Service Integration and Deployment Guide. http://tahiti. ora-
cle.com/pls/db901/db901.to_pdf?partno=a90153&remark=docindex.

[10] Understanding locking in SQL Server. http://msdn.microsoft.com/library/en-us/acdata/
ac_8_con_7a_7xde.asp.

[11] How Oracle processes SQL statements. http://www.cise.ufl.edu/help/database/oracle-
docs/appdev.920/a96590/adg08sql.htm.

[12] Lightweight Directory Access Protocol (v3). http://www.ietf.org/rfc/rfc2251.txt.
[13] Debmalya Biswas, K. Vidyasankar. A nested transaction model for LDAP transactions.

Tech. Report, Memorial University of Newfoundland, Canada, 2004.

Team Transaction: A New Transaction Model
for Mobile Ad Hoc Networks

Ankur Gupta1, Nitin Gupta1, R K Ghosh1, and M M Gore2,�

1 Department of Computer Science and Engineering,
Indian Institute of Technology, Kanpur-208016, India

rkg@cse.iitk.ac.in
2 Department of Computer Science and Engineering,

Motilal Nehru National Institute of Technology, Allahabad-211004, India
mmgore@ieee.org

Abstract. In this paper, we propose a new transaction model, named as
Team Transaction for distributed, cooperative computing on mobile ad
hoc networks. The proposed model captures the mobility and distributive
properties inherently found in a vigorous team activity as in a game of
soccer and also has an efficient recovery mechanism to cope up with the
failures of mobile nodes.

1 Introduction

A widely accepted architectural model that supports mobile computing consists
of two different types of hosts or computing nodes, namely, fixed hosts, and mo-
bile hosts. A fixed host is a computer on the fixed network. It can communicate
with a mobile host only through a Mobile Support System (MSS). An MSS is
equipped with a wireless interface and services all mobile hosts within its wire-
less range – a predefined area known as cell. A cellular architecture based mobile
computing support systems can not be deployed rapidly. On the other hand ad
hoc networks are infrastructure-less wireless networks. Hence, an ad hoc network
can be easily deployed where an infrastructure is not desired or is infeasible. In
such networks, a transaction model needs to be formulated that addresses issues
unique to both ad hoc and wireless networks. Conventional transaction models
do not perform well in wireless environments [1].

In this paper, we propose a new transaction model for distributed, cooper-
ative computing on mobile ad hoc networks. The proposed model captures the
mobility and distributive properties inherently found in a vigorous team activity
as in a game of soccer and also has an efficient recovery mechanism to cope
with the failures of mobile nodes. We present this new transaction model called
Team Transaction proposed initially for cellular environments in [2], [3]. A for-
mal description of team transaction model is available in [3], using ACTA [5]

� Partially supported by Ministry of Human Resource Development Government of
India sponsored project on Extended Transaction Processing.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 127–134, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

. . . .

128 A. Gupta et al.

formalism. Here we extend these to mobile ad hoc networks. The rest of the
paper is organized into 6 sections. Section 2 gives an overview of the model,
Section 3 presents the system architecture for the model. Section 4 deals with
the recovery aspect. Section 5 provides some applications where the model can
be used, and finally, Section 6 presents the conclusions.

2 Team Transaction

A team transaction consists of several mobile nodes working in a cooperative
fashion. There are certain objectives that motivated us to think of a new trans-
action model for the ad hoc mobile computing environment namel, Transactions
should be long-lived, transaction should allow distributed and cooperative com-
puting, and transaction should not fail in case one or more nodes die.

At the top level, a Team Transaction consists of three entities namely Coordi-
nator, Players, and Data Access Agent (DAA)1. The coordinator is the captain
of the team. It is responsible for coordinating the operations of a team transac-
tion. A player is a sub-transaction spawned by the coordinator and it does the
job assigned to it by the coordinator.

player n

player 2

player 1

DAA

coordinator

CLUSTER

Fig. 1. A Cluster

DAA performs following three tasks:

1. Provides the database access to the coordinator.
2. Creates necessary transaction logs which may be used for the recovery in the

event of the current coordinator’s death.
3. Delegates job of the current coordinator to another node in case the former

crashes.

A node that has been assigned the job of DAA would not normally be respon-
sible for any other work. This will ensure that DAA node conserves its energy
for its critical tasks.

The coordinator, all the players and the DAA forms a cluster as indicated by
the figure 1.

1 The notion of DAA also appears in [6].

Team Transaction: A New Transaction Model for Mobile Ad Hoc Networks 129

2.1 Team Transaction Working

Whenever the job at hand requires distributed computing, a node forks a team
transaction (tt) and becomes the coordinator of the transaction. The node also
appoints one of the mobile nodes as the DAA of the tt. The coordinator then
spawns players and assigns a part of the job to each player node. A player node
reports its results periodically to the coordinator. At the time of reporting, the
coordinator requests the DAA to make a log entry of the reported results. This
is important as the log will help in saving the state of the data objects, which in
turn will be helpful in appointing a new coordinator in event of the death of the
original coordinator. The players can only report their results to the coordinator
who reserves the right to accept or reject the results. No player is allowed to
write to the database.

In case a coordinator crashes, the DAA invokes appropriate recovery algo-
rithm to restore the work that was done by the deceased coordinator. It creates
a new coordinator and assigns the unfinished job of the old coordinator to the
new one.

A coordinator keeps track of its players. In case a player dies, the coordinator
simply assigns the job to some other player. Of course, it is possible to restore a
player also by logging its work periodically as is done for the recovery from death
of the coordinator. But logging players’ work puts pressure on the bandwidth,
which is generally low in case of a mobile scenario. The players periodically report
their result to coordinator and only at that point logging is done. Therefore, when
a player dies, only the work that has been done by the player between the time
of last report and the time of the crash is lost. One can safely assume that this
will not be substantial.

2.2 Generalized Team Transaction

The above transaction model can easily be generalized. If a player determines
that its work load is more; or the work that has been assigned to it requires

Cluster 1

Cluster 2

Cluster 3

Cluster 3

Cluster 4

for clusters 2
and 3for clusters

3 and 4

Cluster one
A

B C

D

E

F

G H I
J

DAA for

 DAA

 DAA

Fig. 2. Generalized Team Transaction

130 A. Gupta et al.

distributed computing, it can redistribute the assigned job by forming a new
team transaction. However, the coordinator of the cluster to which the player
belongs is not aware of the formation of such sub-clusters. Figure 2 provides a
picture of the cluster hierarchy. For the sake of brevity, in the rest of the paper
whenever we say team transaction we mean the generalized team transaction.

3 System Architecture

An axiomatic analysis of the model, found in [3], provides ample insight into
the design of system components of a transaction processing support system to
implement team transaction.

The underlying system consists of the modules namely, Log Manager (LM),
Transaction Manager (TM), Recovery Manager (RM), Communication Manager
(CM), and Module Interface Manager (MIM). Figure 3 illustrates the major
system components.

Log Manager: The local logs are maintained on all nodes which include all
operations performed by the node so far. In addition, a coordinator maintains
the log its own team. The team log includes the work done by the coordinator
and all the players. The local logs of the coordinator are periodically flushed on
to the stable storage of the DAA which stores the global log for one team or a
cluster. The logging at each node is managed by the LM. The LM is accessible
through interface provided by MIM. The TM works in close association with the
LM as each and every action of TM must be logged.

Transaction manager: It provides the basic primitives for transaction, report,
and spawn to the application. The TM must interact with the CM and the
LM as some significant events are considered to be complete semantically only
after some portion of the log has been transferred. For example, in the case
of report, the transfer of log is important. The transaction manager ensures

TM TM

TM

LM LM

LM

CM CM

CM

Player nnn

Coordinator Data Access Agent

MIM

MIM

MIM

RM

Log
Team

TM LM
CM

Player 1

MIM

Fig. 3. System architecture

Team Transaction: A New Transaction Model for Mobile Ad Hoc Networks 131

that the significant events like coordinator selection, failure, and others become
transparent to the application. The application simply invokes the primitives
provided by the TM and is unaware of the underlying data transfers, the selection
algorithms for the coordinator and the player in the case of failures. The TM
provides a primitive corresponding to each significant event. The application
can invoke appropriate primitives to perform the desired task. The invocation
of each of these is associated with a log entry.

Recovery Manager: It deals with recovery in case of crashes. It exists at the
special nodes called DAA. Since DAA possesses the team logs, DAA takes up
the responsibilities to recover a crashed coordinator of the team under it. The
recovery algorithm is inspired by ARIES [7] and based on [4]. The RM keeps
track of all the coordinators it is serving, and detects the crash, as soon as it
occurs. When a crash is detected, the RM first broadcasts a crash message to
all the concerned nodes. The log of the crashed node up to the last Log Flush
received from that node is read from the stable storage and processed.

Communication Manager: The CM is responsible for enabling the nodes to
communicate. It does so by sharing the two queues named as input queue and
output queue. The CM spawns two threads – input thread and output thread.
Each thread is tied with the queue named after it. One thread places an arriving
packet in the input queue, the other sends the packet at the front of output
queue to its destination. The MIM reads the arriving packets in FCFS manner
from the input queue. More precisely, the CM provides primitives that are used
for data transfer and communication.

Module Interface Manager: In order to run a team transaction, first MIM
has to be created at a node which in turn creates other entities. In case the node
is to act as a DAA, RM is also created. The MIM also provides the front end for
the node where a user can create new applications and launch a query as well as
view both incoming and outgoing messages. The front end of a DAA is slightly
different. The MIM creates two queues, namely, input queue and output queue.
These queues are used in conjunction with the CM for storing message packets
as explained earlier. The MIM starts a main thread called job allocator whose
main functions are:

1. Start a new application and assign a unique TTID to it.
2. Process all incoming packets and direct them to concerned system compo-

nents for further processing.

In the case of a DAA, the work of main thread differs in the sense that it can
not create a transaction or participate as a player to any transaction in a team.
In nutshell, the MIM provides a common interface for all system component to
talk to each other and cooperate to process a transaction and effect the recovery
of a transaction when needed.

132 A. Gupta et al.

4 Recovery Aspect

When the coordinator transaction crashes, the DAA invokes the Team Transac-
tion Recovery (TTR) algorithm to restore the state of the crashed transaction.
The TTR algorithm depends on the following.

– Write-ahead Logging (WAL).
– Accept of Report event and Work event is assumed to be complete only when

the corresponding log entry has been transferred to the stable cluster log.
– Commit of a player transaction is assumed complete only after log trail has

been transferred to stable cluster log with a log entry for Commit event.
– There is periodic log transfer from the coordinator to the stable cluster log.
– The player should report to the coordinator at regular intervals.

The TTR algorithm is based on [4] which was inspired by ARIES [7] recovery
algorithm. Our recovery algorithm performs the analysis phase and the redo
phase similar to [4] to restore the state of database objects. However, we do
not undo the effects of incomplete transactions. This is important as our aim is
restore the (partial) work that was not written to the database. After recovery,
the state of the database objects would be that at the time of crash; and it is not
necessary that it should be in a consistent state. A brief outline of the algorithm
is presented in next subsection.

4.1 Team Transaction Recovery

The recovery algorithm is as follows:

1. The log is first put through an analysis phase. It is scanned and a table
is created that gives information about all the player transactions of the
crashed coordinator with their statuses.

2. The table created in the first phase is used in the next phase, called redo
phase, to either reject the work done by the player subtransactions which
failed to commit due to abort of kill, or to determine the subtransactions
that were still active at the time of crash. In case of committed player trans-
actions, the updates are committed to the database items. The log is scanned
backwards updating the database items only by the last modified values.

3. A new coordinator is identified to complete the remaining part of the trans-
action.

4. The modified database items and the still-to-be-done operation set is as-
signed to the new coordinator. The new coordinator processes the unfinished
transaction job normally.

It is important to note that the state of database objects obtained after
stage 2 of the algorithm above may not be the same as the state of the DB
objects that would have been reflected by the database at the time of crash of
coordinator. This because the change of the state of DB objects made by player
transaction is not reflected in database. Only the root coordinator can write to

Team Transaction: A New Transaction Model for Mobile Ad Hoc Networks 133

the database. The cluster log helps in obtaining the recent most state of DB
objects. Of course, the state may not be a consistent state.

A prototype implementation of the team transaction model including the
recovery scheme for above system architecture is not included here due to lack
of space. The interested readers may find it in [8].

5 Applications

One of the most important applications where team transactions are particu-
larly useful are in military operations and relief work in disaster-hit areas. In
such applications, distributed tasks need to be done in a cooperative fashion.
The transaction may last for several days. The notable among some of the other
applications where team transactions can be used are in survey operations such
as demographic survey depicted by the picture in figure 4, conducted by a com-
pany/organization to obtain feedback from consumers/clients on its products.

The demographic survey illustrates how a generalized team transaction can
be used to conduct the operation. In a national demographic survey, the complete
head-counting procedure can be conducted as follows: at the national level there
can be a national coordinator (NC) who will be responsible for collating the data
reported by the state level coordinators (SLC). The SLC assigns each district
level coordinator (DLC) to collect demographic data of his/her district and re-
port back. The DLC, in turn, may subdivide the task and appoint field persons to
report the data for each locality in the district. In such a scenario, the NC and the
SLCs can form a team transaction. Similarly, the SLC and the DLCs can form an-
other team transaction. Note that NC is not concerned how the SLC divided the
work, and similarly the DLC and the field persons can form its own cluster. The

SLC

DLC

NC

NC : National Coordinator

SLC: State level coordinator

DLC: District level coordinator

FP: Field persom

FP

Cluster

Fig. 4. Demographic Survey example

134 A. Gupta et al.

figure 4 provides the picture of the transaction scenario which may be found to be
structurally identical to the organization of team transactions shown in figure 2.

6 Conclusion

The mobile computing paradigm has given rise to several issues unique to wireless
networks and mobility of computing devices. In a mobile environment, the long-
lived nature of transaction coupled with frequent disconnections and mobility
makes the reliability and availability of data key issues to be tackled by a trans-
action model. In this paper a new transaction model called team transaction has
been proposed to address these issues. It is based on the idea of mimicking the
team activity as witnessed in a soccer game with the goal of winning the game.
The paper also discusses logging and the recovery aspects to deal with crashes
and failures which can be particularly bothersome in case of long-lived trans-
actions. It outlines the system architecture implementing the new transaction
model. The model, therefore, is specially suitable for ad hoc network application
where long-lived nature of the mobile transaction is of critical importance.

References

1. D. Barbara. Mobile computing and databases - a survey. IEEE Transactions on
Knowledge And Data Engineering, 11(1):108–117, February 1999.

2. M. M. Gore and R. K. Ghosh. Contention-free Team Transaction Management
and Recovery on Mobile Networks with Ad Hoc Groupings. In Proceedings of the
4th International Conference on Information Technology (CIT-01), pages 31-36,
December 2001.

3. M. M. Gore. Extendible, Long-lived, Transaction Processing on Distributed and
Mobile Environments with Recovery Guarantees. PhD thesis, Dept of CSE, IIT-
Kanpur, INDIA, http://www.cse.iitk.ac.in/reports/, April 2002.

4. M. M. Gore and R. K. Ghosh. Recovery in Distributed Extended Long-
lived Transaction Models. Proceedings of Sixth International Conference on
Database Systems for Advanced Applications (DASFAA), pages 313-320, 1999,
http://citeseer.ist.psu.edu/gore99recovery.html

5. P. K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models
using acta. ACM Transactions on Database Systems, 19(3):450–491, September
1994.

6. M. H. Dunham, A. Helal, and S. Balakrishnan. A mobile transaction model that
captures both data and movement behavior. ACM-Baltzer Journal on Mobile Net-
works and Applications (MONET), 2:149–162, 1997.

7. C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transac-
tion recovery method supporting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database Systems, 17(1):94–162, March
1992.

8. S. Varshney. Implementation of a collaborative transaction processing system on
manet. Master’s thesis, Dept of CSE, IIT-Kanpur, May 2002.

An Efficient Protocol for Checkpoint-Based
Failure Recovery in Distributed Systems

D. Goswami and S. Sahu

Indian Institute of Technology Guwahati,
North Guwahati - 781039, India

Abstract. Synchronous checkpointing is an attractive approach as it
simplifies the process of failure recovery by storing a consistent global
checkpoint. Efforts have been made to minimize the number of synchro-
nizing messages and the number of checkpoints in such an approach.
Taking the checkpoint without blocking the underlying computation is
another important feature of the checkpointing process. In this paper, we
present a synchronous checkpointing algorithm which forces a minimum
number of nodes to take a checkpoint. Underlying computation needs to
be blocked partially and only in rare cases. The algorithm tolerates the
failure of an arbitrary number of nodes during the progress. Consistency
of the checkpoint is ensured during the checkpointing process and hence
no time needs to be spent during recovery.

1 Introduction

There are two main approaches for checkpointing in distributed systems – syn-
chronous and asynchronous. In a synchronous approach, a consistent global
snapshot of the system is maintained by going through an exchange of mes-
sages among the constituent nodes. Rollback recovery is then straightforward
since the nodes can be readily rolled back to the latest global checkpoint. In
asynchronous algorithms, each node takes a local checkpoint independent of the
other nodes in the system. As a result, it is at the time of the rollback that the
consistency of the global snapshot is scrutinized. As opposed to the synchronous
approach much effort needs to be expended for rollback since domino effect [1]
should also be taken care of. A good snapshot collection algorithm should be
nonintrusive and efficient. A nonintrusive algorithm does not force the nodes in
the system to freeze the computations during snapshot collection. An efficient
algorithm keeps the effort required for collecting a snapshot to a minimum. But
it is observed that a trade-off in both these issues has to be set since [2] proves
that minimality and non-intrusiveness cannot be maintained together.

The global state of a distributed system comprising of processes 〈p1 , p2 , ..., pn〉
at an instant t can be defined as the snapshot of events at each pi at t and the
state of the communication channels at t . The events in this context are the send
and receive of messages at pi. For a global state comprising of 〈C k

1 ,C k
2 , ...,C k

n 〉,
where Ck

i is the kth local snapshot at pi, to be consistent, a message m whose re-
ceive has been recorded at some Ck

i , then its send must also be recorded at some

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 135–144, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

136 D. Goswami and S. Sahu

Ck
j . A violation of this rule would result in an effect without a cause. However,

the reverse condition is acceptable in which the send has been recorded while
a receive m is yet to be recorded. Considering the state of the communication
channels, such a message can be accounted for as under transit.

In this paper, we propose a synchronous checkpointing-based rollback recov-
ery protocol. A minimum number of nodes are made to checkpoint and non-
intrusiveness is dealt with optimality. However, the algorithm does block the
underlying computation but the cases which force this to happen are very rare.

1.1 System Model

The system consists of N nodes and communication channels are assumed to be
FIFO in nature. Message propagation may take a finite but indefinite amount of
time. Reliable message delivery is assumed in the sense that no message loss is
assumed under normal circumstances. The nodes are fail-stop in nature. Under
the present configuration, there is a pre-designated node called the initiator,
whose role is central to the working of the algorithm. A number of message
types are involved in the system which include the following.

1. ckpt init Messages: The non-initiator nodes send these messages to the ini-
tiator on expiry of their checkpoint interval. Messages of this kind contain
the information pertaining to the sender node about the communication it
has had with other nodes till the time of this message being sent.

2. ckpt req Messages: The initiator sends these messages to the other nodes as
a request to take a checkpoint.

3. ckpt resp Messages: These are response messages sent by the participating
nodes to inform the initiator of the action taken in response to the ckpt req
messages described above.

4. ckpt comp Messages: As the name suggests, these are checkpoint completion
messages sent by the initiator to inform the other nodes that the current
instance of the algorithm has been successfully completed and the requisite
housekeeping operations be done by the receiver.
Any message exchanged as a part of the underlying computation will be

denoted as a computation message. Each node has logging facility where the
incoming messages can be held. The log is emptied at appropriate times as
dictated by the checkpointing protocol.

2 A Synchronous Checkpointing Protocol

This section presents a partially blocking synchronous checkpointing algorithm
for a given distributed system. Each node has the following data structures.

– mesg send[1..N]: An array of N integers used by each node to record the
number of messages it has sent to the other nodes. The jth element of this
array at node pi indicates the number of messages that pi has sent to pj

since the last checkpoint was taken.

An Efficient Protocol for Checkpoint-Based Failure Recovery 137

– mesg recv[1..N]: This is the receive counterpart of the mesg send array
above. The jth element of this array at node pi indicates the number of
messages that pi has received from pj since the last checkpoint was taken.

– ckpt num: An integer to indicate the number of checkpointing instances a
node has gone through. A copy of this is appended to every computation
message.

– received: A boolean field to mark whether the node had received a check-
point request ckpt req from the initiator. The role of this field is vital in
deciding whether an incoming computation message needs to be logged or
can be delivered safely.

– deliver: A boolean flag, it is used in combination with the received flag.
Using this flag a node determines whether a computation message received
from other nodes can be delivered immediately or not.

– ckpt time: A long integer which keeps the checkpoint time for the node.

The initiator, in addition, has the following:

– msg sys recv[1..N, 1..N]: An N × N boolean array. The ith N-Vector of
the array corresponds to the recv mesg array of process pi.

– dep graph[1..N]: This is a boolean vector of size N . The initiator con-
structs this array from the mesg recv arrays it had received in the ckpt init
messages from other nodes in the system. For a process pi if the ith field
in the array is set, it indicates that pi is participating in the checkpointing
instance.

– response[1..N]: A boolean vector of size N to mark whether ckpt resp mes-
sage had been received from all the participating nodes.

2.1 The Algorithm

The actions taken by the nodes during the progress of the algorithm are de-
scribed below.

Initiation: The individual non-initiator nodes on expiry of the checkpoint inter-
val, i.e when the time becomes greater than ckpt time, sends a ckpt init message
to the initiator. In this message, the node copies the mesg recv and resets the
receive flag to indicate that the checkpoint request message from the initiator
had not been received. Any computation messages which it now receives are
not delivered instantly but only after ascertaining certain conditions, as will be
discussed subsequently, are fulfilled.

The initiator on reception of the ckpt init message from process pi copies
the mesg recv array contained in the message to msg sys recv[i]. It waits until
ckpt init messages from all the nodes are received. Every node will eventually
send a ckpt init message. After receiving the ckpt init message from all the nodes,
the initiator constructs the dep graph array as explained below.

1. For every node pi, if mesg recv[i] at the initiator is not zero, dep graph[i] is
set.

2. For every i above, if msg sys recv[i][k] is non-zero dep graph[k] is set.

138 D. Goswami and S. Sahu

The dep graph array essentially contains system wide dependency informa-
tion. Since the initiator is going to take a checkpoint, all nodes from which it
had received a message directly should also take a checkpoint as indicated by
the first condition above. In addition, the nodes on which the initiator has a
causal dependency transitively should also take a checkpoint. This is dictated
by the step 2 above. After construction of dep graph the initiator itself takes a
checkpoint and sends ckpt req messages to all the other nodes in the system. To
these messages it attaches a copy of the dep graph array it had constructed.

Reception of ckpt req Messages: On reception of ckpt req message at pi

the dep graph array contained in the message is inspected. If dep graph[i] is not
zero, this is an indication that pi must have directly or transitively effected the
initiator and is thus a participant in this instance of checkpointing. Accordingly
pi takes a checkpoint and sends a ckpt resp message to the initiator as an in-
dication that appropriate action had been taken by it. If however, dep graph[i]
is zero then pi doesn’t take a checkpoint since it is not a participant. In either
case the received flag is set to 1 to indicate that the ckpt req message had been
received from the initiator. Any computation messages arriving now on can be
instantly delivered. In addition, any messages which were held in log due to
ckpt req message not being received are now delivered and the deliver flag is
set. pi on sending a computation message to a process pk after this attaches the
dep graph array it had received from the initiator into the computation message,
if this is the first message addressed to pk. Also, every computation message is
appended with the received flag to indicate to the recipient whether a check-
point request message had been received prior to sending this message.

Reception of Computation Messages: During the course of the progress of
the algorithm, we strive to achieve maximum non-intrusion. To achieve this, com-
putation messages received during the course of the algorithm are not delivered
instantly. If the received flag at node pi is set then any incoming computation
messages can be instantly delivered. Since the delivery of the message will not be
violating the consistency of the global checkpoint as the checkpoint must have
already been taken or it must have been ascertained that pi is not participat-
ing in the current checkpointing instance, otherwise the receive flag would not
have been set. Otherwise, pi peeks into the message to determine if it contains a
dep graph array. If a dep graph array is contained, then this is the first message
from the sender after it had taken a checkpoint. pi then checks dep graph[i].
If it is zero then the initiator had inferred that pi is not participating and so
even after receiving the ckpt req message pi won’t be taking a checkpoint. Thus,
there is no danger of the consistency being violated. So, the message can be
delivered. Otherwise, if the dep graph array slot corresponding to pi is set, thepi

will be receiving a ckpt req message (it had not received already). Consequently,
the message is not delivered and is held in log. To indicate this condition for
further messages the status of deliver flag is reset. If however, the received flag
in the message is not set, then even the sender had not received a ckpt req mes-
sage and consequently we have no information as to whether or not the delivery

An Efficient Protocol for Checkpoint-Based Failure Recovery 139

of this message will cause a violation of consistency. As a result, this message is
not delivered but is held in log. However, in this case the deliver flag is not reset,
since this is not the first message from the sender as the received flag is not set
and the sender had not taken a checkpoint. If the message does not contain a
dep graph array, then this is not the first message from the sender and a decision
as to whether any messages from this sender may be logged or delivered, had
been made when a prior message was received and the status of the deliver flag
was changed accordingly. As a result, if the deliver is set, then the message can
be delivered, otherwise the message is held in log.

Housekeeping Operations: The initiator on receiving ckpt resp message from
all the nodes pi for which dep graph[i] is set, sends a ckpt comp message to
all nodes as an indication that this instance of checkpointing is successfully
completed. The nodes on receiving such a message increment the ckpt num data
field. This is necessary to prevent any messages from this instance to interfere
with the subsequent instances of checkpointing on account of indefinite message
propagation delay.

2.2 Correctness Proof of the Checkpointing Algorithm

We provide a proof to show that the global snapshot obtained at the end of the
algorithm is consistent.

Theorem 1. The proposed checkpointing algorithm constructs a consistent global
checkpoint.

Proof. Assume for contradiction that there exists a message m whose receive has
been recorded at a checkpoint Ck

j of a process pj and whose send from pi hasn’t
been recorded at pi’s checkpoint, Ck

i .

Suppose m is the first message from pi to pj after taking a checkpoint. The
following 4 cases arise.

Case 1: pi is participating in this checkpointing instance and pj isn’t. Since pi

is participating in this checkpointing instance and this is the first message from
pi to pj it will be having a copy of the dep graph array. Now a receive of m is
recorded only if the dep graph array contains a 1 at ith position. However, this
would mean that pj is also participating. A contradiction.
Case 2: Both pi and pj are not participating. An argument similar to above
provides the necessary contradiction.
Case 3: pi is not participating and pj is participating. The following 4 subcases
arise:

Subcase 3.1: pi had received a ckpt req message from the initiator and pj had
also received it. A receive of a message is recorded, if the message is received
and delivered and a checkpoint request is received subsequent to that. As per
our assumption, the receive has been recorded which implies that the checkpoint
request was received after the delivery of the message. Hence a contradiction.

140 D. Goswami and S. Sahu

Subcase 3.2: pi had received a ckpt req message and pj hadn’t. Since pi had
received the checkpoint request and since this is the first message from pi to pj

it will be having a copy of the dep graph array. Since the message is delivered
and is recorded this is possible if either the dep graph array had a 0 at position
pj which means that pj isn’t participating in the checkpointing instance or if the
deliver flag was 1. A contradiction is again reached here.

Subcase 3.3: pi had not received a ckpt req and pj had received. An argument
similar to Subcase 3.1 provides contradiction since a record of the message is
possible only if the checkpoint request is received after the reception of message.

Subcase 3.4: Both pi and pj hadn’t received a ckpt req message. Since the
message receive has been recorded by our assumption. This is possible if de-
liver was 1. However, since this is the first message, its delivery implies that the
received bit at pj is set. This implies that the ckpt req message had been re-
ceived. This contradicts our assumption that the both pi and pj hadn’t received
a ckpt req message.
Case 4: Both pi and pj are participating. Again 4 subcases arise.

Subcase 4.1: pi had received a ckpt req message and pj had also received.
A message receive is recorded in a checkpoint only if the checkpoint request
is received after the delivery of the message. However by our assumption the
message receive has been recorded implying that the ckpt req had been received
after the delivery of the message. A contradiction to our above assumption.

Subcase 4.2: pi had received a ckpt req message and pj had not. Since pi

had received a ckpt req message and this is the first message from pi to pj it
will have the dep graph array. Now, since the message receive has been recorded
this means that either deliver is 1 or the dep graph had a 0 at position j. A
contradiction in both cases.

Subcase 4.3: pi hadn’t received a ckpt req message and pj had also received.
An argument similar to Subcase 3.3 provides the contradiction.

Subcase 4.4: Both pi and pj hadn’t received a ckpt req message. By our as-
sumption the message receive has been recorded while the message send hasn’t
been recorded. But since pi hadn’t received a checkpoint request before sending
m hence it will be receiving a checkpoint request upon which the message send
will be recorded. Hence a contradiction.

Now suppose that m is not the first message from pi to pj . Almost similar
arguments as above can be provided for all possible cases that arise in this case
and have been omitted here for this obvious reason.

2.3 Node Failure During the Progress of the Algorithm

A node may fail during the progress of the algorithm which can hamper the
collection of the snapshot. Node failures can occur at two possible instances.
Before sending a ckpt init message to the initiator and after sending the ckpt init
message but before receiving a ckpt req message.

Node failure before sending a ckpt init message: If a node pi fails before
ckpt init message, the failure of this node is discovered by the initiator since

An Efficient Protocol for Checkpoint-Based Failure Recovery 141

it will not receive a ckpt init message Freon this node. On receiving ckpt init
messages from the other nodes except pi, the initiator waits for an additional
period of time. In the present context, a round trip message traversal time to each
of the nodes is known apriori to the initiator. The initiator waits for this interval
of time before it starts deducing the dep graph array. If a ckpt init message is
not received during this interval, the initiator assumes that the node had failed
and deduces the dep graph array excluding pi. If the initiator later receives the
ckpt init message from pi, it is discarded. pi on recovering from failure checks
whether it had sent a ckpt init message after its previous checkpoint. If it had not
sent the message then it goes through a recovery phase. If however, the node had
sent a ckpt init message and the initiator had mistakenly assumed that pi failed,
it sends a QUERY message to the initiator to know what had been done with
its incarnation of the ckpt init message. On receiving the QUERY message the
initiator responds by sending a ckpt req message with the status of dep graph[i]
in the message appropriately set to indicate that the ckpt init message had in
fact been discarded. Since the initiator had excluded pi in order to direct the
other nodes to construct a global snapshot, the checkpoint so constructed will
not be including pi so pi can rollback safely.

Node failure after sending a ckpt init message but before receiving a
ckpt req message: Since immediately after receiving a ckpt init message, the
received flag is reset to zero, messages would have had been delivered at pi if it
were not participating in the checkpointing instance by not having affected the
initiator causally. Moreover any exchange of messages will not cause a violation
of consistency, since pi had already provided the initiator with its dependency
information. In case of failure of pi after sending the ckpt init, the initiator will
receive the message and will send a ckpt req message. However, owing to failure
this message is susceptible to be lost in transit. If pi would not be participating
in the checkpointing instance the operations performed are straightforward since
even after receiving the ckpt req message pi will not be taking a checkpoint. The
node pi then waits for a fixed period of time after which it sends a QUERY
message to the initiator to inquire of its participation in the instance. The ini-
tiator on receiving such a message sends a ckpt req message looking at which pi

concludes that it was not involved in the checkpointing instance and would go
through a rollback phase.

Conversely, if pi is participating in the checkpointing instance, after waiting
for a fixed period and receiving a ckpt req message in response to the QUERY
message, it takes a checkpoint and increments the checkpoint number ckpt num.
It should be noted here that pi does not to go through a rollback phase in this
case. It is worth a mention here that the initiator waits for a QUERY message or
a ckpt resp message from pi, since participation by pi implies that the initiator
won’t be sending ckpt comp messages unless it receives ckpt resp message from
every participant. The computation can, however, proceed once the ckpt req
messages are received by the nodes.

142 D. Goswami and S. Sahu

3 Recovery from Node Failure

Unlike the checkpointing algorithm which is controlled mainly by the initiator,
we follow a more distributed approach in recovery from node failure. The con-
cept of causal dependency again plays a key role here. In this work, a recovery
algorithm is devised in which only a minimum number of nodes are made to
rollback and extensive logging of messages on stable storage is not required. The
concept of causal dependency is used to arrive at such a minimality. For example
suppose a node pi fails and has to rollback. If no new dependencies have been
created from pi to pj since pi’s last checkpoint, then there is no need for pj to
rollback in response to pi’s rollback. While presenting the algorithm we assume
that the node has ascertained, after an interaction with the initiator, that it
indeed needs to rollback.

Each node employs the following additional data structures for recovery from
failures.

1. initiator id: An integer of range 1 to N to store the initiator of a rollback
instance.

2. rollback received: An integer to indicate the ckpt num corresponding to
which the latest rollback request was received.

3. msg send inc[1..N]: An integer array of size N . This array is used to store
a copy of the msg send array which is attached in the rollback request.

3.1 Rollback Recovery Algorithm

We now explain in details the working of the proposed rollback algorithm.

Initiation: A node pi on recovery sends a rollback req message to the nodes
to which it had sent a message after its previous checkpoint. In the message it
attaches its latest ckpt num and the msg send array along with its own node id.

Reception of rollback req message: On receiving a rollback req message a node
pi checks the fields contained in the message. If the ckpt num, initiator id con-
tained in the message are respectively equal to pi’s own version of these fields viz
rollback received initiator id and mesg send inc then a rollback request had ear-
lier been received on account of this rollback instance, therefore such a message
is discarded. If ckpt num is not the same as rollback received, this implies that
this is a new rollback instance being undertaken. Consequently, the node rolls
back to the previous checkpoint and copies the data contained in the message to
its own respective fields. It also sends a rollback req message to the nodes which
have a non-zero entry in its msg send array. In order to prevent more than one
node sending the rollback request to the same node pk as all of them might have
sent messages to pk, it is required that rollback requests are sent to only those
nodes which have a zero in the msg send array received in the rollback request pi

had received and a non-zero in the nodes own version of msg send. In addition, it
updates its data structures with the respective values contained in the message.

Handling multiple initiations of the rollback recovery algorithm: We
allow for the possibility of more than one node initiating the rollback recovery

An Efficient Protocol for Checkpoint-Based Failure Recovery 143

algorithm. The data structures ckpt num and msg send are used to handle this.
When a node pi receives a rollback request, it checks for the initiator id present
in the request. If the initiator id is the same as one stored at the node, this
suggests that the initiator of the rollback is requesting for another rollback. The
possibility of more than one request arriving at a node for the same rollback
instance is ruled out by checking the msg send array in the message against its
own copy before forwarding the message to the other nodes. In the present case,
this is a different instance of the rollback hence pi inspects its msg send array to
see if it had sent any further messages after the last rollback. It goes for a rollback,
requesting the other nodes to which new dependencies had been developed.

If the initiator id is different from that stored at the node, it stores the new ini-
tiator id and checks for the msg send array (its own version), since if new depen-
dencies had not been created there is no good in forwarding the message to other
nodes. If new dependencies had been created pi rolls back and sends rollback req
message to the nodes to which it had sent a message since the last rollback.

4 Comparison with Earlier Work

The worst case message complexity of our approach is O(n). Lai and Yang’s
[3] synchronous algorithm forces every node in the system to take a checkpoint.
This involves extra overhead even for those nodes which have not affected the
initiator causally. Approaches for recording a global snapshot in [4] and [5] force
the underlying computation to be completely frozen. The approach we have fol-
lowed, forces computation blocking under very rare circumstances as the com-
putation can proceed once ckpt req message from the initiator is received by the
individual nodes. Koo and Toueg’s [6] algorithm requires the underlying com-
putation to be suspended. No messages are sent by a node after the initiation
of the checkpointing instance. In addition, only direct dependencies are taken
into consideration as opposed to transitive dependencies accounted for in this
work. Leu and Bhragava [7] proposed an efficient algorithm for checkpointing
on static nodes which allows for concurrent instances of the checkpointing being
in progress. To surmount the concurrency, the use of the antecedence graph is
made which is piggybacked on every computation message which increases the
size of computation messages. Also, only one instance of snapshot collection can
be under progress. Vekateshan and Juang’s optimistic failure recovery algorithm
[8] does not require sending dependency information with the messages. However
it entails several iterations to roll back to a consistent state. Manetho [9] has
a low overhead for failure free operations but the failure recovery procedure is
very complicated. We have a developed a simple recovery algorithm, since nodes
recovering from failures should be restored to an error-free state at the earliest.

5 Conclusion

We have developed an efficient checkpointing protocol and a rollback algorithm
that keeps the underlying computation non-blocked for an optimal period of

144 D. Goswami and S. Sahu

time. We utilize the concept of causal dependency in order to force only a small
number of nodes to checkpoint. Message logging is used in cases where the con-
sistency of the snapshot is endangered, though the events which forces logging
are rare. Work in the direction of minimizing the overhead for the initiator,
keeping the advantages afforded by our algorithm intact, can be undertaken as
a future accomplishment.

References

1. B. Randell, “System stucture for sofware fault tolerance,” IEEE Trans. Software
Engg., vol. 1, no. 2, pp. 220–232, 1975.

2. G. Cao and M. Singhal, “On the impossiblity of min-process non-blocking check-
pointing and an efficient checkpointing algorithm for mobile computin systems,” in
Proc. 27th Intl Conf. Parallel Processing, pp. 37–44, August 1998.

3. T. Lai and T. Yang, “On distributed snapshots,” Information Processing Letters,
pp. 153–158, May 1987.

4. F. Cristian and F. Jahanian, “A time based checkpointing protocol for long lived
distributed computations,” in Proc. IEEE Symp. Reliable Distributed Systems, pp.
12–20, 1991.

5. P. Ramanathan and K. Shin, “Use of common timebase for checkpointing and roll-
back recovery,” IEEE Trans. Software Engg., pp. 571–583, June 1993.

6. R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed sys-
tems,” IEEE Trans. Software Engg., vol. 13, no. 1, pp. 23–31, 1987.

7. P. Leu and B. Bhargava, “Concurrent robust checkpointing and recovery in dis-
tributed systems,” in Proc. 4th IEEE Intl. Conf. Data Engg., pp. 154–163, February
1988.

8. S. Venkatesan and T. Juang, “Low overhead optimistic crash recovery,” in Proc.
11th Intl. Conf. Distributed Computing Systems., pp. 454–461, 1991.

9. E. Elnozahy and W. Zwaenepoel, “Manetho: Transparent rollback-recovery with
low overhead, limited rollback, and fast output commit,” IEEE Trans. Computers,
vol. 41, pp. 526–531, May 1992.

Cybersecurity: Opportunities and Challenges

Pradeep Khosla

Carnegie Mellon University, USA

Abstract. The world is reliant on Information more than ever. This
reliance has resulted in a significant impact on our quality of life – more
than two thirds of the productivity gains in the US economy are at-
tributable to IT. During the past decade the number of attacks on our
infrastructure have grown at an exponential rate. In this talk we will
identify the sources of these attacks and offer a vision for the future.
We will describe the research agenda being pursued in Carnegie Mellon
CyLab and how it contributes to the future vision.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, p. 145, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 146–157, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Vulnerabilities and Threats in Distributed Systems

Bharat Bhargava and Leszek Lilien

Department of Computer Sciences and Center for Education
and Research in Information Assurance and Security (CERIAS),

Purdue University, West Lafayette, IN 47907, USA
{bb, llilien}@cs.purdue.edu

Abstract. We discuss research issues and models for vulnerabilities and threats
in distributed computing systems. We present four diverse approaches to reduc-
ing system vulnerabilities and threats. They are: using fault tolerance and reli-
ability principles for security, enhancing role-based access control with trust
ratings, protecting privacy during data dissemination and collaboration, and
applying fraud countermeasures for reducing threats.

1 Introduction

Security vulnerabilities dormant in a distributed system can be intentionally exploited
or inadvertently triggered. The threats of exploitation or triggering are only potential,
and materialize as an attack or an accident. Efficient elimination and masking of vul-
nerabilities and threats requires cost-based risk analysis.

Vulnerabilities exist in hardware, networks, operating systems, database systems,
and applications. New ones are being discovered every day. Information about identi-
fied vulnerabilities and threats can be obtained from the well-known security incident
databases, or metabases, such as ICAT, CERT, vdb, or CVE, from notification systems
such as Cassandra [22], or from other sources of information on security incidents.

After discussing vulnerabilities and threats, this paper presents briefly four differ-
ent ideas or mechanisms for reducing them:

Applying Reliability and Fault Tolerance Principles to Security Research. Many ideas
or algorithms from research in reliability and fault tolerance provide useful analogies
to research in security. Examples include disabling quorums to deny access, use of
checkpointing for intrusion detection, and adaptability to timing, severity, duration,
and extent of attacks.
Using Trust in Role-Based Access Control. Trust is needed for access control in open
systems. There are problems with identity-based approaches and use of digital cre-
dentials. Ongoing research can produce credible trust ratings for a user based on mul-
tiple types of evidence, including credentials, observed behavior, recommendations,
and reputations. Trust ratings are used to enhance the role-based access control
(RBAC) mechanism. We are building a testbed for experiments to validate the proc-
ess of trust, and study privacy and fraud.

Vulnerabilities and Threats in Distributed Systems

147

Privacy-Preserving Data Dissemination. Trust and privacy are closely intertwined in
interactions among cooperating entities. Preserving data privacy is essential. Objects
can encapsulate privacy policies, owner’s preferences, and other metadata along with
owner’s data. They can include mechanisms such as apoptosis—that leads to a clean
self-destruction whenever this object feels threatened, and evaporation—that allows
gradual and adaptive object distortion and erasure in proportion to perceived misuse.
Fraud Countermeasure Mechanisms. Vulnerabilities can be identified via studies of
fraud. Fraud can be detected by identifying patterns of deceiving behavior. We identi-
fied three types of fraudulent user behavior, and developed schemes to evaluate
threats and detect fraud.

2 Vulnerabilities

Modeling Vulnerabilities. A vulnerability can be defined as a flaw or weakness in
system security procedures, design, implementation, or internal controls.
A vulnerability can be accidentally triggered or intentionally exploited, causing
security breaches [27].

Modeling vulnerabilities includes analyzing their features, classifying them and
building their taxonomies, and providing formalized models. Many diverse models of
vulnerabilities in various environments and under varied assumptions are available in
the literature. A detailed analysis of four common computer vulnerabilities in [17]
identifies their characteristics, the expected policies violated by their exploitation, and
the steps needed for the eradication of such vulnerabilities in future software releases.
A vulnerability lifecycle model has been applied in [4] to three case studies, which
show how systems remain vulnerable long after security fixes. During its lifetime,
vulnerability can be in any of the following six states: birth, discovery, disclosure,
correction, publicity, and death.

A model-based analysis technique to identify configuration vulnerabilities in dis-
tributed systems [23] involves formal specification of desired security properties, an
abstract model of the system that captures its security-related behaviors, and verifica-
tion techniques to check whether the abstract model satisfies the security properties.

Two kinds of vulnerabilities can be distinguished: operational and information-
based. The former include an unexpected broken linkage in a distributed database,
and the latter include unauthorized access (secrecy/privacy), unauthorized modifica-
tion (integrity), traffic analysis (inference problem), and Byzantine input [3].

Vulnerabilities do not have to be exhaustively removed since they only create
a potential for attack. Feeling threatened by vulnerabilities all the time is not desir-
able. Vulnerabilities exist due to not only mistakes or omissions, but can be a side
effect of a legitimate system feature, as was the case with the setuid UNIX com-
mand [14]. Some vulnerabilities exist in systems and cause no harm in its life cycle.
Some known ones have to be tolerated due to economic or technological limitations.
Removal of others may reduce usability. To require passwords not only for logging
in, but also for any significant resource request may make it secure but lowers usabil-
ity. The system design should not let an adversary know vulnerabilities unknown to
the system owner.

B. Bhargava and L. Lilien 148

Fraud Vulnerabilities. A fraud can be defined as a deception deliberately practiced
in order to secure unfair or unlawful gain [2]. Disclosing confidential information to
unauthorized people or unauthorized selling of customer lists to telemarketers
constitutes fraud. This shows an overlap of fraud with privacy breaches.

Fraud can make systems more vulnerable to subsequent fraud. This requires pro-
tection mechanisms to avoid future damage.

Fraudsters can be classified into two categories: impersonators and swindlers
[13]. An impersonator is an illegitimate user who steals resources from victims, for
instance by taking over their accounts. A swindler is, in contrast, a legitimate user
who intentionally benefits from the system or other users by deception. For instance,
swindlers obtain legitimate telecommunications accounts and use the services without
intention to pay the bills.

Fraud involves abuse of trust [12, 29]. A fraudster strives to present himself as
a trustworthy individual and friend. In a clear way, the more trust one places in others
the more vulnerable one tends to become.

Vulnerability Research Issues. Vulnerabilities, analogously to faults, enable failures
and attacks. They could be characterized as flaws in design, implementation, or
deployment. The severity of a flaw and its impact on an application need analysis.
Qualitative impact may be expressed as a low/medium/high degree of degradation in
terms of performance and availability. Quantitative impact is in terms of economic
loss, measurable cascade effects, and time needed to recover. It could include
quantification of reoccurrences of failures or attacks.

Procedures and methods are needed for efficient extraction of the characteristics
and properties of the known vulnerabilities. This is analogous to understanding how
faults occur. Tools that search for known vulnerabilities in the metabases have limita-
tions. Security mechanisms that add or modify entries in the metabases can only fol-
low, not anticipate, the steps of an attacker. Characteristics can be learnt from the
behavior of the attacker or using ideas such as honeypots.

A comprehensive taxonomy of vulnerabilities for different application areas need
be constructed. Medical systems may have critical privacy vulnerabilities, whereas
vulnerabilities in defense systems might destroy or distort resources and capabilities.
A good taxonomy will facilitate both prevention and elimination of vulnerabilities.
A metabase of vulnerabilities reveals characteristics in flaws for preventing not only
identical but also similar vulnerabilities. It also contributes to identification of related
vulnerabilities, including dangerous synergistic ones. Characterization of and a model
for a set of synergistic vulnerabilities can lead to uncovering gang attack threats or
incidents. It should be noted that the characteristics for a set are, in general, more
than a simple “sum” of individual characteristics.

Formalisms to represent vulnerabilities and their contexts are needed. The chal-
lenge is to investigate how vulnerability in one context propagates to another. Differ-
ent kinds of vulnerabilities might be emphasized in different contexts.

Quantitative lifecycle models for vulnerabilities should be built after a thorough
analysis of vulnerabilities for a given type of application or system, exploiting their
unique characteristics. In each lifecycle phase, the cumulative system vulnerability
should be determined, and the most dangerous or the most common types of vulner-

Vulnerabilities and Threats in Distributed Systems

149

abilities recognized. Knowledge of the degree of system vulnerability, the duration of
the lifecycle phases, and the prominent types of vulnerabilities for a given phase will
be helpful in protecting the system against these types of vulnerabilities. The best
defensive procedures can be adaptively selected from a predefined set.

The lifecycle models should help solving a few problems. First, they should help
avoid vulnerabilities in a deployed system most efficiently by discovering and elimi-
nating them at the design and implementation stages. Second, they should facilitate
evaluations and measurements of vulnerabilities in system components and subsys-
tems and of the system as a whole at each lifecycle stage. Third, the models would
assist in most efficient discovery of vulnerabilities in a deployed system before they
are exploited by an attacker or a failure. They would assist in most efficient elimina-
tion or masking of these vulnerabilities, e.g. based on principles analogous to fault-
tolerance. Alternatively, an attacker can be kept unaware or uncertain of important
system parameters by, for example, non-deterministic or deceptive system behavior,
increased component diversity, or multiple lines of defense.

Research should provide methods of assessing the impact of vulnerabilities on se-
curity in applications and systems. It should create formal descriptions of the impact
of vulnerabilities, and develop quantitative vulnerability impact evaluation methods.
Resulting ranking will help in risk analysis. Investigators can identify the fundamen-
tal design principles and guidelines for dealing with system vulnerabilities at any
system lifecycle stage. Based on these principles and guidelines, the best practices for
reducing vulnerabilities at different lifecycle stages should be developed. Finally,
interactive or fully automatic tools and infrastructures—encouraging or enforcing use
of these best practices—at each lifecycle stage should be developed.

Research is also needed on vulnerabilities in security mechanisms themselves, and
on vulnerabilities due to non-malicious but threat-enabling uses of information [21].

3 Threats

3.1 Models of Threats

We define threats against systems as entities that can intentionally exploit or inadver-
tently trigger specific system vulnerabilities to cause security breaches [16, 27]. An
attack is an intentional exploitation of vulnerabilities, and an accident is an inadver-
tent triggering of vulnerabilities. Both materialize threats, changing them from poten-
tial to actual.

Threats can be classified according to actions and consequences [26]. Actions can
be of the following types: observe, destroy, modify, and emulate threats. Conse-
quences include disclose, execute, misrepresent, and repudiate threats, integrity
threats. A threat can be tolerated or eliminated based on the degree of risk acceptable
to an application. Threat to human life may require complete elimination. Threat to
redundant software or hardware can be tolerated briefly.

Threats can be countered by their avoidance (prevention) or tolerance.

B. Bhargava and L. Lilien 150

Threat Avoidance. The analogy between fault avoidance in the reliability area [24, 5,
21] and threat avoidance should be considered in the system design. Once the system
is deployed, the designers cannot change the basic system structures and mechanisms.
The threat avoidance methods, petrified in the system, are effective only against less
sophisticated attacks. Executors of the most sophisticated attacks have motivation,
resources, and the whole system lifetime to discover its vulnerabilities. Such attacks
need to be approached from the threat tolerance side [20], and knowledge of fault
avoidance in the reliability area can be leveraged.

Understanding different threat sources is necessary for effective threat avoidance.
Different human threats, their motivation and potential attack modes are described in
[27]. Attacks can be classified as target-of-opportunity attacks, intermediate attacks,
or sophisticated attacks [20].

Several research efforts focus on providing guidelines for better designs that pre-
vent threats. A model for secure protocols is proposed in [15]. Formal models for the
analysis of authentication protocols are proposed in [25] and in our paper [10]. Secu-
rity models for statistical databases useful to prevent data disclosures are discussed in
[1], and a detailed comparative analysis of the most promising methods for protecting
dynamic-online statistical databases is presented there.

Threat Tolerance. Fault-tolerant schemes are neither concerned with each
individual failure nor spend all resources in dealing with them. Transient and non-
catastrophic errors and failures are ignored if this can benefit the system. In the same
way, we need to conduct research on using a form of intrusion tolerance for dealing
with lesser security breaches, which are common in daily activities. Applying the
fault tolerance approach to security attacks on database systems [3], we can list the
following phases: attack avoidance (a.k.a. prevention), attack detection, damage
confinement, damage assessment, reconfiguration, repair, fault treatment to prevent
a recurrence of similar attacks, and continuation of service.

Fraud Threat Detection for Threat Tolerance. Fraud threats can be viewed as
a special category of general security threats, and as the first step in some threat
tolerant solutions (majority voting is an example of threat tolerance without threat
detection). Fraud detection systems are widely used in telecommunication, online
transactions, computer and network security, and insurance. Effective fraud detection
uses both fraud rules and pattern analysis. Due to the skewed distribution of fraud
occurrences, one challenge in fraud detection is a very high false alarm rate.

3.2 Fraud Threats

Fraud threats can be viewed as a special category of general security threats that
should be analyzed considering salient features of fraud [9]. It should be noted that
fraud often occurs as a malicious opportunistic reaction, triggered by a careless ac-
tion. Threat analysis should also consider that fraud escalation seems to be a natural
phenomenon. Gang fraud can be especially damaging since gang fraudsters can co-
operate in misdirecting suspicion on others.

Individuals or gangs planning fraud thrive in an environment with fuzzy assign-
ment of responsibilities between participating entities, be they human or artificial [9].

Vulnerabilities and Threats in Distributed Systems

151

Very powerful fraudsters might be able to create environments that facilitate fraud
that they plan. Examples include CEO’s involved in insider trading.

3.3 Threat Research Issues

Since threats are context-dependent, an analysis of threats already present in the secu-
rity incident metabases has to start with identifying threats relevant for the context.
The analysis needs to find salient features of these threats, as well as indirect associa-
tions between threats—also via their links to related vulnerabilities. Next, a threat
taxonomy, specialized for the considered context, should be defined.

Formal models of threats, including their context-dependent aspects, are needed.
Quantifying the notion of a threat calls for measures to determine threat levels.
Avoiding/tolerating threats via unpredictability or non-determinism should be
tried.

The formal qualitative and quantitative models—such as a lifecycle threat
model—can provide a solid basis for detecting known and discovering unknown
threats, and for establishing threat measures. Since threat analysis is strongly linked
to the analysis of vulnerabilities, this should result in identifying characteristic
features of related vulnerabilities that link them to specific threats. Similarly, one
can investigate the links from threats to vulnerabilities. The results of this reverse
link analysis may necessitate correcting our vulnerability analysis models and
methods.

Development of quantitative threat models can use analogies to the reliability
models. An example is a Markov chain model to compute security measures. Two
variables time and effort can be used to rate different threats or attacks. By investi-
gating the nature and properties of attacks, threats, and vulnerabilities, one can
formulate the distribution of their random behavior. The security measure named
the Mean Effort To security Failure (METF), which is analogous to the Mean Time
To Failure (MTTF) reliability measure, could be used. New security measures can
be introduced, starting with an evaluation of the suitability of two measures,
namely the Mean Time To Patch and Mean Effort To Patch. They are analogous to
the Mean Time To Repair (MTTR) reliability measure, and the METF security
measure.

An evaluation a specific threat impact can start with the relevant threat properties,
such as direct damage, indirect damage, recovery cost, prevention overhead, and
interaction with other threats and defensive mechanisms.

Research must include inventing algorithms, methods, and design guidelines to
reduce the number and the severity of threats. Injection of unpredictability or un-
certainty may increase system security. As an example, one can enhance data trans-
fer security in a distributed system by sending portions of critical data through
different routes. Research is also needed on threats to security mechanisms
themselves.

Finally, since threat detection is needed for threat tolerance, it should be studied.
This includes investigation of fraud threat detection for fraud threat tolerance.

B. Bhargava and L. Lilien 152

4 Mechanism to Reduce Vulnerabilities and Threats

4.1 Applying Reliability and Fault Tolerance Principles to Security Research

We have been conducting research in reliable distributed systems for a very long time.
We have worked on the development of concepts such as consistency, atomicity,
durability, availability, rollback, checkpoints, adaptability, etc. [8, 10].

We perceive that the ideas, concepts, or algorithms known from reliability area can
have analogies in the security area. We need to apply the science and engineering of
reliability research to the research in security and vice versa [6].

The analogies start with basic notions used in security and reliability. Vulnerabil-
ity corresponds to a fault, a threat corresponds to an error, and a security breach cor-
responds to a failure/crash [6, 7].

We perceive an analogy between fault tolerance and threat tolerance. The ap-
proaches to handling a threat are: threat disregarding (ignores a potential threat),
threat avoidance (avoids a threat by eliminating it, its cause, or its consequences), and
threat tolerance (gracefully adapts to threats that have materialized) [27].

The analogy between the notion of time for accidental failures and the notion of
expended effort for intentional security breaches can be exploited [18]. The effort-to-
breach distribution of security is analogous to time-to-failure distribution of reliabil-
ity. There are differences between seemingly identical notions in reliability and
security areas, such as the notion of system boundaries—narrower for reliability and
more open for security. Further, reliability analogies are not helpful in some situa-
tions, including the instance of intentional breaches arising from intentional malicious
faults, and the instance when expenditure of effort is instantaneous. In this case, anal-
ogy to time in the area of reliability is meaningless, due to the sequential nature of
time. The security function R(e), analogous to the reliability function, can be defined
to address some quantitative aspects of operational security.

The following examples of solutions illustrate reliability-security analogies. To
increase reliability in distributed systems, a quorum of replicas can be formed in the
presence of failures. To make systems secure against unauthorized access, one can use
the reverse strategy of making it difficult to form quorums. Research on checkpoint-
ing can be applied to intrusion detection. The checkpoints ensure that the systems can
be brought back to a secure status. To deal with failures, we build systems that are
fault tolerant. We must build systems attack tolerant to security attacks. We need
to deal with common and less severe security violations as we have learned to deal
with every-day and relatively benign reliability failures.

4.2 Using Trust in Role-Based Access Control

The traditional, identity-based approaches to access control are inadequate or even
inapplicable to open computing, including Internet-based computing [28]. In addition,
the common user authorization approach of granting access privileges to users based
solely on user’s ownership of digital credentials (evidence), presented directly to the
system, has its share of problems. First of all, holding credentials does not certify that
the user will not carry out harmful actions [12].

Vulnerabilities and Threats in Distributed Systems

153

Authorization based on both credentials and trust is more credible than one based
on credentials alone, since it makes access control adaptable to users' behavior. This
is the reason why we included trust in access control mechanisms in open computing.
Existing computational trust management models can be classified as authorization-
based or reputation-based. Our design integrates them into one framework.

In our model of trust [12], we have incorporated comprehensive aspects of trust in
social systems and computer science applications. One challenge was to select care-
fully all and only useful trust aspects needed for our system design in a way prevent-
ing adverse affects on the flexibility or performance.

We developed algorithms for automating evaluation of trust, or inference of trust.
They produce trust ratings for a user based on: (a) dynamic, continuously updated
system’s own view of user’s behavior in interactions with the system, (b) system’s
own evidence records, (c) evidence records obtained from “foreign” reputation serv-
ers, and (d) system security policies. It is important to note that in producing the trust
ratings the algorithm considers credibility of the evidence provider.

Good trust inference algorithms needs to accommodate multiple types of evidence.
They should be adaptive, and able to tolerate uncertainty, incompleteness or inaccu-
racy of evidence (especially in case of subjective evidence). Before the algorithm is
able to infer trust for a specific application, available and acceptable evidence must be
identified. Examples of pieces of evidence include credentials, observed user behav-
ior, recommendations, and reputations. The credibility, availability, and volatility of
different types of evidences differ, and they are all affected by societal value, privacy
concerns, relevant legislation, and other factors.

The capability to use trust ratings for users was applied for enhancing the well-
known role-based access control (RBAC) mechanism. Trust management is performed
in this system by a trust-enhanced role-mapping (TERM) server, which interacts with
RBAC and a reputation server in the process of user authorization.

TERM uses two kinds of evidence for producing trust ratings: (a) direct, first-hand
experiences reported to TERM by RBAC, and (b) recommendations of users about
others users. The TERM server does not accept recommendations at a face value but
assigns to them its credibility rating. TERM server interacts with a reputation server,
which is a dynamic trust information repository, and evaluates reputation—based on
trust information—by using algorithms specified by the TERM server. We have built
a testbed prototype system, named Trust Enhanced Role Assignment (TERA), for
experiments verifying the system’s process of producing trust ratings for its users,
and studying trust, privacy, and fraud.

4.3 Privacy-Preserving Data Dissemination

Trust and privacy are closely intertwined. For any collaboration—or even any interac-
tion—a level of trust must be established. Even just perceived threats to users’ privacy
by a collaborator may result in substantial lowering of trust. This could result in rejec-
tion of collaboration between prospective partners, a loss to all of them. Therefore,
protecting and ensuring privacy of sensitive information are necessary components of
mechanisms for reducing vulnerabilities and threats.

B. Bhargava and L. Lilien 154

We briefly sketch our approach [11]. A guardian is either the original owner, or
a subsequent stakeholder of sensitive data. A guardian may pass private data to an-
other guardian in a data dissemination chain (actually, a cyclic graph). The risk of
privacy violations grows with the chain length and milieu fallibility and hostility.

Traditionally, owner’s privacy preferences or policies are not transmitted due to
neglect or failure. If a privacy policy is not included with data, even an honest receiv-
ing guardian is unable to honor them. A simple solution is encapsulation of policies
and other metadata including owner’s privacy preferences with owner’s sensitive data
and ensuring that owner’s metadata are never decoupled from his data.

Suppose that a customer “deposits” his data in a bank. The bank immediately en-
capsulates data within an atomic private object, which includes private metadata with
customer’s privacy preferences. Obviously, transmitting complete metadata is ineffi-
cient. They are extensive, describing all foreseeable aspects of data privacy that can
be needed to address privacy issues under any circumstances. For efficiency reasons,
based on the application semantics, only some metadata are carried along.

With atomic self-descriptive objects, there is no way that a sending guardian can
transmit to a receiving guardian an incomplete object. This solution solves the prob-
lem for friendly environments.

The solution must be extended to embrace hostile and unfamiliar environments. In
the first step, the extension will involve an atomic apoptosis, that is a clean self-
destruction, whenever the object feels threatened. A private object is here a binary-
state or atomic entity, which can be either intact or safely destroyed. In the second
step, we generalize the notion of apoptosis with the idea of evaporation. Object’s
private data are not destroyed all at once but evaporate gradually, adaptively and in
proportion to the object’s distrust towards its current milieu.

Perfect passing of objects is not always desirable. When data are captured by
spyware embedded in browser extensions, owners want to see them distorted once
they leave their computer. Owners are often willing to share their data locally, e.g.,
with colleagues in their lab, but want to prevent any wider dissemination. This sug-
gests that private objects should be evaporating in proportion to their “distance” from
their source. Owners generally trust their original guardians more than subsequent
and more distant ones. Unauthorized data disclosures become more probable further
away. Different context-dependent proximity metrics can be used.

4.4 Fraud Countermeasure Mechanisms

We have concentrated on swindler detection. The major challenge is to react to
a suspicious action or cooperation that may lead to a fraud. Three approaches were
considered: (1) detecting an entity’s activities that deviate from legitimate patterns;
(2) constructing state transition graphs for existing fraud scenarios and detecting
frauds similar to the known ones; and (3) discovering an entity’s intention based on
past behavior. An architecture incorporating all three approaches is proposed in [13].

The deceiving intention prediction (DIP) algorithm is the critical element of the
architecture. Its role is discovery of deceiving intention of an entity, based on entity’s
history and current behavior.

Vulnerabilities and Threats in Distributed Systems

155

We have identifies three types of deceiving user behavior: (a) uncovered de-
ceiving intentions, where swindler’s trust ratings are stably low and vary in a small
range over time, (b) trapping intentions, where a swindler first exhibits intention-
ally blameless behavior to gain trust, and then commits a fraud, and (c) illusive
intentions, where a swindler exhibits cycles of blameless behavior followed by
intervals of fraudulent actions. We see cycles of preparation and entrapment in
Case (c), in contrast to Case (b) where one preparation interval precedes one en-
trapment period.

We have experimentally evaluated the DIP algorithm [13] investigating its per-
formance for different types of user behavior, including the deceiving behaviors de-
fined above. Given a user behavior sequence, DIP calculates for it the value of the
DI-confidence indicator, which is a real number ranging over [0,1] with the higher
values indicating higher chances of an illegitimate behavior.

Our experimental results can be summarized as follows [13]:

• For a swindler with uncovered deceiving intentions: Since the probability of
fraud is high, the swindler is put under system supervision most of the time. The
final trust values are at 0.1, close to the minimum. The DI-confidence is around
0.9.

• For a swindler with trapping intentions: DIP responds very quickly with a drop in
trust ratings when a swindler ends preparation and enters the entrapment phase:
increasing DI-confidence from 0.22 to 0.76 takes only a sequence of 6 ratings.

• For a swindler with illusive intentions: DI-confidence increases (trust falls)
when the swindler ends the preparation phase of a cycle and starts an entrap-
ment. DI-confidence decreases (trust grows) when the swindler ends the en-
trapment phase and reenters the preparation phase. Still, DIP is able to catch this
smart swindler because her DI-confidence eventually increases to about 0.9.
This demonstrates that an effort to hide periods of fraudulent activities with pe-
riods of good behavior is less and less effective with each repetition of the
preparation-entrapment cycle.

5 Conclusions

Investigation of vulnerabilities and threats and devising countermeasures is an impor-
tant research area with a high potential for practical impact. Our contributions of four
different ideas and mechanisms for reducing system vulnerabilities and threats, pre-
sented in the paper, show a few of the possible directions for research.

We are using the presented mechanisms in our experimental testbed for investiga-
tion of new solutions for security and privacy in distributed systems. (More informa-
tion is available at: http://raidlab.cs.purdue.edu//NSFtrust//.html.).

Acknowledgements. We are grateful for contributions made by Ms. Anjali Bhargava
(fault tolerance and security) and Ms. Yuhui Zhong (trust in RBAC and fraud).
Research is supported in part by NSF grants IIS-0209059 and IIS-0242840.

B. Bhargava and L. Lilien 156

References

1. N.R. Adam and J.C. Wortmann, “Security-Control Methods for Statistical Databases:
A Comparative Study,” ACM Computing Surveys, Vol. 21, No. 4, Dec. 1989.

2. The American Heritage Dictionary of the English Language, Fourth Edition, Houghton
Mifflin, 2000.

3. P. Ammann, S. Jajodia, and P. Liu, “A Fault Tolerance Approach to Survivability,” in
Computer Security, Dependability, and Assurance: From Needs to Solutions, IEEE Com-
puter Society Press, Los Alamitos, CA, 1999.

4. W.A. Arbaugh, et al., “Windows of Vulnerability: A Case Study Analysis,” IEEE Com-
puter, pp. 52-59, Vol. 33 (12), Dec. 2000.

5. A. Avizienis, J.C. Laprie, and B. Randell, “Fundamental Concepts of Dependability,” Re-
search Report N01145, LAAS-CNRS, Apr. 2001.

6. A. Bhargava and B. Bhargava, “Applying fault-tolerance principles to security research,”
in Proc. of IEEE Symposium on Reliable Distributed Systems, New Orleans, Oct. 2001.

7. B. Bhargava, “Security in Mobile Networks,” in NSF Workshop on Context-Aware Mobile
Database Management (CAMM), Brown University, Jan. 2002.

8. B. Bhargava (ed.), Concurrency Control and Reliability in Distributed Systems, Van
Nostrand Reinhold, 1987.

9. B. Bhargava, “Vulnerabilities and Fraud in Computing Systems,” Proc. Intl. Conf. IPSI,
Sv. Stefan, Serbia and Montenegro, Oct. 2003.

10. B. Bhargava, S. Kamisetty and S. Madria, “Fault-tolerant authentication and group key
management in mobile computing,” Intl. Conf. on Internet Comp., Las Vegas, June 2000.

11. B. Bhargava and L. Lilien, “Private and Trusted Collaborations,” Proc. Secure Knowledge
Management (SKM 2004): A Workshop, Amherst, NY, Sep. 2004.

12. B. Bhargava and Y. Zhong, “Authorization Based on Evidence and Trust,” Proc. Intl.
Conf. on Data Warehousing and Knowledge Discovery DaWaK-2002, Aix-en-Provence,
France, Sep. 2002.

13. B. Bhargava, Y. Zhong, and Y. Lu, "Fraud Formalization and Detection,” Proc. Intl. Conf.
on Data Warehousing and Knowledge Discovery DaWaK-2003, Prague, Czechia, Sep.
2003.

14. M. Dacier, Y. Deswarte, and M. Kaâniche, “Quantitative Assessment of Operational Secu-
rity: Models and Tools,” Technical Report, LAAS Report 96493, May 1996.

15. N. Heintze and J.D. Tygar, “A Model for Secure Protocols and Their Compositions,” IEEE
Transactions on Software Engineering, Vol. 22, No. 1, 1996, pp. 16-30.

16. E. Jonsson et al., “On the Functional Relation Between Security and Dependability
Impairments,” Proc. 1999 Workshop on New Security Paradigms, Sep. 1999, pp. 104-111.

17. I. Krsul, E.H. Spafford, and M. Tripunitara, “Computer Vulnerability Analysis,” Technical
Report, COAST TR 98-07, Dept. of Computer Sciences, Purdue University, 1998.

18. B. Littlewood at al., “Towards Operational Measures of Computer Security”, Journal of
Computer Security, Vol. 2, 1993, pp. 211-229.

19. F. Maymir-Ducharme, P.C. Clements, K. Wallnau, and R. W. Krut, “The Unified Informa-
tion Security Architecture,” Technical Report, CMU/SEI-95-TR-015, Oct. 1995.

20. N.R. Mead, R.J. Ellison, R.C. Linger, T. Longstaff, and J. McHugh, “Survivable Network
Analysis Method,” Tech. Rep. CMU/SEI-2000-TR-013, Pittsburgh, PA, Sep. 2000.

21. C. Meadows, “Applying the Dependability Paradigm to Computer Security,” Proc. Work-
shop on New Security Paradigms, Sep. 1995, pp. 75-81.

Vulnerabilities and Threats in Distributed Systems

157

22. P.C. Meunier and E.H. Spafford, “Running the free vulnerability notification system Cas-
sandra,” Proc. 14th Annual Computer Security Incident Handling Conference, Hawaii,
Jan. 2002.

23. C. R. Ramakrishnan and R. Sekar, “Model-Based Analysis of Configuration Vulnerabili-
ties,” Proc. Second Intl. Workshop on Verification, Model Checking, and Abstract Inter-
pretation (VMCAI’98), Pisa, Italy, 2000.

24. B. Randell, “Dependability—a Unifying Concept,” in: Computer Security, Dependability,
and Assurance: From Needs to Solutions, IEEE Computer Society Press, Los Alamitos,
CA, 1999.

25. A.D. Rubin and P. Honeyman, “Formal Methods for the Analysis of Authentication Proto-
cols,” Tech. Rep. 93-7, Dept. of Electrical Engineering and Computer Science, University
of Michigan, Nov. 1993.

26. G. Song et al., “CERIAS Classic Vulnerability Database User Manual,” Technical Report
2000-17, CERIAS, Purdue University, West Lafayette, IN, 2000.

27. G. Stoneburner, A. Goguen, and A. Feringa, “Risk Management Guide for Information
Technology Systems,” NIST Special Publication 800-30, Washington, DC, 2001.

28. M. Winslett et al., “Negotiating trust on the web,” IEEE Internet Computing Spec. Issue on
Trust Management, 6(6), Nov. 2002.

29. Y. Zhong, Y. Lu, and B. Bhargava, “Dynamic Trust Production Based on Interaction
Sequence,” Tech. Rep. CSD-TR 03-006, Dept. Comp. Sciences, Purdue Univ., Mar.2003.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 158–167, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A TNATS Approach to Hidden Web Documents

Yih-Ling Hedley, Muhammad Younas, and Anne James

School of Mathematical and Information Sciences, Coventry University,
Priory Street, Coventry CV1 5FB, UK

{y.hedley, m.younas, a.james}@coventry.ac.uk

Abstract. Hidden Web databases maintain a collection of documents, which are
dynamically generated using Web page templates in response to user queries.
This paper presents a technique, Text with Neighbouring Adjacent Tag
Segments (TNATS), to represent the contents of documents retrieved from an
underlying database. TNATS exploits tag structures that surround the textual
content of a document. This representation facilitates the process of detecting
Web page templates and extraction of query-related information from
documents. We compare the performance of TNATS with existing techniques
based on tag tree and text only representations. Experimental results
demonstrate that TNATS requires less processing time for information
extraction than a tag tree representation. It also produces optimum results in
terms of detecting Web page templates and extracting query-related
information.

1 Introduction

Hidden Web databases [4] maintain a collection of documents such as archives,
manuals and news articles. These databases dynamically generate a list of documents
in response to users’ queries submitted through search interfaces. Such information is
beyond the indexing capability of general-purpose search engines (such as Google) in
which Web pages are indexed through hyperlinks [1]. The development of specialised
subject directories (such as Search.com) provides a channel for information searches
from the Hidden Web. As the number of databases proliferates, it has become
prohibitive for these services to manually evaluate individual databases in order to
answer users’ queries.

Current techniques such as database selection [2, 6, 11] or categorisation [7] have
facilitated the retrieval of information from databases. In particular, information (such
as terms and frequencies) is collected from data sources for their selection or
categorisation. However, in the domain of Hidden Web databases, such statistics are
often unavailable. Furthermore, it is not feasible to retrieve all documents from an
underlying database to gather information about its content. Therefore, a number of
research studies [2, 6, 11] automatically generate terms and frequencies from
documents through sampling. These approaches extract terms that are irrelevant to
queries, since terms contained in Web page templates for descriptive or navigation
purposes are also extracted.

A TNATS Approach to Hidden Web Documents 159

Existing techniques that extract information from dynamically generated Web
pages focus on the textual contents of Web pages, or analyse their contents in a tree-
like structure. For instance, approximate string matching techniques are applied in [8]
to extract information from Web pages, but this approach is limited to textual contents
only. By contrast, dynamically generated objects are discovered from Web pages
through analysing their contents in tree-like structures [3, 9]. This approach requires
Web pages with well-conformed HTML tag trees. Moreover, Web pages are clustered
into groups of similarly structured Web pages based on a set of pre-defined page
templates, such as exception page templates and result page templates.

This paper extends our previous work in [5], which presents a form of
representation that describes the contents of template-generated documents. Our
approach exploits the textual contents of a document and information from tags that
surround the content – which we refer to as Text with Neighbouring Adjacent Tag
Segments (TNATS). We also describe a mechanism that detects information contained
in Web page templates and identifies the sections of documents that are relevant to
queries.

Our experiments in [5] has also been extended to assess the effectiveness of the
proposed approach in terms of: (i) time required for processing and extracting
information from template-generated documents (ii) effectiveness in detecting
information contained in Web page templates, and (iii) the accuracy of extracting
query-related information. The results show that TNATS requires less processing time
for extracting information in comparison to a tag tree representation. Our technique
also provides an effective mechanism to detect Web page templates and produces
optimum results in the extraction of query-related information.

The remainder of the paper is organised as follows. Section 2 introduces current
approaches to acquiring statistics from databases and the associated problems. It also
describes existing techniques that extract information from Web pages along with
their limitations. Section 3 presents the proposed approach. Experimental results are
discussed in section 4. Section 5 concludes the paper.

2 Related Work

A number of research studies discover the information contents of Hidden Web
databases through sampled documents, from which statistics (i.e., terms and
frequencies) are generated and referred to as Language Models, Textual Models or
Centroids [2, 6, 11, 7]. Such statistics are then utilised to facilitate the selection or
categorisation of databases. However, these techniques extract terms that are often
contained in Web page templates for descriptive or navigation purposes. For instance,
a language model generated from the sampled documents of Combined Health
Information Database (CHID) consists of terms extracted from Web page templates
with high frequencies [2]. These terms (such as ‘author’ and ‘format’) are not relevant
to the queries but are used to describe the document contents. The use of additional
stop-word lists has been considered in [2] to eliminate irrelevant terms, but this
technique can be difficult to apply in practice. Textual models generated in [6, 11]
contain additional topic terms through sampling Web databases. These models also
contain terms extracted from Web page templates.

Y.-L. Hedley, M. Younas, and A. James 160

Current techniques employed to extract information from Web pages analyse page
contents through text or tag tree representations. For instance, the technique applied in
[8] extracts texts that are different. This approach is limited to finding textual
similarities and differences. The technique proposed in [3] discovers objects from
dynamically generated Web pages by analysing their contents based on a tag tree
representation. However, it requires that Web pages contain well-conformed HTML
tag-trees prior to information extraction. Moreover, this technique clusters Web pages
into groups of similarly structured Web pages based on a number of pre-defined page
templates, such as exception page templates and result page templates.

By contrast, our approach considers texts and information from their neighbouring
tags as opposed to analysing document contents based on texts or tree-like structures.
In addition, we detect Web page templates used to generate documents. This differs
from the approach in [3, 9] that analyses grouped Web pages according to a pre-
defined set of templates.

3 Query-Related Information Extraction

This section describes the technique proposed in our previous work [5], which detects
information contained in Web page templates from template-generated documents
and extracts information relevant to queries. Our approach represents and analyses a
document based on its textual content and information from neighbouring tag
structures associated with the content. This facilitates the detection of Web page
templates. As a result, it improves the accuracy of information extracted from
documents. Fig. 1. illustrates the process of extracting query-related information from
Hidden Web documents.

Fig. 1. Extraction query-related information from Hidden Web documents

Our technique retrieves documents through querying a database with
randomly selected keywords. Query keywords can be obtained from frequently used
terms or those contained in documents retrieved from the database, as proposed in [2].

A TNATS Approach to Hidden Web Documents 161

Alternatively, a set of terms can also be retrieved from the search interface pages of
the database, which provide a source of information that is closely related to the
database content.

The content of each document retrieved from the underlying database is
represented by a list of text segments and their neighbouring tag segments. Web page
templates are then detected through analysing the content representations of
documents. We eliminate information contained in Web page templates and extract
information that is relevant to queries. The generation of a document content
representation, mechanism of template detection and the process of information
extraction are detailed in section 3.1, 3.2 and 3.3 respectively.

3.1 Generation of Document Content Representation

This paper presents a form of document content representation, which we refer to as
Text with Neighbouring Adjacent Tag Segments (TNATS). The content representation
of a document contains a list of text segments and each with its neighbouring tag
segments. That is, each text segment is identified through the textual content and
information from its neighbouring tag segments. The neighbouring tag structures of a
text segment describe how the text segment is structured within a Web document and
how the segment relates to its adjacent text segments.

Prior to the generation of a content representation, the content of a document is
first converted into a list of HTML (HyperText Markup Language) tag segments and
text segments. Tag segments include paired start tags and end tags (such as and
), and single tags (such as <HR>). A text segment is the text that exists between
two tag segments.

In the TNATS representation, the neighbouring tag segments of a text segment are
defined as the list of tag segments that are located immediately before and after the
text segment until another text segment is reached. Assume that a document contains
n segments, a text segment, txs, is defined as: txs = (txi, tg-lstj, tg-lstk), where txi is the
textual content of ith text segment, 1 ≤ i ≤ n. tg-lstj represents p tag segments located
before txi and tg-lstk represents q tag segments located after txi until another text
segment is reached. tg-lstj = (tg1, …, tgp), 1 ≤ j ≤ p and tg-lstk = (tg1, …, tgq), 1 ≤ k ≤
q. Given a Hidden Web document, d, with n text segments, the content of d is then
represented as: Content(d) = { txs1, …, txsn}, where txsi represents a text segment, 1 ≤
i ≤ n.

Consider a document retrieved from the CHID database as shown in Fig. 2. Fig. 3
gives a sample of its source code. In this example, text segment, ‘5. Positive HIV
Antibody Test.’, can be identified by the text (i.e., ‘5. Positive HIV Antibody Test.’)
and its neighbouring tag segments. These include the list of tags located before the
text (i.e., </TITLE>, </HEAD>, <BODY>, <HR>, <H3>, and <I>) and the
neighbouring tags located after the text (i.e., </I>, , </H3>, <I> and). Thus,
this segment is represented as (‘5. Positive HIV Antibody Test.’, (</TITLE>,
</HEAD>, <BODY>, <HR>, <H3>, , <I>), (</I>, , </H3>, <I>,)). The
document content representation based on TNATS for the sample code is given in
Fig. 4.

Y.-L. Hedley, M. Younas, and A. James 162

Fig. 2. A template-generated document retrieved from CHID

Fig. 3. The source code for the CHID document

Fig. 4. The document content representation of the CHID document based on TNATS

Fig. 5 illustrates the CHID document (given in Fig. 2) in a tree-like structure. Fig.
6 demonstrates the tag tree representation of the document as employed in [3]. For
instance, text segment, ‘CHID document’, is uniquely identified by the path,
HTML[1].HEAD[1].TITLE[1], where the numbers in brackets represent the order of
the child in the tag tree.

…
‘CHID Document’, (<HTML>, <HEAD>, <TITLE>), (</TITLE>,
</HEAD>, <BODY>, <HR>, <H3>, , <I>);
‘5. Positive HIV Antibody Test.’, (</TITLE>, </HEAD>, <BODY>,
<HR>, <H3>, , <I>), (</I>, , </H3>, <I>,);
‘Subfile:’, (</I>, , </H3>, <I>,), (, </I>);
‘AIDS Education’, (, </I>), (
, <I>,);
…

…
<HTML><HEAD><TITLE>CHID Document </TITLE></HEAD>
<BODY>
<HR><H3><I> 5. Positive HIV Antibody Test.
</I></H3>
<I>Subfile: </I>
AIDS Education

…

A TNATS Approach to Hidden Web Documents 163

Fig. 5. The tag tree representation of the CHID document

Fig. 6. The document content representation of the CHID document based on tag trees

TNATS differs from a tag tree representation in that individual textual contents of
a document are identified through information from their neighbouring tag structures.
This approach utilises information from tag segments that surround a text segment,
thus it is not limited to well-conformed Web pages. Furthermore, it requires less
processing time for generating a TNATS document content representation in
comparison to a tag tree representation.

3.2 Detection of Web Page Templates

This section describes a template detection mechanism that identifies Web page
templates from dynamically generated documents. Documents retrieved from Hidden
Web databases are often generated using one or more templates. Such templates are
typically employed to describe document contents or to assist users in navigation.

Each document retrieved from a database is represented based on TNATS.
Template detection is then carried out as follows:

1. Detect Initial Templates. Detect an initial Web page template through searching
for identical patterns (i.e., the matched text segments along with their
neighbouring tag segments) from the first two documents retrieved. Identical
patterns are eliminated from their document content representations. Both
documents are assigned to a group associated with the template. If no repeated
patterns are found, the content representations of both documents are stored for
future template detection.

2. Detect Subsequent Templates. Detect new templates through comparing each of
the subsequently retrieved documents with existing templates generated or the
previously stored document content representations. Assign the document to a

…
‘CHID Document’, HTML[1]. HEAD[1]. TITLE[1];
‘5. Positive HIV Antibody Test.’, HTML[1]. BODY[2]. H3[2]. B[1]. I[1];
‘Subfile:’, HTML[1]. BODY[2]. I[3]. B[1];
‘AIDS Education’, HTML[1]. BODY[2];
…

Y.-L. Hedley, M. Younas, and A. James 164

group associated with the template from which the document is generated if
identical patterns are found. Eliminate any identical patterns from the content
representation of the document. In the case where no identical patterns are found
in the document, its content representation is stored for future analysis.

The process of template detection is terminated when all retrieved documents are
analysed. This results in the identification of one or more templates. For each
template, two or more documents are assigned to a group associated with the template
from which the documents are generated. Each document contains text segments that
are not found in their respective template. These text segments are partially related to
their queries. In addition to a set of templates, the content representations of zero or
more documents in which no matched patterns are found are stored.

3.3 Extraction of Query-Related Information

Text segments that remain in the documents (as described in section 3.2) are further
analysed through the computation of text similarities. That is, the text segments of
different documents from the group associated with a particular template are
compared in terms of text similarity. This identifies any text segments (with identical
tag structures), which are similar in their textual contents.

The textual content of a text segment is represented as a vector of terms with
weights. A term weight is obtained from the occurrences of the term in the segment.
Cosine similarity [10] given in (1) is computed on the textual contents of two text
segments.

where txsi and txsj represent two text segments in a document; twik is the weight of
term k in txsi, and twjk is the weight of term k in txsj .

The similarity is computed for text segments with identical neighbouring tag
segments only. Two segments are considered to be similar if the similarity of their
textual contents exceeds a threshold value. The threshold value is determined
experimentally. This process results in the extraction of text segments with different
tag structures. It also extracts text segments that have identical neighbouring tag
structures but are significantly different in their textual content.

4 Experimental Results

A number of experiments (extended from our work in [5]) are conducted on 3 real-
world Hidden Web document databases, Help Site, CHID and Wired News, which
provide user manuals, healthcare archives and news articles respectively. These
databases are summarised in Table 1. For each database, 10 documents are randomly
retrieved by querying the database with keywords, which are obtained from its search
interface pages and the documents retrieved.

We assess the effectiveness of TNATS in terms of: (i) time required to process
documents and extract query-related information, (ii) template detection, and (iii)
accuracy of extracting query-related information from documents. The results are then

== =

∗∗=
t

k
jk

t

k

t

k
ikjkikji twtwtwtwtxstxssim

1

2

1 1

2)()()(),(
.

(1)

A TNATS Approach to Hidden Web Documents 165

compared with those from tag tree representations (abbreviated as TTR) and text only
representations (abbreviated as TXR).

Table 1. 3 Hidden Web document databases used in the experiment

Document
databases

URL Content Templates
employed

Document
size

Help Site www.help-site.com Homogeneous Multiple
templates

Varying sized
(4-300 KB)

CHID www.chid.nih.gov Homogeneous
Single
templates

Similar-sized
(4-9 KB)

Wired
News

www.wired.com Heterogeneous
Single
templates

Similar-sized
(10-35 KB)

First, for each database, we assess the efficiency of information extraction in terms
of time required to process 10 documents that are transformed based on TNATS and
TTR. Next, the documents retrieved from each database are manually examined to
obtain the number of templates used to generate documents. This is then compared
with the number that is detected through TNATS, TTR and TXR.

Finally, for each database, we compare information extracted from the retrieved
documents based on TNATS with that extracted from TTR. In this experiment, a
textual content transformed through TTR is represented by a list of tags from the root
of the tag tree to the content. For instance, text segment, ‘CHID Document’, (given in
Fig. 2) is represented by the path, HTML/HEAD/TITLE.

For each document, the extracted terms are also manually compared with those
contained in the original document to determine the accuracy of information
extraction. Recall and precision techniques (of information retrieval systems) are
adopted in order to measure the accuracy of query-related information extraction [10].
In this paper, the recall is defined as the ratio of the number of relevant terms
retrieved over the total number of relevant terms contained in a document. The
precision is given by the ratio of the number of relevant terms retrieved over the total
number of terms retrieved from a document.

Experimental results in Table 2 show that TNATS requires less processing time
for extracting query-related information in comparison to TTR. In particular,
considerably less processing time is required when TNATS is applied to larger-sized
documents. For instance, 930 ms is obtained for TNATS to process Help Site
documents whose sizes are ranged from 4 KB-24KB. By comparison, 3230 ms is
required by TTR.

Table 2. Processing time for information extraction from 10 documents retrieved from each
database based on TNATS and TTR

Processing time in milliseconds (ms) Document
databases TNATS TTR
Help Site 930 3230
CHID 330 440
Wired News 870 3290

Y.-L. Hedley, M. Younas, and A. James 166

Table 3 show that TNATS and TTR detect the number of templates more
effectively than TXR. For instance, a total of 3 templates are found in 10 documents
retrieved from the Help Site database. The number of templates is successfully
identified by TNATS and TTR, whereas only one template is detected when TXR is
applied. TNATS and TTR consider tag structures in the generation of a document
content representation. By contrast, TXR focuses on the textual contents of a
document without considering how the contents are structured. As a result, TNATS
and TTR effectively identify information contained in Web page templates.

Table 3. The number of templates employed to generate the documents retrieved from each
database and the number detected by TNATS, TTR and TXR

Number of templates Document
databases Employed TNATS TTR TXR
Help Site 3 3 3 1
CHID 1 1 1 1
Wired News 1 1 1 1

Table 4 gives the accuracy of information extraction from the documents
represented by TNATS and TTR, in terms of recall and precision. Results show that
TNATS and TTR achieve similar performance in recall. In particular, TNATS and
TTR both obtain a high recall value, 0.999, for the Wired News documents.

In terms of precision, TNATS performs better than TTR for Help Site and Wired
News, whereas TNATS has lower precision for CHID. For instance, the precision
attained from the Help Site documents for TNATS and TTR is 0.960 and 0.872,
respectively. However, the precision of TNATS for CHID is 0.992, which is lower
than the value obtained by TTR. Our observation is that TNATS is more effective
when it is applied to the documents that vary in size and structure (such as Help Site
documents), whereas the CHID documents are similar in sizes (i.e., 5KB-6KB).
Furthermore, TNATS utilises information from the tag structures of the text segments
adjacent to a given text segment to detect Web page templates. As a result, some
template information may not be successfully detected.

Table 4. Average recall and precision for extracting query-related information from the Help
Site, CHID and Wired News documents based on TNATS and TTR

TNATS TTR Document
databases Recall Precision Recall Precision
Help Site 0.998 0.960 0.998 0.872
CHID 0.920 0.992 0.920 1.000
Wired News 0.999 0.981 0.999 0.810

5 Conclusion

Current techniques generate terms and frequencies from sampled documents to
represent the information contents of Hidden Web document databases. These

A TNATS Approach to Hidden Web Documents 167

techniques also extract information contained in Web page templates. Consequently,
the accuracy of extracting query-related information has been reduced.

In this paper we describes a form of content representation, TNATS, which
represents a document content based on the textual content and information from their
neighbouring tag structures. We then introduce a mechanism that analyses document
contents based on TNATS and detects information contained in Web page templates.
The application of TNATS facilitates template detection and information extraction.
This is in contrast to those that analyse document contents based on text only or in a
tree-like structure. Experimental results demonstrate that TNATS is more efficient in
transforming document contents and extracting information. Our technique also
attains a high degree of accuracy in terms of recall and precision.

We obtain promising results by applying TNATS in the experiments on three
databases that differ in nature. However, experiments on a larger number of Hidden
Web documents are required in order to further assess the effectiveness of the
proposed technique.

References

1. Bergman, M. K.: The Deep Web: Surfacing Hidden Value. Appeared in The Journal of
Electronic Publishing from the University of Michigan (2001).

2. Callan, J., Connell, M.: Query-Based Sampling of Text Databases. ACM Transactions on
Information Systems, Vol. 19, No. 2 (2001) 97-130

3. Caverlee, J., Buttler, D., Liu, L.: Discovering Objects in Dynamically-Generated Web
Pages. Technical report, Georgia Institute of Technology (2003)

4. Gravano, L., Ipeirotis, P. G., Sahami, M.: QProber: A System for Automatic Classification
of Hidden-Web Databases. ACM Transactions on Information Systems (TOIS), Vol. 21,
No. 1 (2003)

5. Hedley, Y.L., Younas, M., James, A. Sanderson M. A Two-Phase Sampling Technique for
Information Extraction from Hidden Web Databases. In Proceedings of the 6th ACM
CIKM Workshop on Web Information and Data Management (WIDM) (2004)

6. Lin, K.I., Chen, H.: Automatic Information Discovery from the Invisible Web.
International Conference on Information Technology: Coding and Computing (2002)
332-337

7. Meng, W., Wang, W., Sun, H., Yu, C.: Concept Hierarchy Based Text Database
Categorization. International Journal on Knowledge and Information Systems, Vol. 4, No.
2 (2002) 132-150

8. Rahardjo, B., Yap, R. Automatic Information Extraction from Web Pages. In Proceedings
of the 24th Annual International ACM SIGIR Conference (1999) 430-431

9. Ramaswamy, L., Iyengar, A., Liu, L., Douglis, F.: Automatic Detection of Fragments in
Dynamically Generated Web Pages. In Proceedings of the 10th International Conference
on World Wide Web (2004) 443-453

10. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McCraw-Hill, New
York (1983)

11. Sugiura, A., Etzioni, O.: Query Routing for Web Search Engines: Architecture and
Experiments. In Proceedings of the 9th International World Wide Web Conference: The
Web: The Next Generation (2000) 417-430

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 168–177, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Querying XML Documents from a Relational Database
in the Presence of DTDs

Manjeet Rege, Izabell Caraconcea, Shiyong Lu, and Farshad Fotouhi

Department of Computer Science,
Wayne State University,

Detroit MI 48202
{rege, izabell, shiyong, fotouhi}@cs.wayne.edu

Abstract. Many researchers have investigated the problem of storing and que-
rying XML documents using an RDBMS. Two situations are considered in this
approach based on whether or not an XML schema is available. In a schema-
oblivious relational approach, an XML schema is not available, or it is available
but is not used. The advantage of schema-oblivious relational approach is that
no XML schema is required, and the fixed generic schema can be used to store
XML documents with arbitrary structure. However, since XML schema is not
exploited, this approach usually implies a query engine where join operations
dominate the query time and performance might suffer significantly. On the
other hand, rare work on the problem of schema-based XML-to-SQL query
mapping has been published in the literature. In this paper, we present an algo-
rithm to address this problem.

1 Introduction

In the last few years, XML has emerged as a standard for representing and
exchanging data. Though, this enables data scalability while easing the tasks of data
interchange between business corporations, it also poses a problem of querying the
growing number of XML documents efficiently. There have been primarily two ap-
proaches to handle this problem. One approach is to develop native XML repositories
that support XML data models and query languages directly [1,2]. To achieve this,
various XML query languages have been proposed such as XML-QL [3], XQL [4],
Lorel [5], XPath [6] and more recently XQuery [7]. The second approach is to shred
the XML documents and store them into a relational database in order to take advan-
tage of mature and robust technologies that have already been developed for relational
databases over the last few decades [8, 9]. The major challenges of the latter approach
include: (1) XML data model needs to be mapped into the relational model; (2) XML
data needs to be stored into the relational database; (3) Queries posed in XML query
languages need to be translated into SQL; (4) The query result set needs to be re-
turned back by converting the data into XML format.

Our contribution in this paper is pertaining to the challenges (3) and (4) stated
above. There has already been research conducted on translating XML queries into

Querying XML Documents from a Relational Database in the Presence of DTDs 169

SQL [13, 14, 15]. I. Tatarinov et al. propose storing and querying ordered XML us-
ing a relational database system in the absence of an existing DTD Schema for XML
documents [10]. In their approach, they propose creating one table viz., the Edge ta-
ble to store the shredded XML document. A key issue is how to map an XML path
query into SQL queries and generate XML data from relational databases when DTD
schema is available and relational data has been created by mapping XML data in the
presence of DTDs. None of the above cited works tackle this problem. Recently, in
[16], the problem was addressed when the XML schema is recursive. This problem is
different from the one that we have attempted to solve in this work. Our work is based
on a simplified DTD that gets generated based on the algorithm presented in [11].
Also, in [16], they create a relational table for each non-leaf DTD node that results in
a large number of tables and hence might lead to table joins while querying. We
extend on the work presented in [10] for querying XML data stored in a relational da-
tabase when the XML DTD is available. We present an algorithm to query XML
documents stored in a relational database in the presence of DTDs using XML path
queries similar to XPath [6].

The rest of the paper is organized as follows. Section 2 gives a brief overview of
the schema mapping algorithm [11] and the data mapping XInsert algorithm [12].
Section 3 discusses our proposed algorithm. In Section 4, we present the experimental
results. Finally, section 5 concludes with suggestions for future work.

2 An Overview of Schema Mapping and Data Mapping
Algorithms

Our algorithm assumes that the schema mapping from DTD to Relational Schema has
been accomplished using the DTDMap algorithm presented in [11], and that the
XInsert algorithm presented in [12] populates the relational database with XML
documents.In this section we will provide the reader with a succinct overview of these
algorithms.

One approach for mapping DTDs to relational schema is mapping each node in
the DTD to a table. This approach results in many tables in the corresponding rela-
tional schema resulting in table joins causing query processing to be inefficient. Al-
ternatively, the authors of the DTDMap algorithm suggest combining every single
child node in a DTD, to its parent node, if it appears in its parent at most once. We
call this operation inlining. A node is said to be inlinable if it has exactly one parent
node, and its cardinality is not equal to either “*” or “+”. An inlinable node is mapped
with its parent node into the same table. Hence, we reduce the number of tables and
consequently the average number of joins for queries. As an example, given the DTD
in Figure 1, tel, fax, and website are inlinable to their common parent dep.

DTDMap algorithm takes a DTD as input and produces a relational schema as
output. In addition, it outputs mapping functions σ, θ, and δ between XML elements
and attributes in the input DTD, and corresponding tables and relational attributes in
the output schema. For example,

M. Rege et al. 170

• σ(e) maps an element type to a corresponding relational table.
Therefore, σ(univ) = univ, σ(colleges) = univ, etc.

• θ(a) maps an XML attribute to a relational attribute.
Therefore, θ(uName) = uName, θ(dName) = dName, etc.

• δ(e) maps a leaf element to a relational attribute.
Therefore, δ(tel) = tel, δ(fax) = fax, etc.

univ

uName colleges schools

college school

depcName

tel fax websitedName

sName

* *

* *

Fig. 1. The DTD graph of univ.dtd

In the above examples, some mappings happened to be identity mappings. This is
not always the case in practice; they can be general enough and used to resolve name
conflicts. For a more detailed explanation of the schema mapping algorithm, we refer
the reader to [11].

The XML document is modeled as an XML element DOM tree in which nodes
represent XML elements and edges represent parent-child relationships between ele-
ments. The root of the DOM tree is the top-level element, which does not have any
incoming edges. The DOMTree for univ.xml is shown in Figure 2. The ID next to the
nodes is the ID that XInsert assigns (or does not assign) to each node. Elements those
are not inlined to some other element get a unique ID for themselves. In univ.xml ex-
ample, colleges is inlined to univ while website and tel are inlined to their respective
dep nodes.

The XInsert algorithm accepts DOMTree, DTDGraph and Schema mappings σ, θ,
δ as input. The algorithm visits every node of the DOMTree and populates the rela-
tional database by generating the necessary INSERT SQL statements. As providing
intricate details of the algorithm here is not possible due to lack of space, in Figure 3
we directly show the state of the database for univ.xml after both algorithms run com-
pletely. A complete discussion of XInsert can be found in [12].

Querying XML Documents from a Relational Database in the Presence of DTDs 171

3 Proposed Solution

In this section, we will first begin by establishing the notations used, followed by a
detailed discussion of the algorithm with the help of our running example univ.xml.

<?xml version=”1.0” ?>
<!DOCTYPE univ SYSTEM “univ.dtd”>
<univ uname = ”WSU”>

<colleges>
<college cname = ”Science”>

<dep dname = ”CS”>
<website>

www.cs.wayne.edu
</website>

</dep>
</college>
<college cname = ”Engineering”>

<dep dname = ”ECE”>
<tel>313-577-3920</tel>

</dep>
<dep dname = ”IE”>
</dep>

</college>
<college cname = ”Pharmacy”>
</college>

univ(uName=”WSU”)

college
(cName=”Science”)

college
(cName=”Pharmacy”)

dep
(dName=”ECE”)

dep
(dName=”IE”)

dep
(dName=”CS”)

college
(cName=” Engineering”)

colleges

website
(”www.cs.wayne.edu”

)

tel
(”313-577-3920”)

ID = 1

ID = 2 ID = 4

ID = 5

ID = 3

ID = 6 ID = 7

Fig. 2. Sample XML document univ.xml and its DOMTree

3.1 Notations and Functions Used in the Algorithm

• A typical XML Path expression has the following syntax:
Path :: = /Step1/Step2/…./StepN where each step can be defined as follows:
Step :: = Axis :: Node-test Predicate*
Predicate :: = '[' PredicateExpr ']'
The Axis specifies the direction in which the document should be navigated.
The PredicateExpr specifies the selection criteria for the query.

• For our work we will consider the default ‘child’ axis, ‘/’ and ‘//’ operators, and
we only allow predicate in the last step. Therefore a step considers all child nodes
of the context node.

• A Query Element e is characterized by an ID, a name, and its path. These proper-
ties were associated to e at the XInsert time; e.ID is equal to h.ID if e is an inlin-
able element and e is inlined to h, otherwise e has a new ID; e.path is the absolute
path of the element in the DOMTree.

M. Rege et al. 172

U niv
ID n o d e typ e u N a m e

1 un iv W S U

S cho o l
ID sN a m e

C o lleg e
ID cN a m e

2 S c ience
3 E ng in ee ring
4 P h a rm ac y

E d ge
p a ren tID ch ild ID p a ren tT yp e ch ild T yp e
1 2 un iv co lleg e
1 3 un iv co lleg e
1 4 un iv co lleg e
2 5 co llege d ep
3 6 co llege d ep
3 7 co llege d ep

D ep
ID n o d e typ e d N a m e te l fa x w eb site
5 d ep C S n u ll nu ll w w w .c s .w a y ne .ed u
6 d ep E C E 3 1 3 57 7 39 2 0 nu ll nu ll
7 d ep IE n u ll nu ll nu ll

Fig. 3. State of database after univ.xml is stored using XInsert

3.2 Our Approach

We introduce a table called pathtable(element, ID, path, attribute) to the relational
schema. This table can get populated when the XInsert algorithm parses the XML
document, and it stores the element name, element ID, path from the root to get to the
element (absolute path) and attributes (if any). Incase, we have two or more attributes,
then a delimiter like semicolon can be used to separate them. The following equations
hold among values in path column (1) and ID column (2):

child.path = parent.path + “/” + child.name (1)

f.ID = e.ID if the f is inlinable to e
(2)

The pathtable for univ.xml is shown in Figure 4. This table is used extensively by
our algorithm to obtain IDs of the elements based on some criteria such as the path,
attribute, etc. The basic idea is to first query the pathtable to retrieve all elements sat-
isfying the input path expression. Each element is then processed based on whether it
has been inlined and possibly exists as an attribute of a relational table or non-inlined
and exists as an independent table in the relational schema.

The algorithm (see Fig. 5) accepts as inputs an XML based Path query, and and
θ mapping functions that result from the XInsert algorithm. The goal of our algorithm
is to let the user query the XML document that has been shredded and stored in the re-
lational database created previously. To achieve this, we convert the original Path
query into SQL, query the database, and convert the returned result set into XML,
which is then returned back as an output. The resulting XML fragment is the union of
all XML subdocuments obtained for all elements satisfying the input query (line 10 of
Fig. 5).

Querying XML Documents from a Relational Database in the Presence of DTDs 173

pathtable
element ID path attribute
univ 1 /univ uName="WSU"
colleges 1 /univ/colleges null
college 2 /univ/colleges/college cName="Science"
college 3 /univ/colleges/college cName="Engineering"
college 4 /univ/colleges/college cName="Pharmacy"
dep 5 /univ/colleges/college/dep dName="CS"
dep 6 /univ/colleges/college/dep dName="ECE"
dep 7 /univ/colleges/college/dep dName="IE"
website 5 /univ/colleges/college/dep/website null
tel 6 /univ/colleges/college/dep/tel null

Fig. 4. Pathtable for univ.xml

Algorithm

1. Input: Path query, , θ mappings
2. Output: Result of the query in XML format
3. begin
4. sql = null;
5. resultSet = null;
6. elemSet = GetQueryElements(query);
7. for each QElement e in elemSet do
8. processElement(e);
9. end for

10. return ∪ returnXML(e);
End Algorithm

Fig. 5. Main Algorithm

Function GetQueryElements (pathQuery q)
1. elemSet = empty set;
2. sql = GenSQL(q);
3. resultSet = database.execute(sql);
4. while resultSet.isNotEmpty()
5. create new QElement e;
6. e.ID = resultSet(“id”);
7. e.name = resultSet(“element”);
8. e.path = resultSet(“path”);
9. add e to elemSet;
10. end while
11. return elemSet;

End Function

Fig. 6. Function GetQueryElements

GetQueryElements function in line 6 of Figure 5 takes the user Path query as a pa-
rameter and returns the XML elements to be queried on (see Fig. 6). For instance,

M. Rege et al. 174

GetQueryElements(/univ/colleges/college/dep) will return all the dep elements under
/univ/colleges/college.

GenSQL function in line 2 of Figure 6 has been defined to generate a SQL state-
ment in order to query the pathtable to get the corresponding query elements. Its pa-
rameter is also the input Path query (see Fig. 7).

Function GenSQL (pathQuery q)
1. whereClause = null;
2. sql = null;
3. if q has steps of the form '//'<ElementName> then
4. replace '//' by '/%' ;
5. if q has a Predicate in the Last Step then
6. whereClause = “path like ” + simpleQuery +

+ “ and attribute like ” + predCond;
7. else
8. whereClause = “path like ” + q;
9. end if
10. sql = “select element, id, path from pathtable ” +

+ whereClause;
11. return sql;

End Function

Fig. 7. Function GenSQL

The line 3 of the above subroutine deals with paths having empty steps // where
the node and all its descendants will be returned. For example, a Path query “e1//e2”
yields the SQL statement

“select element, id, path from pathtable
where path like ‘/e1/%e2’”

which will extract e2 but also e3 with e3.path = “/e1/e3/e2”.
In lines 5-9, we construct the where clause for each of the following cases:

• Line 6 constructs a where clause for path queries that have an attribute predicate in
the last step, i.e. values of attributes as selection criteria are used to retrieve the
XML elements. We call simpleQuery the query without predicate, in other words
simpleQuery = Step1/Step2/…/StepN.
For example, /univ/colleges/college[@cName=“Science”] will return the college

element that has attribute cName with value “Science” and has a path of
/univ/colleges/college from the root of the XML document to its location. Here
“cName=Science” is the predCond. The pathtable is queried to get the IDs of all
query elements that not only have the path specified in the query but also satisfy the
attribute condition. A SQL statement for the above Path query would be:

“select element, id, path from pathtable
 where path like ‘/univ/colleges/college’
 AND attribute like‘cName=Science’”

• Line 8 constructs a where clause for path queries that do not have attribute predi-
cate in the last step. For example, /univ/colleges/college/dep will return all the dep

Querying XML Documents from a Relational Database in the Presence of DTDs 175

elements having this path from the root to their location in the XML document.
The corresponding translated SQL is:

“select element, id, path from pathtable
where path like ‘/univ/colleges/college/dep’”

The next step in our algorithm is to get the content of the query elements from the
relational database (line 8 of Fig. 5). In order to do that, each element is tested for
inlinability to an ancestor by a recursive function processElement (see Fig. 8).

Function processElement(QElement e)
1. returnXML(e) = “<” + e.name + “>”;
2. if e <> (e) then /* e is inlined */
3. returnXML(e) = processInlinedElement(e);
4. else /* e is not inlined, so e has its own table
5. returnXML(e) = processNonInlinedElement(e);
6. end if
7. childrenSet = e.getChildren();
8. if childrenSet.isNotEmpty() then
9. for each child c in childrenSet do
10. returnXML(e) = returnXML(e) + processElement(c);
11. end for
12. end if
13. returnXML(e) = returnXML(e) + “</” + e.name + “>”;
14. return returnXML(e);

End Function

Fig. 8. Function processElement

After establishing whether the element was inlined or not during the XInsert op-
eration, the corresponding method is called: processInlinedElement or processNon-
InlinedElement. If the element has children in the DOMTree, the XML subtree rooted
at each child element will be added to the final result recursively. Due to space limita-
tions, instead of providing the complete function algorithm, we present a brief de-
scription of the following two functions

• Function processInlinedElement (QElement e). This function first checks if the
query element is a relational attribute of a table of a different element. In such a
case, the function simply queries the required column and constructs an XML
fragment to return. On the other hand, there could be an element that is inlined to
some other element but does not contain any PCDATA (dummy elements). When
such an element happens to be a query element, then the function returns the
empty string;

• Function processNonInlinedElement (QElement e). This function retrieves the con-
tent of a leaf element, stored in a PCDATA column of its table. If the non-inlined
element has children, they will be processed one by one by the processElement
function.

Both functions make use of the element ID. The ID and the path uniquely identify
the query element. The difference consists in the name of the column that is being
queried.

M. Rege et al. 176

4 Experimental Results

We ran our experiments on a Windows XP machine with a 2.4 GHz Pentium proces-
sor and 256MB of RAM. The algorithm was implemented in Java and the XML data
was stored and queried using the Oracle9i database system. Three different pairs
(DTD, XML document conforming to the DTD) were considered as input. For each
document we formulated a complete set of queries and computed the average time to
get the answer to a simple query, as well as to a query with predicate in the last step.
Table 1 illustrates the performance of our algorithm.

Table 1. Algorithm performance

The answer time is function of the number of elements that satisfy the query,
which in turn depends on the size of the query. A simple path query of size 1 will
have only one step and will retrieve the whole document under the root element. This
is the most expensive case, since all elements have to be processed. A simple path
query of size equal to the depth of the DOMTree will extract only the content of the
leaf nodes. Therefore, we expect this to be the fastest answer for queries without
predicates. For a query of intermediate size, we included in our experiments both pos-
sibilities: the last step node is or is not leaf. For example, given the Sigmod Records
DTD, there are three possible path queries of size 3: “/sigmodrecord/issue/articles”,
“/sigmodrecord/issue/volume”, “/sigmodrecord/issue/number”; volume and number
are leaf nodes.

The performance will improve in case the input path query has a predicate in the
last step. As the predicate translates in a selection criterion, the cardinality of the set
returned by GetQueryElements function (see Fig. 6) becomes, in most situations,
smaller. For example, if there exists an attribute id, which uniquely identifies an ele-
ment e, GetQueryElements (“/…/e [@id = ‘value’] ”) will output at most one element
and the answer to that query will be the XML fragment rooted at e. Of course, the
time complexity still depends on the depth of the last step element in the DOMTree.

5 Conclusions and Future Work

We presented an algorithm to query XML documents that are stored in a relational
database using the algorithms presented in [11, 12]. We achieve this by converting
the original path query into SQL queries. The SQL queries are then used to query the
relational database. The query results are then tagged and converted into the XML
format and returned back to the user. An algorithm to query XML from a relational
database using a schema less approach has been discussed in [10]. However, our

Average time (sec)
XML

Document

Number of
elements

Number of
attributes

Max depth Simple Query Query with

predicate
ubid.xml 342 0 5 4.7 -
sigmod.xml 1580 1 6 154.7 2.7
reed.xml 5716 0 4 453.1 -

Querying XML Documents from a Relational Database in the Presence of DTDs 177

work falls in the schema-aware category. Our contribution has been to query inlined
XML documents from a relational database in the presence of DTDs.

As future work, apart from looking into the optimization issues pertaining to our al-
gorithm we would like to extend our algorithm to work with XQuery and XPath queries.
We also plan to integrate this work to build a larger XML-RDBMS query system.

References

1. Tamino XML Server. Software AG. http://www.softwareag.com/tamino
2. eXtensible Information Server (XIS). EXcelon Corporation. http://www.exln.com
3. Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D.: XML-QL: A Query Lan-

guage for XML (August 1998)
4. Robie, J., Lapp, J., Schach., D.: XML Query Language (XQL) (1998) http://w3.org/

TandS/QL/QL98/pp
5. Goldman, R., McHugh, J., Widom, J.: From Semistructured Data to XML: Migrating the

Lore Data Model and Query Languages (1999).
6. World Wide Web Consortium: XML Path Language (XPath), Version 1.0, W3C Recom-

mendation (Nov 1999)
7. Chamberlin, D., Florescu, D., Robie, J., Simeon, J., Stefanascu, M.: XQuery: A Query

Language for XML (February 2001) http://www.w3.org/TR/xquery
8. Florescu, D., Kossmann, D.: Storing and Querying XML Data using an RDMBS. IEEE

Data Engineering Bulletin, Vol. 22930 (1999) 27-34
9. Varlamis, I., Vazirgiannis, M.: Bridging XML-Schema and Relational Databases: A Sys-

tem for Generating and Manipulating Relational Databases using Valid XML Documents.
In the proceedings of ACM Symposium on Document Engineering, Atlanta USA (Nov.
2001)

10. Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Sheikta, E., Zhang, C.: Storing
and Querying Ordered XML using a Relational Database System. ACM SIGMOD 2002,
June 4-6, Madison, Wisconsin, USA (2002)

11. Lu, S., Sun, Y., Atay, M., Fotouhi, F.: A New Inlining Algorithm for Mapping XML
DTDs to Relational Schemas. In Proc. of the First International Workshop on XML
Schema and Data Management, in conjunction with the 22nd ACM International Confer-
ence on Conceptual Modeling (ER'2003). Lecture Notes in Computer Science, Vol. 2814,
Chicago, Illinois, USA (2003) 366--377

12. Atay, M., Sun, Y., Liu, D., Lu, S., Fotouhi, F.: Mapping XML Data to Relational Data: a
DOM-Based Approach. In Proc. of the 8th IASTED International Conference on Internet
and Multimedia Systems and Applications (IMSA'2004). Kauai, Hawaii, USA (August
2004)

13. Manolescu, I., Florescu, D., Kossmann, D.: Answering XML Queries over Heterogeneous
Data Sources. In VLDB (2001)

14. Shanmugasundaram, J., Kiernan, J., Shekita, E. J., Fan, C., Funderburk, J.: Querying XML
Views of Relational Data. In VLDB (2001)

15. Shanmugasundaram, J., Shekita, E., Kiernan, J., Krishnamurthy, R., Viglas, S., Naughton,
J., Tatarinov, I: A General Technique for Querying XML Documents using a RDBMS.
SIGMOD Record, 30(3) (2001)

16. Krishnamurthy, R., Chakravarthy, V., Kaushik, R., Naughton, J.: Recursive XML Sche-
mas, Recursive XML Queries, and Relational Storage: XML-to-SQL Query Translation. In
ICDE (2004)

SAQI: Semantics Aware Query Interface

M.K. MadhuMohan, Sujatha R. Upadhyaya�, and P. Sreenivasa Kumar

AIDB Lab
Department of Computer Science and Engineering,

Indian Institute of Technology Madras - India
{madmohan, sujatha, psk}@cs.iitm.ernet.in

Abstract. In this paper we present a conceptual framework and the
implementation details of a semantic web tool named SAQI (Semantic
Aware Query Interface) that enables querying across structurally dis-
parate XML documents that use the vocabulary from a shared ontology.
Through this tool we provide an interface for querying the web pages of
a group of participants with common interest who have agreed to use the
common base ontology for publishing their data. Our interface guides a
naive user in his querying process. It helps him to formulate his queries
and retrieve semantically correct information from the web pages of this
user group.

Keywords: Semantic Web, querying the web, ontologies.

1 Introduction

Often we find many web pages floated on World Wide Web by different estab-
lishments, with a particular domain as their focus. Anyone interested in finding
information relevant to him in the domain, is expected to perform a search and
browse through each of these pages to gather relevant information. A web search
tool which can understand the semantics behind the vocabulary it encounters
in a web page and semantically interpret the terms in this web document could
prove to be extremely useful. Such a tool would also demonstrate the enormous
advantages offered by the semantic web over the current web. Semantic web is
proposed to be built on a foundation of ontologies. Semantic web efforts consist
of building ontologies, deploying them on the web and developing applications
that are ontology aware. The first two steps require enormous effort on standard-
ization. We simplify this problem by assuming the existence of a small group of
organizations that has reached a consensus on an ontology. This paper presents
a search tool that is ontology aware and demonstrates the methodology for this
group to migrate to the semantic web.

Our system provides a common gateway to query information provided by a
group of participating establishments who are at liberty to publish the informa-
tion in the form of their choice. Our application SAQI (Semantics Aware Query
Interface) does not require that the web pages adhere to some strict structure or

� Supported by Infosys Technologies Limited.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 178–193, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

SAQI: Semantics Aware Query Interface 179

meta data representation. Our system assumes that web sites of the participat-
ing establishments are built on a XML base and use vocabulary specified in the
ontology that has been agreed upon [1]. We intend to solve the problem of seman-
tic interoperability and present a methodology for smooth migration to semantic
web by making use of the presently available languages and tools for querying
XML [2]. In this process, we attempt to establish the limits of semantic interop-
erability, as deciphered from an ontology that is represented in a tree model.

Since all members of the group follow one ontology, we do not consider the
issues relating to ontology integration. We do assume an open world assumption,
that the information is never complete. New organizations are allowed to join the
group provided, they use the shared ontology. All web pages that uses the vocab-
ulary from an ontology qualify as valid target documents for a search using SAQI.

2 Motivation

Here we have tried to focus our research on a methodology that will facilitate
a smooth migration from the current Web to semantic web by making use of
existing web technologies. The task of building standard Ontologies and sharing
them among a group of users can be looked upon as the starting point of the
intended migration to the semantic web. It would be easier for small groups to
come to consensus on an ontology than trying to establish standard ontologies
that are globally accepted. In this context we may consider groups of users like
manufactures of specific products like computers, cameras, cellular phones, who
reach their audience through World Wide Web, by publishing complete detail
about their products. Educational Institutions also reach prospective students
through World Wide Web. In such environments it is easier to establish the
concepts and relations among them and agree upon their use.

While XML documents are finding their place on the WWW, it would be
difficult to call the evolving XML query systems as user friendly. In support
of our pursuit for finding a method for smooth migration to semantic web, we
build a query interface between a naive user and XML query engines. The query
interface provides the same functionality of a Web Search tool in the semantic
web. The XML query engine is expected to handle the web sites based on XML
documents which in turn use the vocabulary from the shared ontology. The
query interface uses the inference rules provided by the ontology to achieve
the semantic interoperability. Thus prospective students interested in enrolling
for programs offered by a group of participating academic institutions can use
the interface provided by SAQI to retrieve semantically relevant information
provided by these institutions without having to browse through the individual
web pages of each institution.

3 Overview

We assume that a group of organizations have found a common ontology suitable
for representing information about themselves. We call this a Base ontology. One

180 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

method of deployment would be to let the organizations populate the ontology
by adding their own individuals for the concepts defined in the ontology. One
can use a suitable ontology editor, preferably Protege [3], to add individuals to
the ontology. SAQI provides a module called ‘OntoXML’ to convert the OWL
file to an XML file populated with instances under the Class/concept tags. This
Class hierarchy tree which is in the form of a XML document itself can provide
full information about that particular organization and act as a base for the
organization’s web site. This method of ontology deployment requires minimal
effort. On the other hand this gives little scope for extending the ontology.

Alternatively, the organizations can be allowed to extend the base ontology
without violating any existing concepts. The organization is allowed to define
new concepts based on the existing concepts and introduce a new term to refer
to an existing concept. This offers greater flexibility at the cost of an additional
effort to understand and modify ontologies suitably. Once the modified ontol-
ogy is ready, one can use the OntoXML Module of SAQI as mentioned above
and initiate participation in this system. The two methods discussed, provide
a single document that has to be queried by SAQI to extract information from
a particular web site. However, one can also directly float any number of XML
documents that conform to the specified Base ontology to present the informa-
tion. Again, one can choose to extend the base ontology either by instantiation
or by creating new concepts.

The current version of SAQI supports the first method of ontology deploy-
ment where the ontology itself is not extended. However the web sites are ex-
pected to be based on a set of XML documents conforming to the ontology rather
than a single XML document. SAQI when presented with a base ontology, con-
verts it in to a user friendly directory like interface through which a naive user
can easily present his query. The user’s query is semantically enriched based on
inference rules from the ontology and formatted to an XML query syntax. An
XML query engine performs the query operation using this query string over the
set of XML documents that represents the web sites adhering to this ontology
and returns all the semantically relevant results to the user.

4 Background and Related Work

There have been efforts in the past to initiate participation into semantic web [4]
[5] [6] [7]. Structuring data on the web and so laying a foundation for inter-
operable web sites of the future has been the very purpose of all these efforts.
OntoBroker, the system discussed In [6] uses ontologies to derive DTDs, which
are later used for accessing documents and Mangrove, the system presented in
[4], uses an annotation tool for creating semantic data, where as our application
creates an annotated XML document, the ontology equivalent XML tree, which
is used as a base for querying. Our system provides much stronger inference
mechanism, supporting all aspects of ontology representation discussed in OWL
Lite [8]. The earlier systems like OntoBroker capture hierarchy among concepts
and do not dwell much on other inferencing efforts. None of the above approaches

SAQI: Semantics Aware Query Interface 181

provide a ontology supported interface that guides the user in querying. We take
a different approach for initiating participation into semantic web by providing
a common interface for semantically inter-operable web sites. What makes our
system unique is the integration of the current web technologies to facilitate
a smooth migration to semantic web and demonstrate a intelligent web search
system in a manner not yet attempted before.

5 System Architecture

SAQI uses ontologies written in OWL [8] [9] [10] and created using Protege [3].
In this document we describe the system functionalities with the an example aca-
demic ontology developed by us using Protege. Ontology refers to a shared and
common understanding of a domain. The Base Ontology contains the complete
description of concepts and relationships in the domain. Ontology uses Classes to
represent concepts. A Class defines a group of individuals that belong together
because they share some properties. The Figure 1 shows the architecture of SAQI.

The Semantic Extractor has two sub modules called OntoXML and Inference
module. This module preprocesses the Base Ontology to create the output doc-
uments as shown in the Figure 1. Internally, the OntoXML module converts the
the base ontology written in OWL into an equivalent XML document that repre-
sents the the ontology in a tree structure. This tree structure, called ”Ontology
Equivalent XML Tree” is used by the Inference module to create the OntoIndex.
This in turn is used by SAQI to perform reasoning over an ontology. In a sense it
is an attempt to come up with a completely decidable set from given assertions.

Fig. 1. System Architecture

182 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

The OntoQuery module operates at runtime and has three modules within.
The ’Query Interface’ that serves an interface between the user and the system
provides a GUI that guides the user in querying through the ontology. It provides
a directory like structure, which is actually created from the “Ontology Equiva-
lent XML Tree” that was generated by the OntoXML module. The “Query Con-
verter” uses the inferred results stored in the OntoIndex data structure which
are nothing but the synonyms for the vocabulary defined by the ontology and a
set of identifiers for instances based on the Class name. The index is stored in
XML query language syntax for ease of use later. The user’s query is re writ-
ten using OntoIndex and passed it on to a XML Query Engine. The prototype
uses “Galax XQuery Engine” [11]. The Galax Query Engine performs the query
over the target XML documents that are tagged with the vocabulary from the
ontology.

6 Semantic Extractor

As seen in the Figure 1 the Semantic Extractor with its two components the
OntoXML and the and the Inference module are the major actors in the Pre-
processing phase.

6.1 OntoXML

This module accepts an ontology in the form of an OWL file. ontology uses a
Graph model. When we perceive the ontology as a graph, the Classes will be
nodes in the graph. Object properties become edges which lead from Class nodes
to another Class node. dataTypeProperty leads to some other nodes which are
Classes of primitive data types.When we instantiate such a Base Ontology it
becomes a knowledge base. With these instances we need to replace Class nodes
by a node for each instance of the Class. Here the primitive datatypes assume
some values and become leaf nodes. Such a graph becomes much more complex
than the ontology graph without instances.

We construct a XML file from this ontology which captures the the taxonomy
of Classes described by the ontology. The Classes are created as elements with
the same name in the XML file and are called Class elements. Figure 2 given
above shows a snippet of OWL code and the equivalent tree representation. The
OntoXML module annotates the Class elements with certain attributes which de-
pict the characteristics of these Classes in the ontology. Notable among these are
disjointness, union, intersection with other Classes. Once the Class hierarchy is
captured as a Tree Structure, Class elements are also annotated with an attribute
for indicating their equivalence with any other Class. These attributes come
handy while creating the index for identifying the instances of these Classes.

The OntoXML module then selects all the dataType and Object properties
described in the ontology. Properties are used to state relationships between
individuals or from individuals to data values. The properties have a Domain
and Range Class specified in the ontology. A Domain of a Property limits the

SAQI: Semantics Aware Query Interface 183

Money

Remuneration

Scholarship

Tree Representation

<owl:Class rdf:ID="Fees">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Money"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="Remuneration">
 <rdfs:subClassOf rdf:resource="#Money"/>
 </owl:Class>
 <owl:Class rdf:ID="Scholarship">

 <owl:Class rdf:about="#Remuneration"/>
 </rdfs:subClassOf>
 </owl:Class>

 <rdfs:subClassOf>

Owl Code

Fees

Fig. 2. Class Hierarchy Captured as Tree

individuals to which the Property can be applied . Similarly the Range of a
Property limits the individuals that the Property may have as its value.

These properties are inserted as child elements of the Class elements that
correspond to the Domain of the properties in the Tree structure. Henceforth we
shall refer to these elements as Domain Class elements and Property elements
respectively. The Class name indicating the Range of each of the Property are
added as an attribute to the Property elements for easy reference. If a Property
has multiple Domains it is inserted as a child element under each of its Domain
Class elements. The special characteristics of the Property such as being func-
tional, symmetric, transitive etc are also indicated as attributes to the Property
element.

The OntoXML then captures the synonyms of Property names by searching
for the owl:equivalentProperty tag from the ontology. The equivalent Property
are indicated under the respective Property elements as child elements of a tag
“equivalent”. The Property elements from the Domain Class elements are per-
colated down to all its child elements which correspond to some Classes in the
ontology to capture their inheritance characteristic. In the case of ObjectProperty
elements the dataTypeProperty elements from its Range Class are also added as
child elements to ObjectProperty element.

To summarize the “Ontology Equivalent XML Tree” stores the Classes as
elements, the properties under the Classes as their sub elements. Property Char-
acteristics and Range are added as attributes to the Property elements. Figure
3 illustrates this with some Classes,ObjectProperty and dataTypeProperty de-
scribed in OWL and corresponding output of OntoXML Module. The OntoXML
captures all the restrictions associated with a Class. The restrictions are added
as child elements to the Class elements. These restrictions provide many infer-
ences which are used to construct the OntoIndex. Like in the case of properties
the restrictions are also percolated down to all sub Class elements.

184 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

The XML file created acts as the input to the Query Interface module. To
avoid forming queries which do not conform to the ontology it will be worth
while to adjust the tree depending on the local restrictions imposed on the
Classes by the ontology. Therefore if the cardinality constraint on a Class re-
stricts a Property not to occur under it, the Property element is deleted from the
child elements of the Class element. Similarly the cardinality of one will imply
a child Property element to be functional. The attribute indicating functional-
ity is reset accordingly. Figure 4 illustrates this for Class School and Property
offersPrograms which is an appropriate example of such a case.

6.2 Inference Module

An ontology populated with instances becomes a knowledge base. Normally rea-
soners make inferences from the knowledge base using pre defined rules. We
assume that in an XML file that follows an ontology, the instances of a Class
will appear as text nodes under a tag bearing their parent Class name. There-
fore to achieve the aim of semantic interoperability the query system has to infer
from the instances it encounters in any XML document as to which Class they
are of. Listed below are few of the rules and some of the inferences that can be
made from the ontology based on these rules.

Sub Class. Classes are organized in a specialization hierarchy using subClassOf
construct in OWL. In Figure 3, for instance the Class “PostGraduateProgram” is
a sub Class of “Program”. If “M Tech Computer Science” is an instance of Class
“PostGraduateProgram”, it can be inferred to be an instance of “Program” as well.

<owl:Class rdf:ID="PostGraduateProgram">
 <rdfs:subClassOf rdf:resource="#Programs"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="haveCoreCourses">
 <rdfs:range rdf:resource="#Course"/>
 <rdfs:domain rdf:resource="#Programs"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="hasCredit">
 <rdfs:domain rdf:resource="#Course"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
 </owl:DatatypeProperty>
 <owl:ObjectProperty rdf:ID="fees">
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Programs"/>
 <owl:Class rdf:about="#Facility"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#Fees"/>
 </owl:ObjectProperty>
 <owl:DatatypeProperty rdf:ID="value">
 <rdfs:domain rdf:resource="#Money"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>
 <owl:equivalentProperty>
 <owl:DatatypeProperty rdf:about="#amount"/>
 </owl:equivalentProperty>
 </owl:DatatypeProperty>

<PostGraduateProgram type="Class">
 <haveCoreCourses type="objectProperty" range="Course">
 <hasCredit type="dataProperty" range="int"/>
 </haveCoreCourses>
 <fees type="objectProperty" range="Fees">
 <value type="dataProperty" range="float">
 <equivalent dataProperty="amount"/>
 </value>
 </fees>
</PostGraduateProgram>

 owl code snippet

Tree representation in XML

Fig. 3. Property Representation in Class Tree

SAQI: Semantics Aware Query Interface 185

<owl:Class rdf:ID="School">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality>
 >0</owl:cardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#OffersPrograms"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf rdf:resource="#AcademicInstitution"/>
 </owl:Class>
 <owl:Class rdf:ID="College">
 <rdfs:subClassOf rdf:resource="#AcademicInstitution"/>
 </owl:Class>
 <owl:ObjectProperty rdf:ID="OffersPrograms">
 <rdfs:range rdf:resource="#Programs"/>
 <rdfs:domain rdf:resource="#AcademicInstitution"/>
 </owl:ObjectProperty>
 <owl:SymmetricProperty rdf:ID="coOperatesWith">
 <rdf:type rdf:resource="http:/#FunctionalProperty"/>
 <rdf:type rdf:resource="http://#ObjectProperty"/>
 <rdfs:range rdf:resource="#AcademicInstitution"/>
 <rdfs:domain rdf:resource="#AcademicInstitution"/>
 </owl:SymmetricProperty>

<AcademicInstitution type="Class">
 <College type="Class">
 <OffersPrograms type="objectProperty" range="Programs"
 functionalType="false" domain="AcademicInstitution"
 Hierarchy="inherited"/>
 <coOperatesWith type="objectProperty" range="AcademicInstitution"
 functionalType="true" symmetricProperty="true"
 domain="AcademicInstitution"/>
 </College>

 <School type="Class">
 <coOperatesWith type="objectProperty" range="AcademicInstitution"
 functionalType="true" symmetricProperty="true"
 domain="AcademicInstitution"/>
 <restriction property="OffersPrograms" restrictionType="cardinality"
 occurence="0"/>
 </School>

 <OffersPrograms type="objectProperty" range="Programs"
 functionalType="false" domain="AcademicInstitution"/>
 <coOperatesWith type="objectProperty" range="AcademicInstitution"
 functionalType="true" symmetricProperty="true"
 domain="AcademicInstitution"/>
</AcademicInstitution>

Equivalent Optimised tree representationOWL Code Fragment

Fig. 4. Optimization Based on Local Restrictions

Domain. If a Property relates an individual to another individual and the Prop-
erty has a Class as one of its Domains, then the individual must belong to the
Class. From the owl code snippet in the same figure, we can observe that Do-
main of ObjectProperty “haveCoreCourses” is “Programs”. If we encounter in
the course of a search a statement in a target XML file like

<A>X<haveCoreCourses>...</haveCoreCourses>
we can infer that X is a instance of “Program” although A is not explicitly
written as “Programs”.

Range. If a Property relates an individual to another individual, and the Prop-
erty has a Class as its Range, then the other individual must belong to the
Range Class. In the same example Range of ObjectProperty “haveCoreCourses”
is “Courses”. From this we can infer “Advanced DataBases” to be an instance
of “Course” Class when we encounter XML code of type

<A>X
<haveCoreCourses>Advanced DataBases</haveCoreCourses>

Equivalent Classes. Two Classes may be stated to be equivalent. Equality
can be used to create synonymous Classes. If Classes A and B are equivalent,
an instance of Class A will always be an instance of Class B.

AllValuesFrom Restriction. The restriction allValuesFrom is stated on a
Property with respect to a Class. It means that this Property on this partic-
ular Class has a local Range restriction associated with it. From the figure 5 we
see that core courses for “MastersProgram” are from the Class “PostGraduate-
Courses”. Therefore from a XML code of form

186 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

<owl:Class rdf:ID="MastersProgram">
 <rdfs:subClassOf rdf:resource="#PostGraduateProgram"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom rdf:resource="#PostGraduateCourse"/>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#haveCoreCourses"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 </owl:Class>

<owl:Class rdf:ID="MastersStudent">
 <rdfs:subClassOf rdf:resource="#PostGraduateStudent"/>
 <owl:equivalentClass>
 <owl:Restriction>
 <owl:onProperty>
 <owl:ObjectProperty rdf:about="#appliedForProgram"/>
 </owl:onProperty>
 <owl:someValuesFrom rdf:resource="#MastersProgram"/>
 </owl:Restriction>
 </owl:equivalentClass>
 </owl:Class>

AllValuesFrom Restriction SomeValuesFrom Restriction

Fig. 5. AllValuesFrom

<MastersProgram>X
<haveCoreCourses>Semantic Web</haveCoreCourses>
</MastersProgram>

we infer that ”Semantic Web” is an instance of “PostGraduateCourse”. However
such an inference cannot bedrawn fromthe “someValuesFrom” restriction.We can
only say that instances of Class “MastersStudent” will have at least one instance
from the Class “MastersProgram” against the Property “appliedForProgram”.

Same Individuals. Two individuals may be stated to be the same. OWL con-
struct <owl:sameAs> depicts synonymity between any two individuals. These
constructs may be used to create a number of different names that refer to the
same individual. If X is an instance of Class “A” and X is “sameAs” Y we can
infer that Y is also an instance of Class “A”.

We use these inference rules to pre process the “Ontology equivalent XML
Tree” constructed by the OntoXML module and generate OntoIndex, a Thesaurus
of vocabulary used in the ontology and a quick index to identify instances based
on Class names . Thus from the Base Ontology all the information required for
the inferences except for the “Same Individuals” case are available. We also make
use of the equivalent properties which were discovered and stored in the tree.

The data structure used for the OntoIndex is a hash table, and uses the
Class/property name as the key and all the synonyms for it duly separated by the
character ’|’. The hash table is stored in a file and loaded at run time . Figure 6
shows the hash table populated with the synonyms for the Classes/Properties
seen in earlier examples. The data to the left of = is the key and to the right
the corresponding synonym. Properties which are functional can occur as an
attribute to the Class element in the target XML document since they take a
single instance as their value. The application takes care of this aspect while
rewriting the query. In case of same instances, if the information is available as
part of the ontology they are also added to the hash table.

7 OntoQuery Module

This module with its subparts Query Interface and Query Converter come into
play at run time.

SAQI: Semantics Aware Query Interface 187

PostGraduateCourse = PostGraduateCourse

PostGraduateStudent = PostGraduateStudent|MastersStudent

PostGraduateProgram = PostGraduateProgram|MastersProgram

 |MastersProgram/haveCoreCourses
Course = Course|(Programs|PostGraduateProgram|MastersProgram)/haveCoreCourses

MastersStudent = MastersStudent
AcademicInstitution = AcademicInstitution|College|School|
 (AcademicInstitution|College|School)/coOperatesWith
School = School
College = College
Programs = Programs|PostGraduateProgram|MastersProgram
 |(AcademicInstitution|College|School)/OffersPrograms

MastersProgram = MastersProgram
Money = Money|Fees|Remuneration|Scholarship
 |(Programs|PostGraduateProgram|MastersProgram)/fees
Fees = Fees|(Programs|PostGraduateProgram|MastersProgram)/fees
 |Facility/fees
Remuneration = Remuneration|Scholarship
value = value|amount
amount = amount|value

Fig. 6. OntoIndex

7.1 Query Interface

The query interface uses the “Ontology equivalent XML Tree” created and
stored as XML file by the OntoXML module. In general SAQI supports
two types of queries. In the first case we want to retrieve all instances of a
particular Class say all Academic Institutions. We could also make the
query more specific by retrieving the instances that are targeted using a
Class/ObjectProperty construct such as instances of Programs specified by
AcademicInstitution / offersPrograms. In the second case we may
specify a condition such as name of an instance against the ObjectProperty
or a value against a dataTypeProperty such as Programs /fees /amount =
“100”.

In the query interface the user is guided to form the query using the tree
view generated from the ontology equivalent XML document. Once the user se-
lects a node,it is translated to a query string which at most can be of form
Class/object Property/dataTypeProperty. The user can specify the query cri-
teria by using boolean operators and string values in a text box. The query
interface diagram shows a screen snap shot of SAQI in execution. Some addi-
tional optimization apart from those done by the OntoXML module are also
performed. For example if a Class has a local restriction ”hasValue” on a Ob-
jectProperty it may be wiser to prevent a naive user from entering values against
this property which do not exist in any document with out violating the on-
tology. In such cases the property is not displayed at all under the concerned
class.

188 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

Fig. 7. Query Interface

7.2 Query Converter

The Query Converter needs to do a “Semantics enriched rewriting” [12].
This rewriting needs to be done using a sufficiently expressive XML query lan-
guage so that intended inference mechanism is easily built in to the query
where necessary. The query converter uses the OntoIndex created and stored
by the Inference module. The query string formed by the user using Query In-
terface is first tokenized. Each token forms a string which is replaced by the
synonym for the string from the OntoIndex. For a user generated query of
the form Course/hasCredit the tokeniser creates two strings “Course” and
“hasCredit”. The converted query consists of each of these strings replaced
by its synonym and rewritten as a XQuery Statement. Therefore the query
PostGraduateCourse/hasCredit=′4′ is rewritten as following XQuery
statement

for $b in ./root//(PostGraduateCourse|(Programs|
PostGraduateProgram|MastersProgram)
/haveCoreCourses)/hasCredit
where $b/text()=’4’
return $b

Unlike any other search engines or XML query engine, such a rewritten query
which has been semantically enriched automatically can retrieve both the fol-
lowing sets of XML data. This would not have been possible without semantic
enrichment.

SAQI: Semantics Aware Query Interface 189

<PostGraduateCourse>ADB<hasCredit>4</hasCredit>
</PostGraduateCoursesCourse> and <PostGraduateProgram>
MCA<haveCoreCourses> CO<hasCredit>4</hasCredit>
</haveCoreCourses></PostGraduateProgram>

Although in this example it may appear that a XQuery string such as ”//has-
Credit” rather than the elaborate string as shown above can also easily retrieve
this result, such a query conversion may also end up retrieving invalid results
(may retrieve undergraduate courses as well). The query conversion mechanism
of SAQI guarantees semantically valid results based on the ontology and it is one
of the most significant advantage offered by SAQI. If the property “hasCredit”
is functional then it can occur as an attribute in a target XML document. This
can happen only for the property which is the last token in a query string. In
that case query is rewritten as

for $b in ./root//(Course|(Programs|PostGraduateProgram|MastersProgram)
/haveCoreCourses)
where $b/hasCredit/text()=’4’ or $b/@hasCredit=’4’
return $b

Similarly a query of form Programs/fees/value=’100’ is written as
for $b in ./root//(Programs|PostGraduateProgram|MastersProgram|

(AcademicInstitution| College|School)/OffersPrograms)/fees/(value|amount)
where $b/text()=’100’
return $b

In case the query involves an ObjectProperty and ObjectProperty has some
characteristics like transitive, symmetric, inverse functional or functional the
query has to be handled differently. For example to evaluate a query such as
“find all academic Institutions that coOperate with IIT Madras”,
the user would have have formed the query string AcademicInstitution/
coOperates With =IIT Madras. Since the property “coOperatesWith” is
symmetric both the following XML code fragments should satisfy the query.

<AcademicInstitution> IIT Mumbai
<coOperatesWith> IIT Madras</coOperatesWith>
</AcademicInstitution> and

<AcademicInstitution> IIT Madras
<coOperatesWith> IIT Delhi</coOperatesWith>
</AcademicInstitution>

Such a query can be expressed as
for $b in ./root//(AcademicInstitution|College|School)/coOperatesWith
where $b/text()=’IIT Madras’
return $b/parent::*/text() union
for $a in ./root//AcademicInstitution|College|School
where $a/text()=’IIT Madras’
return $a/coOperatesWith /text()

190 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

If the same property “coOperatesWith” was transitive rather than symmet-
ric we need to find the transitive closure of all the binary relations involving
the ObjectProperty “coOperatesWith”. This can only be established after the
query engine evaluates the entire set of target XML documents. SAQI has the
capability to handle queries involving such properties as well.

Inferring two individuals to be same also need to be done more often while
querying. This inference can be made either because of a OWL “SameAs” con-
struct or relations involving inverse functional properties. There again the target
set of XML documents may have to be searched twice. In some situations we
may need to handle real time systems or XML documents whose contents vary
dynamically. In all such cases we may be able to avoid multiple passes over the
target set of XML documents by treating them as streaming XML data [13].

All the examples illustrated so far are nearly equivalent to replacing a broad
term by union of narrow terms or a super Class element name by union of
subClass element names, using the knowledge the application extracts from the
ontology. It is also possible to replace a subClass by super Class. From the
“someValuesFrom” example illustrated in Figure 5, we can say that if an instance
X of class “PostGraduateStudent” has a Property element “appliedForProgram”
and the Property element in turn points to an instance under class “MastersPro-
gram”, then the instance X is an instance of Class “MastersStudent”. This is true
only because of the equivalent class statement used in this OWL code snippet.
This inference rule can be represented in the form of following XQuery string.

let $c :=./root//MastersProgram/text()
for $a in ./root//PostGraduateStudent
let $b :=$a/appliedForProgram/text()
where $b=$c
return $a/text()

Thus an instance of the super Class has satisfied the necessary and sufficient
condition for the subClass and therefore is retrieved as an in instance of subClass.

If we replace the “someValuesFrom” by a “allValuesFrom” restriction, all we
need to do is re write the above query string in the following format.

let $c := ./root//MastersProgram/text()
for $a in ./root//PostGraduateStudent
let $b := $a/appliedForProgram/text()
where every $d in $b satisfies $d=$c
return $a/text()

Restrictions of type “hasValue” can be evaluated using simple equality ex-
pressions. SAQI can handle these as well. Similarly using the count() function
provided by XQuery, we can reproduce scenarios where cardinality restriction
have been specified locally for a class.

7.3 Query Engine

The rewritten query is passed on to the Query engine, in this case Galax, which
evaluates the query and returns the results. While deploying SAQI as a real time

SAQI: Semantics Aware Query Interface 191

system, it may be worth while to store these results for an finite time duration
especially for queries involving special properties such as transitive if the target
set of XML documents are likely to be static over a long time.

8 Performance

SAQI is a key concept demonstrator and a stepping stone toward semantic
web. The implementation has been done using existing technologies to aid in
a smoother migration to our vision of semantic web. We have made a deliberate
effort to identify grey areas and plan for a more dynamic and versatile future
version as discussed in subsequent sections.

8.1 Implementation

The Ontologies used to test SAQI were developed using the OWL Plug in, which
is a comprehensive OWL Editor based on the Protege ontology development plat-
form. The application uses the Java API for XML Processing (JAXP) to parse
the OWL file and transform it to XML documents. The required information is
extracted by searching for particular OWL keywords in the ontology. The appli-
cation also uses XPath queries with the help of XPath packages [14] available in
J2SE 1.4 whenever it makes it easier to select a set of nodes. Since the source
document is a Protege OWL-Plug in created OWL file, the application follows
the syntax used by the Plug in as the base OWL constructs in order to extract
the semantics from the ontology. For the querying part the application relies on
the Java APIs provided by the Galax XQuery engine.

We have created an ontology to represent the domain describing the Academic
Institutions and an extended version of Camera ontology [15]. We tested the
application using structurally dissimilar XML documents conforming to these
ontologies. SAQI was able to retrieve semantically equivalent results from this
diverse set of target XML documents for a variety of queries. Some details of
SAQI is available at ”http://aidb.cs.iitm.ernet.in/projects.html”.

8.2 Limitations

The performance of SAQI is largely dependent on how best an ontology written
in OWL, that inherently follows a graph structure can be successfully represented
by a tree. When we try to create an equivalent tree representation of the base
ontology we are forced to make a conscious decision to leave out certain paths in
the graph. Other wise the query interface or the query conversion becomes far too
complex even for the query engine to handle after conversion. The Query Inter-
face of SAQI does not allow you to follow an ObjectProperty edge and reach an-
other Class node. We can not specify a query of the form Class/ObjectProperty/
Class/dataType Property. We can only specify the name of an instance against
an ObjectProperty as illustrated earlier. We also restrict ourselves to a maximum
of two object properties to occur consecutively while using the inference rules
in Query conversion. To amplify this point further consider the example below

192 M.K. MadhuMohan, S.R. Upadhyaya, and P. Sreenivasa Kumar

for $b in ./root//(Programs|PostGraduateProgram|MastersProgram|
(AcademicInstitution|College|School)/OffersPrograms)
/fees/(value—amount) where $b/text()=’100’ return $b”

The two Object properties that occur consecutively are “OffersPrograms”
and “fees”. We do not replace the string

(AcademicInstitution|College|School) with
(AcademicInstitution|College|School)/coOperatesWith

by again looking up the OntoIndex though such a path is very much legal when
we construct a graph of the ontology populated with instances. We impose this
restriction to simplify the process of query conversion and interface building
without inconveniencing a naive user. It would be pertinent to point out that
such a restriction is unlikely to affect the retrieval of correct results from a valid
set of XML documents if these documents are created as per the methodology
suggested in the earlier section.

Although it appears that the querying options available to the user is limited,
the interface can be easily modified to allow users to specify conjunctions and
disjunctions. This involves modifying the query interface and building these into
the query conversion module.

8.3 Future Work

The current version of SAQI supports ontologies conforming to OWL Lite spec-
ification. While advancing to an OWL DL complaint version some additional
issues are likely to come up. For example an ObjectProperty can have multiple
Classes as its Range. In such a case we can not infer apriori that an instance
associated with this property is of a particular Class. We have to reason out from
a set of Classes which form the Range of the property and identify the particular
Class of which the instance is a member. Issues like multiple inheritance will also
need some changes to construction of the tree from ontology.

In the future versions of SAQI it is proposed to validate target XML doc-
uments and the instances that are returned as results against the ontology or
constraints specified for their parent Class. We intend to extend SAQI to a Web
Search Portal which permits query formulation based on natural language.

9 Conclusion

This paper discusses the implementation details of an application named SAQI, a
tool for querying the semantic web. It is developed with a motivation for provid-
ing an interface for querying web pages that share common ontology. Internally,
the Semantics Extractor module creates an XML document that well represents
an ontology. This document is then used for building the OntoIndex, a data-
structure that stores the mapping rules. User poses queries through an ontology
guided Query Interface. The so formed queries are rewritten using information
captured in the OntoIndex and Ontology Equivalent XML Tree. The rewritten

SAQI: Semantics Aware Query Interface 193

query is then passed on to a Galax Query Engine, which retrieves semantically
relevant information that match the query from XML documents. The present
version supports querying ontologies written in OWL Lite. We intend to extend
this to support OWL DL in future.

References

1. Hendler, J., Parsia, B.: XML and Semantic Web. XML Journal (2002)
2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web -From Relations to

Semistructured Data and XML. Morgan Kaufmann (2000)
3. http://protege.stanford.edu: Protege:an ontology editor. (2004)
4. McDowell, L., Etzioni, O., Gribble, S.D., Halevy, A., Henry Levy, W.P., Verma,

D., Vlasseva, S.: Mangrove: Enticing Ordinary People onto the Semantic Web via
Instant Gratification. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: International
Semantic Web Conference. Number 2870 in Lecture Notes in Computer science,
Sanibel Island, Florida, USA, Springer-Verlog (2003) 754–770

5. J. Hefflin, J.A. Hendler, S.: A prototype language for the semantic web. Electronic
Transactions on Artificial Intelligence 5 (2001)

6. Erdmann, M., Studer, R.: How to structure and access XML Documents with
ontologies. Data and Knowledge Engineering (2000)

7. Decker, S., Erdmann, M., Fensel, D., Studer, R.: OntoBroker: Ontology Based ac-
cess to distributed and semistructured information. In: Eighth Working Conference
on Database Semantics. (1999) 351–369

8. Smith, M.K., Welty, C., McGuinness, D.H., eds.: OWL Web Ontology Language
Guide. W3C Proposed Recommendation (2003)

9. Bechhofer, S., Harmelen, F.V., Hendler, J., Horrocks, I., Guinness, B.L.M., Patel-
Scheider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. (2003)

10. Costello, R.L.: Using OWL to avoid Synatactic Rigor Mortis.
http://xfront.com/avoiding-syntactic-rigor-mortis/ (2003)

11. Fernandez, M.F., Siméon, J., Choi, B., Marian, A., Sur, G.: Implementing XQuery
1.0: The Galax Experience. In: VLDB 2003:29th International Conference on
Very Large Data Bases, Berlin, Germany, Morgan Kaufmann Publishers (2003)
pp. 1077–1080

12. Erdmann, M., Decker, S.: Ontology aware XML Queries. In: Technical report 410,
University of Kalsruhe, Institute AIFB. (2001)

13. Peng, F., Chawathe, S.S.: XPath Queries on Streaming Data. In: ACM SIGMOD,
San Diego, CA (2003)

14. http://www.w3.org/TR/xpath: XML Path Language. W3C Recommendation
(1999)

15. http:protege.stanford.edu/plugins/owl/owl-library/: (Owl ontology library)

Hybrid-Chord:
A Peer-to-Peer System Based on Chord

Paola Flocchini, Amiya Nayak, and Ming Xie

School of Information Technology and Engineering,
University of Ottawa,

800 King Edward Avenue,
Ottawa, ON K1N 6N5, Canada

{flocchin, anayak, mxie}@site.uottawa.ca

Abstract. In this paper, we present a new model for a peer-to-peer sys-
tem based on Chord, called Hybrid-Chord, to improve the routing per-
formance and data availability of Chord. Our main focus is on reducing
the number of hops that is needed to locate a data item. Through sim-
ulations, we demonstrate the improvement of the routing performance
and fault tolerance capabilities of the proposed system and compare that
with the original Chord system. The hybrid system can reduce the num-
ber of lookup hops significantly by up to 50% compared to Chord, is
robust and handles node failures better than Chord, can always find the
desired data with high probability and has better data availability than
Chord. Above all, the hybrid system has same complexity as Chord.

1 Introduction

Peer-to-peer systems can share the computing resources and services by directly
communicating within a widely distributed network such as the Internet. Thus,
it is important that these systems are scalable and can efficiently locate, in as
few hops as possible, the node that stores the desired data in a large system. In
other words, reducing the hop count is extremely important from the cost and
performance point of view. Furthermore, nodes must be able to join and leave
the system frequently without affecting the robustness or the efficiency of the
system, and the load must be balanced across the available nodes.

Earlier P2P systems employ a single index server (Napster[10]) or flooding-
based mechanism (Gnutella[8] and Freenet[9]) to search desired data, which are
not suitable for large systems. Most latest P2P systems, including Chord[1],
Content-Addressable Networks (CAN)[2], D2B[4], Tapestry[5], Pastry[6] etc.,
use distributed hash tables(DHT) to support scalability, load balancing and
fault tolerance. All these systems employ a distributed hash table that maps
names/keys to values and that is used as a supporting lookup service. DHTs
manage the distribution of data among the dynamic network, and allow nodes
to contact any participating node in the network to find any stored resource by
keys.

In P2P systems, the number of lookups for desired data is significantly high
which means that locating data efficiently can save huge network communication

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 194–203, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Hybrid-Chord: A Peer-to-Peer System Based on Chord 195

resource. On the other hand, with the development of computer technology, local
storage expense becomes negligible. Thus, it is worth consuming some extra
storage to obtain efficient routing performance.

In this paper, we present a new model for a peer-to-peer system based on
Chord, called Hybrid-Chord, to improve the routing performance and data avail-
ability of Chord. Our main focus is on reducing the number of hops that is needed
to locate a data item. Through simulations, we demonstrate the improvement of
the routing performance and fault tolerance capabilities of the proposed system
and compare that with the original Chord system. The hybrid system can reduce
the number of lookup hops significantly by up to 50% compared to Chord, is
robust and handles node failures better than Chord, can always find the desired
data with high probability and has better data availability than Chord.

2 Hybrid-Chord System

Chord[1] is a peer-to-peer lookup protocol known for its simplicity, provable
correctness and performance. Unlike Chord which uses one ring with a successor
list of size Ω(log n), where n is the number of nodes, we propose a peer-to-peer
syetem, called Hybrid-Chord or simply Hybrid system, which has the following
two key features: multiple chord rings overlayed one top of the other and multiple
successor list of constant size. The multiple chord rings system and the successor
list system could be employed independently as a peer-to-peer model. More
details on the hybrid system can be found in [11].

2.1 Multiple Chord Rings

We overlay k Chord rings one top of the other to generate a virtual network to
speedup data lookup and make the system more robust. The idea is based on
the fact that, if several Chord rings are overlayed, one could choose, at each step
of the lookup, the best Chord ring to achieve better routing performance. Each
node has k identifiers and every identifier logically corresponds to a location
in one Chord. Each data item has a unique key and is mapped into the same
location on different virtual Chord rings. In other words, there are k identifiers
for a node, and the node is located in k logical Chord rings with different location.
Since in each Chord, every data item owns only one key and is located at the
same location on different Chord rings, then there are k replicas of each data
item distributed in k different nodes that are in charge of its location on different
Chord rings in the overlay network. We will often refer this as k−Chord model.

Figure 1 shows a k-Chord model for k = 2. In the figure, every node has two
identifiers (Id1, Id2), where Id1 is the identifier in the first Chord ring and Id2
is the identifier in the second Chord ring. For example, node 1 on the first Chord
ring has identifier 3 on the second Chord ring. Through these identifier pairs,
two virtual Chord rings are organized. On the other hand, each data item has
two replicas which are distributed in these two logical Chord rings. For example,
if a data item has key 5, then this data item is stored in nodes with identifier

196 P. Flocchini, A. Nayak, and M. Xie

(0, 7)

(1, 3) (2, 1)

(3, 4)

(4, 6)

(5, 2)
(6, 0)(7, 5)

Fig. 1. 2-Chord topology

pair (7, 5) and (5, 2), which means that if any identifier of a node’s k identifiers
matches a data item’s key, this node will have a replica of that data item.

Since each data item has k replicas that are distributed in k Chord rings, a
lookup request will try to find the numerically closest one to satisfy the query.
At each hop during a lookup, the local routing information is used to select
the current closest one to route the request. Thus, a search may switch from
one Chord to another to speedup routing by choosing the closest replica of the
desired data item at each step.

In overlaying k Chord rings, one of the fundamental problems is how to choose
the k identifiers of each node. Assuming the size of identifier name space is N ,
the nodes’ identifier name space can be expressed as R = (r0, r1, . . . , rN−1), and
we consider the name space of the first Chord ring to be R

0 = (0, 1, 2, . . . , N −1).
Thus, we can view all the possible nodes’ identifiers on the other Chord rings as
a permutation of R

0. A well-chosen permutation which could make routing more
efficient is desirable. Various permutations are possible, namely reverse permuta-
tion, shift permutation, random permutation, and modular permutation. We will
consider random permutation in which we rearrange the name space randomly
to generate the new name space for another Chord ring.

2.2 Multiple Successor Lists of Constant Length

Chord[1] uses a successor list of variable length to increase system robustness,
and CFS[3] uses it for data replication. In the hybrid system we propose, each
node maintains a successor list of size d, where d is a constant, containing the
node’s first d successors. Effectively, the total number of successor lists is equal
to the number of overlayed rings. The successor list contributes a lot for efficient
routing, failure recovery and data replication.

3 Data Lookup and Routing in Hybrid-Chord

In the hybrid system, each node maintains a k dimensional finger table and
a successor list of size d. During a lookup, each intermediate node resolves the

Hybrid-Chord: A Peer-to-Peer System Based on Chord 197

query and checks if the destination is located within the range of its position and
its last successor in the successor list on each Chord ring. If the destination is
located within one of those ranges, it finds the desired node and jumps directly to
that node; if not, it applies the greedy strategy to forward the query. The greedy
algorithm scans the k-dimensional finger table, finds the k predecessors of the
destination on the k Chord rings, and then chooses the node that is numerically
closest to the destination as the next hop node.

The k-Chord model reduces the distance between the source and the destina-
tion node sharply to within the first few hops, which also helps compressing the
node density between the current location and the destination. In other words,
the nodes located within the distance of the last few hops have shorter intervals
between each other, because if the distance is long enough, the lookup of the
k-Chord model may try to switch to another Chord ring that has stored a replica
much closer with high probability.

Although the k-Chord model may not locate the destination accurately within
the remaining distance through small hops, immediate successors as a part of
the routing table solves this problem by offering only one hop to locate the
destination directly if the destination is located within the range of successors.
The hybrid system achieves better performance than multiple Chords or multiple
successor lists alone. It is also helpful for fault tolerance and re-routing in the
event of failures.

4 Scalability

Since each node in the hybrid system needs to maintain a k-dimensional finger
table and a successor list of size d on each Chord ring, the joining/leaving cost
is O(k(log2n + d)). With k and d being constant (e.g., k = 4 and d = 20), the
total joining/leaving cost is O(log2n) which is the same in Chord.

When a new node joins the network, it can start from any node already in
the system. Through the start node, the joining node can recursively call the
join() function (same as in Chord) to find its immediate successor or to create
a new network if it is the first node to join the system. The newly joined node
will construct the connection to its predecessor and successor on each Chord
ring, and create the finger table and the successor list for each Chord ring.
Its successor on each Chord ring sends back the data associated with the keys
that belong to the new node. To guarantee the correct lookup process, every
node runs the stabilize() function (same as in Chord) periodically to refresh
its k-dimensional finger table, and ensures that the successor list and successor
pointers on each Chord ring are up to date with the evolution of the network.
When a node leaves, it transfers the data to corresponding successors on each
Chord ring before it departs; it also notifies its predecessor and successor on each
Chord ring to adjust their pointers. The successor lists of the related nodes are
refreshed periodically.

198 P. Flocchini, A. Nayak, and M. Xie

5 Fault Tolerance

5.1 Data Replication

The successor list mechanism helps data replication and places replicas in a way
that nodes can easily find them. We adopt the same replication scheme as CFS
in our model. The replicas of a data item are stored on r immediate successor
nodes of the target node that is responsible for the keys associated with the
data to increase data availability. Naturally, the number of replicas is smaller
than the length of the successor list r ≤ d. The target node keeps track of its
r successors and propagates data to new replicas automatically when it detects
that successors come and go.

Thus, in the hybrid system, replicas of a data item are stored in the same
location on k different Chords associate with its key and the d successors. The
priority of lookup for a data item is routed first to the numerical closest desti-
nation, if the target node failed, it re-routes to that node’s successor directly.
If all d successor nodes fail, it abandons this Chord ring, and re-routes to the
numerical closest Chords within the left valid Chords and does the same lookup
mechanism until it finds the desired data or all the nodes storing the replicas of
the data fail.

5.2 Failures and Recovery

In the event of random failures which affect the routing procedure on the inter-
mediate nodes along the lookup path, the strategy is to bypass the failed nodes
and choose the numerically closest alive node to the destination as the next hop
node from the k-dimensional finger table and the k successor lists.

Each node periodically checks every entry in its finger table and successor
lists: if there is a failure, it tries to find the failed node’s alive successor for
substitution. As time passes, the scheme will correct finger table entries and
successor list entries pointing to the failed node.

6 Experimental Results

We simulated the Hybrid-Chord system in C++ programming language. In the
experiments, the size of circle name space is N = 106. The number of nodes n is
varied from 100 to 18,000 or appropriately as needed. The n nodes are hashed by
their randomly generated IDs and distributed uniformly along the Chord ring.
In each simulation run, we choose 200 pairs of valid source nodes and desired
keys randomly. The simulation is repeated 100 times in each case to get average
value for the length of the lookup path (in hops).

6.1 Lookup Performance

We studied: (i) the effect of the number of multiple Chords (k) for a particular
permutation of name space (we have chosen random permutation in this paper),
(ii) the effect of the length of the successor list on the lookup performance.

Hybrid-Chord: A Peer-to-Peer System Based on Chord 199

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1

2

3

4

5

6

7

8

9
Random Permutation

Number of Nodes

A
ve

ra
ge

 N
um

be
r

of
 L

oo
ku

p
H

op
s

k=1
k=2
k=3
k=4
k=5
k=6

Fig. 2. Lookup Hops for Random Permutation

Figure 2 shows the lookup performance when we vary k from 1 to 6. A
performance improvement up to 30% is achievable depending on the value of
k. As we can observe, most switches happen within the first three hops of each
lookup. When k = 2, the average improvement is about 1.1 to 1.4 hops compared
to Chord (k = 1) for each lookup. When k > 2, the average improvement is only
about 0.5 hop with increase in k.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
1

2

3

4

5

6

7

8

9
Successor List Routing

Number of Nodes

A
ve

ra
ge

 N
um

be
r

of
 L

oo
ku

p
H

op
s

d=1
d=5
d=10
d=15
d=20
d=25

Fig. 3. Lookup Hops in Successor List of Different Sizes

In Figure 3, the length of the successor list (d) is varied from 1 to 25. The
n nodes are hashed by their random generated IDs and distributed uniformly

200 P. Flocchini, A. Nayak, and M. Xie

on the Chord ring. We can see from Figure 3 that we can achieve significant
improvement in the lookup performance for d up to 10. When d > 20, the per-
formance improvement becomes considerably insignificant. One simple example
can show the rationale behind choosing the successor list size = 20. Assume that
the size of the ring name space is 100,000, and the number of nodes is 10,000.
Through hashing function, all 10,000 nodes can be distributed uniformly on
the ring, which means the interval of two neighboring nodes is about 10. Thus,
10 ∼ 15 successors of a node can almost cover the distance about 100 ∼ 150
possible nodes close to it. The distances of the node’s finger nodes are about
20, 21,, 2i, ..., 2log N ; when i = 7, the distance is about 128 long (when i = 8,
the distance of 28 = 256 will request at least 256

10 ≈ 26 successors under ideal
case), and i < 4 will be covered by the first successor. So (7−3) = 4 hops distance
may be covered by the successor list with the length of 10 ∼ 15. However, in
real system, each hop can at least reduce half of the distance to the destination,
so in most of the lookups, the last 2 ∼ 5 hops can be merged into one hop by
successor routing list in the simulation. Basically, the reduction in lookup hop is
achieved regardless of the size of the name space since bigger space means one
successor will cover longer distance.

Overall, an improvement in the range of 26 - 40% is possible depending on
d and n. With k = 2, we get a lookup performance improvement in the range
30 - 50%. Similarly for d = 20, the improvement is in the range 38 - 53% which
is very significant. Therefore, k = 2, d = 20 seems to be a good combination for
the hybrid system.

6.2 Effect of Distribution Density

In Chord [1], the nodes are distributed uniformly along the Chord ring; hence,
the lookup performance depends only on the number of nodes in the network,
which means that if n is fixed, the node density has little effect on the routing
performance. We will see that this is also true for the hybrid system.

In our simulation, the number of nodes is fixed (i.e., n = 104), the size of the
name space N is varied from 20000 to 107, the number of Chord rings k is varied
from 1 to 4 and the length of the successor list is fixed (i.e., d = 20) as shown
in Table 1. The experiment indicates that the lookup path length increases very
little with N for each value of k. We, therefore, conclude that under uniform
node distribution, the routing cost of the hybrid system depends mostly on the
number of nodes (n) in the system and not on the size of the name space (N).

6.3 Effect of Simultaneous Node Failures

After a node in the hybrid system fails, some time will pass before the remaining
nodes react to the failure, by correcting their finger tables and successor pointers
and by copying replicas to maintain the replication. The hybrid system is able
to perform lookups correctly and efficiently before this recovery process starts,
even in the event of massive failure.

To test that, 1000 data items were inserted into a 1000-node system, each
data item having 6 replicas. For k = 2, d = 20, a fraction p (varied from 10%

Hybrid-Chord: A Peer-to-Peer System Based on Chord 201

Table 1. Effect of Distribution Density on the Hybrid System (d = 20)

N k = 1 k = 2 k = 3 k = 4
20000 5.26 4.34 4.06 3.87
50000 5.31 4.33 4.03 3.99
100000 5.38 4.49 4.11 3.91
1000000 5.41 4.58 4.25 4.01
10000000 5.48 4.70 4.31 4.10

to 50%) of all nodes were randomly chosen as failure nodes. After that, we
performed 10000 random lookups. For each lookup, we recorded if the lookup
was a success and if it was, we calculated the lookup path length. We then derive
statistics of the lookup success rate and the average lookup path length (only
for the successful lookups).

Table 2 shows the lookup failed rate when the failure fraction p varies from
10% to 50%, and the number of the successors r that store the data replicas.
The size of the successor list d = 20 in both systems. The result shows that
our hybrid system can always find the desired data with high probability, and
has a similar data availability as Chord. Table 3 shows the average lookup path
length when failures occur. The result indicates that the our hybrid system has
better lookup performance when failures occur. Based on the above observations,
we can claim that our hybrid system outperforms the Chord in handling node
failures.

Table 2. Hybrid and Chord Lookup Failure Rate

p(fraction of failure) 10% 20% 30% 40% 50%
Chord (k = 1, r = 6, d = 20) 0 0 0.002 0.010 0.016
Hybrid (k = 2, r = 3, d = 20) 0 0 0 0.009 0.014

Chord considers that if the successor list has length d = Ω(log n), both the
success rate and the performance of Chord lookups will not be affected even
by massive simultaneous failures. Furthermore, it has been shown that, if the
successor list of length d = Ω(log n) and every node fails with independent prob-
ability 1/2, the system can find the closest living desired node and the expected
lookup time is O(log n). However, with the evolution of the network, a node can-
not know the exact number of nodes existing in the network at a certain time.
More practically, in our model we use a reasonable constant number (d = 20) as
the length of the successor list. Assuming the independent failure probability of
a node is 1/2, the full failure for a successor list is (1

2)20 which is very small. It
means that the data items are always available with high probability.

The correctness of lookup scheme relies on the fact that each node knows its
successor. Failure nodes will result in incorrect successor pointers, and incorrect
successor will lead to incorrect lookup. To increase robustness, in the same way

202 P. Flocchini, A. Nayak, and M. Xie

Table 3. Hybrid and Chord Lookup Path Length for Failures

p(fraction of failure) 0% 10% 20% 30% 40% 50%
Chord (k = 1, r = 6, d = 20) 5.8 6.0 6.2 6.5 6.8 7.2
Hybrid (k = 2, r = 3, d = 20) 3.1 3.5 4.1 4.8 5.6 6.6

as Chord, each node maintains a successor list of size d, containing the node’s
first d successors. If a node’s immediate successor does not respond, the node can
substitute the second entry in its successor list. All d successors would have to
simultaneously fail in order to disrupt the Chord ring, an event that can be made
very improbable with modest values of d. Assuming each node fails independently
with probability p, the probability that all d successors fail simultaneously only
pd. Increasing the size d of successor list can strengthen system robustness.

7 Conclusions

Many recent P2P systems such as Pastry[6], Tapestry[5], Koorde[13], CAN[2]
try to increase base(prefix-based routing schemes) or degree to improve routing
performance. Hybrid-Chord system has efficient routing performance and good
balance of the routing performance and the storage overhead.

DKS[12] also applies multiple Chord rings to improve routing performance,
which is totally different from our Hybrid-Chord system. In DKS, a specified key
is stored in one certain node. At the beginning of the search, the search space
is equal to the whole identifier space. At each step of the search, the current
search space is divided into k equal parts. Each part is under the responsibility
of a well chosen node. This partitioning of the search space is repeated until the
k equal parts containing each only one element. This procedure can be viewed
as searching on multiple Chord rings, and each ring owns 1

k part of the former
ring. In Hybrid-Chord system, k replicas of a key are stored in k nodes which
distributed on k different logical Chord rings. Its performance improvement is
based on data redundancy and well-chosen name space permutation, while DKS’s
performance improvement is based on increasing logarithm base.

Hybrid-Chord system combines a multiple chord system and a successor list
system to improve the routing performance and system robust. The simulation
(see Table 4) shows that the hybrid system can reduce the lookup hops to 1

4 log n,
which is half of the Chord system. Actually, if we apply reverse permutation,
Hybrid-Chord can achieve significantly improvement with only one extra Chord
ring.

Table 4. Comparison of Hybrid-Chord with Chord

n = 1000 n = 5000 n = 10000 n = 15000 n = 18000
Chord 5.8 6.8 7.4 7.5 7.7
Hybrid (k = 4, d = 20) 2.5 3.4 3.9 4.1 4.2

Hybrid-Chord: A Peer-to-Peer System Based on Chord 203

References

1. I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications,” ACM SIG-
COMM, pp. 149-160, 2001.

2. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A Scalable Content-
Addressable Network,” Proceedings of ACM SIGCOMM, pp. 161-172, 2001.

3. F. Dabek, M. Frans Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-Area
Cooperative Storage with CFS,” Proceedings of the 18th ACM Symposium on Op-
erating Systems Principles (SOSP), 2001.

4. P. Fraigniaud, P. Gauron, “The Content Addressable Network D2B”, Technical
Report LRI1349, University Paris-Sud, 2003.

5. B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An Infrastructure for
Fault-tolerant Wide-area Location and Routing”, U. C. Berkeley Technical Report
UCB//CSD-01-1141, 2000.

6. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems”, Middleware’2001, Lecture Notes
in Computer Science Vol. 2218, pp. 329-350, 2001.

7. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, B. Zhao, “OceanStore: An
Architecture for Global-Scale Persistent Storage,” In Proceedings of the Ninth in-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000.

8. M. Ripeanu, I. Foster, and A. Iamnitchi. “Mapping the Gnutella Network: Prop-
erties of Large-Scale Peer-to-Peer Systems and Implications for System Design,”
IEEE Internet Computing Journal, Vol.6, 2002.

9. I. Clarke, O. Sandberg, B. Wiley, T.W. Hong, “Freenet: A Distributed Anonymous
Information Storage and Retrieval System,” In Proc. of the ICSI Workshop on
Design Issues in Anonymity and Unobservability, Berkeley, CA, 2000.

10. Napster, http://www.napster.com/.
11. M. Xie, “A Decentralized Redundant Peer-to-Peer System Based on Chord: Rout-

ing, Scalability, Robustness”, Masters Thesis, University of Ottawa, 2003.
12. Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi,“DKS(N, k, f):

A Family of Low Communication, Scalable and Fault-Tolerant Infrastructures for
P2P Ap- plications,” In The 3rd International workshop on Global and Peer-To-
Peer Computing on large scale distributed systems - CCGRID2003, 2003.

13. Frans Kaashoek, David R. Karger, “Koorde: A Simple Degree-optimal Hash Ta-
ble,” In 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03), pp.98-
107, 2003.

A Generic and Flexible Model for Replica
Consistency Management

Corina Ferdean and Mesaac Makpangou

INRIA Rocquencourt, France, BP 105, 78153 Le Chesnay Cedex

Abstract. This paper presents a flexible consistency model, aggregating
a parameterized representation common for all the models along the
spectrum delimited by strong consistency and eventual consistency. A
specific model, required by a particular Data Object, is derived from
this representation by selecting and combining the proper consistency
parameters values.

1 Introduction

The basic unit of replication and of consistency management, that we consider,
is the Data Object. A Data Object is basically a passive entity encapsulating
any data -representing the object’s state- and the operations for consulting and
manipulating that data -representing the object’s access interface-.

The problem we address consists in accommodating the suitable consistency
model for a particular Data Object, when it is replicated, with its replicas be-
ing accessed concurrently. The base hypothesis that we consider are the variety
of Data Objects and the heterogeneity, which happens in most cases, for the
services provided by the same Data Object. Although the existence of a spec-
trum of models delimited by strong consistency and eventual consistency has
already been identified [9], existing approaches remain too rigid with respect to
the consistency level they capture along this spectrum. For example, bounding
discrepancy observed when reading data and relaxing total ordering of concur-
rent updates could be both required by the same Data Object. However, at
our knowledge, there is no existing consistency framework which support this
combination. Also, not all update operation calls should be associated the same
propagation policy. Neither this particular flexibility feature is met throughout
the state of art on the consistency models.

2 Our Model Description

In order to meet various application needs, we define our model in two successive
steps. They provide, respectively, the model’s genericity and flexibility features.
The first step consists in identifying the different concerns of the consistency
aspect. We attach to each concern one or several parameters. The second step
consists in providing one or several options for each parameter.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 204–209, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Generic and Flexible Model for Replica Consistency Management 205

gid, gid1, gid2 identifying groups of accesses
consistency concern = liveness | safety
liveness = visibility | observed state quality
safety = pre-scheduling | scheduling

consistency model = {consistency constraint}
consistency constraint = visibility constraint | observed state quality constraint |
pre-scheduling constraint | scheduling constraint
visibility constraint = ([gid;] transfer instant)
observed state quality constraint = ([gid;] tolerated divergence)
pre-scheduling constraint = ([gid;] execution mode)>
scheduling constraint = ([gid1, gid2;] scheduling relation)

Fig. 1. Generic constraints on consistency concerns

2.1 Consistency Granularity

We define an access as an operation invocation, issued at a particular replica.
We define a group of accesses as a collection of accesses, related by some com-
mon attribute(s) (e.g. the operation identifier, the caller identifier, the replica
identifier). We define a special group named interface group, which contains all
the calls to all operations. According to its type, a consistency option can be
associated to a group of accesses (by default this is the interface group) or to a
pair of two groups of accesses.

2.2 Generic Consistency Constraints

We classify the consistency concerns hierarchically on two levels. On the first
level, we distinguish between liveness and safety concerns (Fig. 1) . A liveness
constraint enforces the progression of replicas towards an equivalent state. It
states that all operations issued at a replica should be transferred sooner or
later to all the peers. A safety constraint enforces replicas convergence by cor-
rect scheduling of the global set of operations, issued at different replicas and
which have to be applied all over. Scheduling aims to stabilize updates, by finding
their position within the global history. This is done with respect to conflicting
and/or non-commutative updates issued concurrently at peers. On the second
level, we refine a liveness concern into a visibility and an observed state quality
concern, and a safety concern into a pre-scheduling concern and a scheduling
concern. A visibility constraint targets the progression of peers towards the final
state, by enforcing the spreading of locally issued updates. An observed state
quality constraint targets the progression of the local replica towards a particu-
larly advanced state (in particular, the final state), by requiring relevant remote
updates to be pulled locally.

A visibility concern is parametrized by the transfer instant. It specifies when
the spreading of local updates should be proceeded. An observed state quality
concern is attached the tolerated divergence parameter. It specifies if a discrep-

206 C. Ferdean and M. Makpangou

transfer instant = “immediate” | lazy
lazy = sync lazy | async lazy
sync lazy = absolute clock time | relative clock time | <“periodical”, frequency> |
getTransferInstant()
absolute clock time = [0-12]”-”[00-31]”T”[0-23]”:”[0-59]
relative clock time = [0-12] months | [0-31] days | [0-23] hours | [0-59] min
frequency = {relative clock time}

async lazy = <“async push”, propagation conds>
propagation conds = checkPropagationConds() | gid1

tolerated divergence = “no divergence” | bounded divergence | “un-
bounded divergence”
bounded divergence = {metric-based option | dependency-based option}
metric-based option = <divergence metric, threshold>
divergence metric = “staleness” | “distanceToIdeal” | “maxTentative”
threshold = [-][0-9]+
dependency-based option = user session option | op dependency-based option
user session option = {“RYW” | “WW” | “WFR” | “RR” }
op dependency-based option = <gid2 [, areSemDependent()]>

execution mode = “pessimistic” | “optimistic”

scheduling relation = user-centric relation | order relation | getSchedRelation()
user-centric relation = “alternative” |“atomic” | <“conflicting”, resolution action>
order relation = “commutative” | “total order” | “real-time order” | “global order” |
“causal order” | “fifo order” | <“predecessor”, whoIsPredecessor>
whoIsPredecessor = “first” | “second” | getPredSucc()
resolution action = <“exclusive ” “any” | “first” | “second” | “both”> | <“merge”,
resolveConflicts()> | getResoAction()

by default : weight = 1, gid = 0, gid1 = 0, gid2 = 0, transfer instant = “im-
mediate”, tolerated divergence = “unbounded divergence”, execution mode = “pes-
simistic”, scheduling relation = “commutative”

Fig. 2. Available options for concerns parameters

ancy between the local replica and the real object state is allowed. If this is the
case, the parameter’s specification also includes a quantification of the discrep-
ancy which can be tolerated.

A pre-scheduling concern is configured with the parameter execution mode.
This parameter concerns updates which may generate conflicts or which are not
commutative with other updates.

A scheduling concern is tuned in with a scheduling relation parameter. This
parameter makes the distinction between the situations when concurrent up-
dates can be processed independently or not, due to potential conflicts or non-
commutativity, for example. If a member of the pair, to which a scheduling

A Generic and Flexible Model for Replica Consistency Management 207

relation is attached, is not specified, it is automatically substituted by the in-
terface group.

A group of accesses represents the granule for a visibility constraint, an ob-
served state quality constraint and a pre-scheduling constraint. A pair of groups
of accesses represents the granule for a scheduling constraint.

2.3 Consistency Parameters Options

Visibility Options. The options available for the transfer instant parameter
are: immediate and lazy (Fig. 2). The lazy option is further refined to include
synchronous and asynchronous propagation events. The former events associates
the moment of transfer to concrete time references that can be specified statically
and fixed or computed dynamically by means of a function getTransferInstant().
This function may perform the option computation, based on the object state
and/or on different accesses characteristics. A time reference is defined as an ab-
solute clock time or a relative clock time. The former represents a concrete point
in time, while the latter represents a reference relative to a given point in time
(e.g. an invocation issuance time). The most common lazy option is periodical.
The periodicity relies on the transfers frequency, defined in terms of relative clock
times between successive transfers. The function getTransferInstant() allows the
frequency value to be adjusted dynamically. The latter events corresponds to the
option “async push”, where the moment of transfer is decided based on certain
conditions propagation conds. These concern the local copy state (as checked by
the function checkPropagationConds() or the transfer of other updates gid1 (so
as to propagate the updates from the current group gid at the same time as
updates from gid1).

Observed State Quality Options. The parameter tolerated divergence pro-
vides one of the following alternative options: no divergence, bounded divergence
and unbounded divergence (Fig. 2). The former option claims for an always up-to-
date replica state, while the latter admits an isolated replica, with an arbitrary
stale state. A bounded divergence option is further specialized only into a metric-
based option and a dependency-based option. They characterize the particularly
advanced state, whom the current operation needs to observe. Precisely, they de-
termine if and what remote updates should be integrated within the local replica
state before the current operation, as it needs to observe their effects. A metric-
based option specifies couples, containing a divergence metric and a threshold
to be satisfied on the metric before the access could proceed. The divergence
metrics we support for now are: staleness, distanceToIdeal, maxTentative. They
are similar to the staleness, numerical error and order error metrics of TACT
[9]. There are two types of dependency-based options: user session option and
op dependency-based option. The option user session option includes the session
guarantees of Bayou [8]: RYW (Read Your Writes), WW (Monotonic Writes),
WFR (Writes Follow Reads), RR (Monotonic Reads). An option op dependency-
based option specifies the group with semantical dependencies for the accesses
from the current group. The actual dependencies are computed using a boolean

208 C. Ferdean and M. Makpangou

function areSemDependent(). It takes as arguments a pair of accesses and checks
the conditions for the first access to be semantically dependent to the second one.

Pre-scheduling Options. The parameter execution mode provides two alter-
native options: pessimistic and optimistic (Fig. 2). The former option defers the
application of updates until their final position within the history is decided. The
latter option allows updates to be applied tentatively before being scheduled.

Scheduling Options. The concrete scheduling relations between a pair of
groups of accesses can be specified once-forever or determined at run-time by
using the function getSchedRelation() (Fig. 2). A scheduling relation can be spe-
cialized into a user-centric relation and an order relation. We consider two types
of user-centric relations: alternative, atomic and conflicting. They relate two ac-
cesses which provide a non-deterministic execution choice (i.e. by executing one
of them), which require “all or nothing” execution (i.e. by executing either both
or none of them), respectively which may generate conflicts. Two updates are
said to be conflicting, if they are incompatible with respect to the user-expected
results. This means that at least one of the two updates can’t satisfy the user
request at all or return results which mismatch the user-intention, because of
the other update. The former situation happens usually due to a pre-condition
failure or to the violation of an object invariant. In this case, the pertinent reso-
lution action is to reject one of the two updates. The latter situation claims for
combining the updates or transforming one of them so as to provide the user-
intended results. This functionality is provided by the function resolveConflicts()
within the merge option of the resolution action parameter.

An ordering relation provides the following options: commutative, total order,
real-time order, global order, causal order fifo order, and predecessor. The latter
option can also be configured with a function getPredSucc(), specifying among
the two updates which one should precede the other, and if the precedence should
happen consecutively or it doesn’t matter.

3 Conclusion

In this paper we described a generic and flexible consistency model aimed to
accommodate the needs of various Data Objects. The features of genericity and
flexibility are obtained by designing the model in two successive steps. Firstly, we
provide a parameterized description of the consistency aspect, by decomposing
it into several concerns, and attaching to each concern one or several parameters.
Secondly, we identify for each parameter different possible options, to be specified
statically or computed at run-time. A specific model is derived from this repre-
sentation by selecting and combining the proper consistency parameters values.

References

1. R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in an information
retrieval system. TODS, 15(3):359– 384, 1990.

A Generic and Flexible Model for Replica Consistency Management 209

2. Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.
Spreitzer and Carl H. Hauser, Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System, Computer Science Laboratory, Xerox Palo Alto
Research Center Palo Alto, California 94304 U.S.A., SOSP 1995.

3. R. Ladin, B. Liskov, and L. Shrira. Lazy replication: exploiting the semantics of
distributed services. In Proceedings of the 9th ACM symposium on Principles of
Distributed Computing, pages 43–57, Quebec City, CA, August 1990.

4. A.M. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel. The IceCube approach
to the reconciliation of divergent replicas. In Proc. of Twentieth ACM Symposium
on Principles of Distributed Computing PODC, Newport, RI USA, August 2001.

5. S. Krishnamurthy, W. H. Sanders, and M. Cukier, An Adaptive Framework for Tun-
able Consistency and Timeliness Using Replication, Proc. of the 2002 International
Conference on Dependable Systems and Networks (DSN-2002).

6. Yasushi Saito and Marc Shapiro, Optimistic Replication. Microsoft Research Tech-
nical Report MSR-TR-2003-60, October 2003.

7. Sai Susarla and John Carter, Khazana: A Flexible Wide Area Data Store, {sai,
retrac}@cs.utah.edu UUCS-03-020 School of Computing University of Utah Salt
Lake City, UT 84112 USA, 2003.

8. D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M. Theimer and B. B.
Welch. Session guarantees for weakly consistent replicated data. Proceedings Third
International Conference on Parallel and Distributed Information Systems, Austin,
Texas, September 1994, pages 140-149.

9. Yu, H. And Vahdat, A. Design and evaluation of a continuous consistency model for
replicated services. In 4th Symp. on Op. Sys. Design and Implemen. (OSDI) (San
Diego, CA, USA, Oct. 2000), pp. 305 318.

An Efficient Distributed Scheme for Source
Routing Protocol in Communication Networks

Vijayalakshmi Hadimani1 and R.C. Hansdah2

1 Center for Development of Telematics, Bangalore - 560052, India
vijaya h@cdotb.ernet.in

2 Department of Computer Science and Automation, Indian Institute of Science,
Bangalore - 560012, India

hansdah@csa.iisc.ernet.in

Abstract. In this paper, we propose an efficient source routing algo-
rithm for unicast flows, which addresses the scalability problem associ-
ated with the basic source routing technique. Simulation results indicate
that the proposed algorithm indeed helps in reducing the message over-
head considerably, and at the same time it gives comparable performance
in terms of resource utilization across a wide range of workloads.

1 Introduction

QoS routing algorithms denote a class of routing algorithms that base path
selection decisions on a set of requirements or constraints, in addition to the
destination. QoS requirements are generally expressed in terms of bandwidth
constraint, end-to-end delay, total cost, delay jitter, packet loss probability etc.

QoS routing performance is sensitive to the accuracy of information used, the
network topology, and the network traffic characteristics. Source routing[1, 3],
distributed routing[5, 7] and Hierarchical routing[8] are the three basic tech-
niques used to compute the path satisfying QoS constraints. Flooding is another
approach for QoS routing. A few variants of this technique have been proposed
[4, 6]. However, all these techniques have both advantages and disadvantages [2].

The performance of a QoS routing algorithm is characterized by scalability,
resource utilization, connection setup time and flexibility. In this paper, we ad-
dress the scalability issue by dividing the network into smaller partitions. Only
the border nodes(defined in a later section) stores the link-state information of
the links within the partition. Therefore, the data stored at each node is signif-
icantly reduced. We improve the resource utilization by diverting the traffic to
the path which has the maximum residual bandwidth. The broadcast of link-
state messages is limited to the border nodes within the same partition, which
reduces the message overhead significantly.

Our approach can also be used for supporting multiple metric, and thereby,
providing flexibility. We present the algorithm for the widest path constrained
by the bandwidth, though it can be used for other QoS attributes also. We use
the call blocking ratio and the message overhead as the performance metrics to
compare the different algorithms.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 210–216, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Efficient Distributed Scheme for Source Routing Protocol 211

2 Problem Statement

The network is modelled as a directed graph G = (V, E), where V denotes the
set of nodes, E denotes the set of edges(links). Any two nodes in the network
are directly connected by at most one link e = (u, v) ∈ E, which connects the
two nodes u and v, where u, v ∈ V . The links are assumed to be symmetric and
are associated with various metrics such as cost C(e), available bandwidth B(e)
and delay D(e). These metrics may take any non-negative real value.

We define a path from a node v0 to a node vk as P (v0, vk) = v0, v1, v2, .., vk,
where ei = (vi−1, vi) such that ei ∈ E for 0 < i ≤ k.

For a given source node s and a destination node d, there can be more than
one distinct paths. Let PSsd denote the set of all these paths from source node s
and a destination node d and let PSsd = {P1(s, d), P2(s, d),Pn(s, d)}, where
Pi(s, d) is a distinct path from node s to node d. Available bandwidth of a path
Pi(s, d) is defined as:

Bandwidth(Pi(s, d)) = min (B(e))
∀e∈Pi(s,d)

Unicast Routing Problem: For a given source node s, a destination node
d and a constraint B for bandwidth, the unicast QoS routing problem for the
widest path is to find a path Pk(s, d), 1 ≤ k ≤ n such that Bandwidth(Pk(s, d))
is maximum and Bandwidth(Pk(s, d)) ≥ B.

3 The Distributed Source Routing Algorithm

The basic goal in the proposed algorithm is to address the scalability issue asso-
ciated with the source routing and the sequential search involved in the existing
algorithms.

We partition the network into disjoint sets of nodes. A partition can be con-
nected to one or more other partitions by the inter-partition links. Two partitions
can be connected by zero, one or more links. A node in a partition stores the
information about the nodes in each partition and the inter-connectivity among
the partitions in the network. The border nodes, in addition, store the link-state
information of the links in the partition. It is to be noted that a node does not
store the internal details of other partitions. An example network is shown in
Figure 1 where the network is divided into four partitions.

3.1 Definitions

Partition: A set of nodes or routers. Each node in the network belongs to a
partition and the partitions do not intersect.
Border Node: A node in a partition is a border node if it is attached to at
least one link that is connected to a node in another partition.
Border Link: A link that connects two border nodes such that each border
node belongs to different partitions.

212 V. Hadimani and R.C. Hansdah

Links in a partition

Border node

Node in a partition

Links connecting border router

A, B,C, D Partitions

D

C

B

A

Fig. 1. A sample network with partitions

Reduced Network Topology: This represents the basic connectivity of the
entire network hiding the internal details but sufficient enough to know the
reachability between partitions. The partitions are represented as nodes in this
graph. The border link(s) between any two partitions is represented as a link
between these nodes.

3.2 The Algorithm

The aim behind partitioning the network is to reduce the number of link update
messages. Each node stores the precomputed sets of border routers to each par-
tition to which query message has to be sent while finding the QoS path. These
sets do not change dynamically and is independent of the state of the network.
However, changes in these sets may appear due to joining of a border node to the
network or when a border node leaves the network, in which case, the topology
information stored at each of the nodes need to be updated. The entire routing
happens in three steps.

Step I: A connection request arriving at a node, specifies the destination node
and a set of QoS constraints. The source node sends a control probe PATH
QUERY to all the border nodes that have to participate in the path selection.
Step II: In response to the query message, the border nodes send PATH INFO
message. A PATH INFO message contains: the QoS metric of the best path to
the other border nodes in the partition satisfying the QoS constraint and, the
QoS metric of the border links. If the destination node is present in the partition,
the QoS metric of the best path to the destination node is included in the
PATH INFO message. Since the source node, if not a border node, does not have
the link-state information of the links in the partition, the border nodes return
the QoS metric of the best path to the source node in the PATH INFO message.
Step III: The source node waits till all the responses are received limited by a
TIMEOUT . As the source node receives the PATH INFO message, it builds
the reduced graph GR comprising of the border nodes in the network and the
destination node. The reduced graph is defined as

An Efficient Distributed Scheme for Source Routing Protocol 213

GR = {VR, ER, LSR| where VR is the set of nodes in the reduced graph,
ER is the set of links, and LSR is the link state matrix of the
reduced graph}

Using the reduced graph, the source node computes the best path to the
destination node.

The set of border nodes to reach a partition is precomputed and needs to be
re-computed only if a border node is deleted from the network or a new border
node is added. Therefore, we can assume that this set is static at all nodes. The
complexity of the algorithm is thus, the sum of complexity of computations of
the best path within the various partitions and of computing the feasible path
using the reduced graph at the source node.

4 Simulation Experiments

In this section, we have compared the performance of our algorithm (Distributed
source(ds) routing) with the following algorithms: Minimum-hop algorithm(mh),
Prune algorithm(prune), Widest-shortest path(wsp), Shortest-widest path(swp),
and Bounded Flooding(fld). All the above algorithms follow source routing ex-
cept the bounded flooding algorithm. We have adopted the call blocking ratio
and message overhead as the performance metrics.

4.1 Simulation Parameters

Simulations are carried for the expanded ANSNET topology given in Figure 2
[9, 4]. All links are bidirectional with a capacity of 12 units. We assume con-
nections arrive following an exponential distribution. The mean holding time
is considered to be exponentially distributed with a mean of 200 units. The
bandwidth requirement of a request is uniformly distributed between 1 and 5
units. We study two traffic patterns: balanced and unbalanced traffic. For un-
balanced traffic, five pairs in this topology are considered as hot spot pairs
with a probability of 0.8. For simulations, we divided the network into four
partitions.

19

10

18 21

25
15

16

12

26
27

28

20

23

29

32
30

3
7

8

11

2

4

5

6

14

13

24

22

17

1 D2

S4S1S0

D0

D3
D1

D4

S2

S3

9

31

Fig. 2. Expanded ANSNET topology

214 V. Hadimani and R.C. Hansdah

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

ca
ll

bl
oc

ki
ng

 r
at

io

offered load

wsp
mh

prune
fld

swp
ds64

(a)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

ca
ll

bl
oc

ki
ng

 r
at

io

offered load

wsp
mh

prune
fld

swp
ds64

(b)

Fig. 3. Call blocking ratio as a function of load offered, B ∈ [1, 5] and update interval = 64 units
of time: (a) evenly distributed traffic, (b) unevenly distributed traffic

4.2 Simulation Results

The performance of the algorithms with link state update interval of 64 units
is shown in figure 3. The graphs indicate that the performance of our algo-
rithm is comparable with that of other algorithms for both balanced and un-
balanced traffic. Figure 4 shows the call establishment overhead or the message
overhead for the algorithms under consideration. It is clear from the graphs
that our algorithm shows a tremendous improvement in reducing the message
overhead. This is because the link-state advertisement is now restricted to the
border nodes within a partition. However, the number of PATH QUERY mes-
sages increases with the load, which increases the total number of routing
messages.

5 Conclusions

In this paper, we have proposed a distributed source routing algorithm for uni-
cast flows, based on partitioning of the network. Simulation studies show that
the proposed algorithm reduces the message overhead considerably while main-
taining the routing performance for both balanced and unbalanced traffic load.

An Efficient Distributed Scheme for Source Routing Protocol 215

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 1 2 3 4 5 6 7

m
es

sa
ge

 o
ve

rh
ea

d

offered load

ds
wsp
mh

prune
fld

swp

(a)

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

0 1 2 3 4 5 6 7

m
es

sa
ge

 o
ve

rh
ea

d

offered load

ds
wsp
mh

prune
fld

swp

(b)

Fig. 4. Call Establishment overhead or the message overhead as a function of load offered, B ∈
[1, 5] and update interval = 64 units of time: (a) evenly distributed traffic, (b) unevenly distributed
traffic

Another key point to note about is that the proposed algorithm gives good per-
formance even at higher link-state update interval and at higher load. Future
work includes investigating the algorithm taking more than one QoS constraint
parameters or QoS optimization parameters into account such as end-to-end
delay, cost etc.

References

1. Z. Wang, J. Crowcroft. Quality-of-Service Routing For Supporting Multimedia
Applications. IEEE Journal of Selected Areas in Communications, September 1996

2. S. Chen and K Nahrstedt. An overview of quality-of- service routing for the next
generation high-speed networks: Problems and solutions. IEEE Network Magazine,
December 1998.

3. R. Guerin, A. Orda, and D. Williams. QoS Routing Mechanisms and OSPF Ex-
tensions. IETF Internet Draft, January 1998.

4. S. Chen, K. Nahrstedt. Distributed Quality-of-Service Routing in High-Speed net-
works based on Selective Probing. In Proc. of IEEE Local Computer Networks,
August 1998.

5. D. S. Reeves, H. F Salama. A Distributed Algorithm for Delay-Constrained Unicast
Routing. IEEE Transactions on Networking, April 2000.

216 V. Hadimani and R.C. Hansdah

6. D. Ghosh, V. Sarangan and Raj Acharya. Quality-of- Service Routing in IP net-
works. IEEE Transactions on Multimedia, June 2001.

7. Samphel Norden, Jonathan Turner http://citeseer.nj.nec.com/InterDomain.html.
8. ATM forum, private Network Network Interface(PNNI) v1.0 specifications, May

1996.
9. Yi Yang, Lei Zhang, J. K. Muppala, S. T. Chanson. Bandwidth Delay Constrained

Routing Algorithms. Computer Networks, Vol 42, January 2003.

The Roles of Ontology and Metadata Registry
for Interoperable Databases

Jeong-Oog Lee, Myeong-Cheol Ko, Woojin Paik, Heung Seok Jeon,
Junghwan Kim, Hyun-Kyu Kang, and Jinsoo Kim

Dept. of Computer Science, Konkuk University,
322 Danwol-dong, Chungju-si, Chungcheongbuk-do, 380-701, Korea

{ljo, cheol, wjpaik, hsjeon, jhkim, hkkang, jinsoo}@kku.ac.kr

Abstract. In order to make multiple autonomous databases to inter-
operate effectively, semantic heterogeneities have to be detected and
resolved. Another difficulty is that users can be allowed to handle in-
formation easily from different heterogeneous databases that refer to
the same real-world entity. To solve these problems, in this paper, I
present an information integration system for interoperable databases
using metadata registry and ontology. A metadata registry is a place to
keep facts about characteristics of data that are necessary for data shar-
ing and exchange in a specific domain. An ontology defines concepts and
relations among concepts. The purpose of the proposed architecture is to
define an information integration model, which combines characteristics
of both standard specification of metadata registry and functionality of
ontology for the concepts and relations.

1 Introduction

Many databases have been built or are being built to provide quality informa-
tion services. Their search functions are still insufficient, however, due to their
heterogeneity. It makes it difficult to enjoy a total integrated search. In order to
give users integrated access to those environments, we need an effective and effi-
cient mechanism for enabling knowledge to be shared and exchanged. Exchange
of knowledge, to be effective, must take place in an environment where it can
be ensured that an information source interprets the information in exactly the
same way as intended by the other sources. The information must also be easy
to locate and retrieve. This is only possible where the meaning and method of
representation of the information are known and agreed upon by the information
sources.

In this paper, using metadata registries, ontology, and agent technology, I
suggest an information integration system which frees users from the tremendous
tasks of acquiring domain knowledge and schema information of each database
and allows new databases to join in the system easily.

A metadata registry(MDR) is a place to keep facts about characteristics of
data that are necessary for data sharing and exchange in a specific domain[1].

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 217–226, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

218 J.-O. Lee et al.

An ontology defines concepts and relations among concepts[2]. Through concep-
tualization of data elements in MDRs and management of relations, ontology
can be used to resolve schema heterogeneity among concepts of data elements.
Data heterogeneity which is due to the differences of representation such as for-
mat, size, unit, and etc. among data elements can be resolved by constructing
knowledge base. In order to provide semantic mappings between data elements
using ontology and knowledge base, the system needs autonomous and intelligent
agents which act independently when new databases are added to the system.

The rest of this paper is organized as follows. In section 2, I discuss about
considerations for information sharing and address semantic heterogeneity. The
roles of ontology and metadata registry are described in section 3. In section
4, I suggest an information integration system for interoperable databases us-
ing metadata registries and ontology. Also I explain agent architecture for the
system. In section 5, I explain the evaluation of the proposed system comparing
with other systems. Finally, section 6 offers conclusions.

2 Information Sharing Among Interoperable Databases

2.1 Considerations for Information Sharing

In open and dynamic environments such as the Web, numerous information
sources exist and new information sources can be created autonomously and
continuously without formal control. In order to give a multidatabase system
adaptability in those environments, we need a mechanism for enabling infor-
mation to be shared and exchanged. Sharing of information, to be efficient and
effective, must take account of several considerations;

1. The meaning of the information in each component database must be rep-
resented in a unified way (semantic representation)

2. A multidatabase system must interpret the meaning of the information in
each component database (semantic interpretation)

3. A multidatabase system must integrate the information in all the component
databases (information integration)

4. An efficient and effective access mechanism must be provided to retrieve
desired information from the integrated information (information access)

2.2 Schema and Data Heterogeneity

Making it possible for two or more databases to interoperate effectively has
many unresolved problems. The most basic and fundamental problem is hetero-
geneity[3][4][5]. It can be categorized into platform heterogeneity and semantic
heterogeneity.

The platform heterogeneity consists of hardware, data model, DBMS het-
erogeneities and so forth. Network communication protocols and standards such
as SQL standards, OLE, ODBC, ODMG, and CORBA help to overcome these
kinds of heterogeneities. Another aspect of platform heterogeneity is concur-

The Roles of Ontology and Metadata Registry for Interoperable Databases 219

rency heterogeneity, which concerns the different kinds of concurrency control
supported by individual databases[3].

While there is a significant amount of researches discussing platform hetero-
geneity, work on semantic heterogeneity is insufficient. Semantic heterogeneity
includes differences in the way the real world is modeled in the databases, par-
ticularly in the schemas of the databases.

Since a database is defined by its schema and data, semantic heterogene-
ity can be classified into schema heterogeneity and data heterogeneity. Schema
heterogeneity mainly results from the use of different structures for the same
information and the use of different names for the same structures. Data het-
erogeneity is due to the inconsistent data in the absence of schema heterogene-
ity[6][7].

3 A Model for Interoperability Using Ontology and
Metadata Registry

3.1 Overview of the Model

It needs abstraction phase to make objects in real world to be available sources
in computer world. As in figure 1, objects in real world can be abstracted by con-
cepts. And interaction among objects can be described by some kinds of relations.
An ontology keeps these abstracted concepts of objects and relation information,
which provides a mechanism for extracting concepts in user’s queries. Though
a concept must be unique in discourse of universe, objects which represent the
concept may be vary.

A metadata registry manages standard representations of these various ob-
jects. Standard representation means that it defines various data in a domain of
interest using representative representations. As in figure 1, representations of
some standardized data elements can be mapped to a concept in ontology. What
must be considered in this structure is the heterogeneity between data elements
in MDRs. In my approach, intelligent agents resolve heterogeneity according to
the kinds of data heterogeneity using knowledge base.

3.2 Ontology

An ontology is an explicit specification of a conceptualization[8]. When the
knowledge of a domain is represented in a declarative formalism, the set of
objects that can be represented is called the universe of discourse. This set of
objects, and the describable relationships among them, are reflected in the repre-
sentational vocabulary with which a knowledge-based program represents knowl-
edge. Ontologies can be applied for inter-operability among systems, communi-
cations between human being and systems, increasing system’s reusability and
so forth. There are several endeavors within the industrial and academic commu-
nities that address the problem of implementing ontologies, such as TOP, Word-
Net, Ontolingua, Cyc, Frame Ontology, PANGLOSS, MikroKosmos, SENSUS,

220 J.-O. Lee et al.

Fig. 1. Overview of the information integration model using ontology and MDRs

EngMath, PhysSys, TOVE, and CHEMICALS[9][10]. In my approach ontology
has a role of semantic network which is for extracting concepts from user’s queries
and integrating information of data elements in MDRs.

3.3 Metadata Registry

In ISO/IEC 11179, metadata refers to descriptions of other data. Metadata is
data, so metadata may be stored in a database. A database of metadata that
supports the functionality of registration is a metadata registry[1]. ISO 11179
- Metadata registries, specifies basic aspects of the kind and quality of meta-
data necessary to describe other data, and it specifies the management and
administration of that metadata in a metadata registry. It applies to the formu-
lation of data representations, meanings, and relationships between them to be
shared among people and machines, independent of the organization that pro-
duces the data. One of the important classes of metadata is data element. Data
elements are the fundamental unit of data an organization creates, manages, and
disseminates. A data element is composed of two parts: data element concept
and representation. Data element concept is the conceptual part of a data ele-
ment, described independently of any particular representation. Representation
includes a value domain, data type, units of measure, and representation class.
A data element is produced when a representation is associated with a data
element concept. In my approach, a MDR has role of as follows.

– provides standard information to integrate component databases
– manages mapping information between data elements and component database

schemas

The Roles of Ontology and Metadata Registry for Interoperable Databases 221

3.4 The Roles of Ontology and Metadata Registry

Let’s assume that A and B are sites which manage information about compo-
nents which can be applied to various platforms such as COM, EJB, JavaBean,
CORBA, VCL, and CLX. Both site A and B which provide the information of
components to the users who need them, or other sites, have their own meta-
data registry in which component databases related to each site refer to data
elements. Figure 2 shows an example of association of ontology and metadata
registries. Site A uses ’Name’ for component name, while site B uses ’Compo-
nent Name’ for the same information. The terms ’Name’ and ’Component Name’
have a IS-A relation. Agents decide whether ’Name’ and ’Component Name’ are
semantically related or not, using concepts and relations in ontology. In a similar
way, cost of component is represented as ’Cost’ in site A and as ’Price’ in site
B, and ’Cost’ and ’Price’ have a IS-A relation.

Fig. 2. An example of association of ontology and metadata registries

Each data representation in a MDR can be identified by examining data
element and its attributes as in figure 3. New user who attempts to register
his database to site A can construct his own database according to the data
elements in the MDR provided by site A. In the case of schema information of
conventional databases, they can be mapped to data elements in the MDR by
agents.

When two or more MDRs involve in the system, there are some problems of
information integration. In figure 4, the size of data element ’Name’ is 200 in
MDR A, while the size of ’Component Name’ which is semantically equivalent
to ’Name’ of MDR A is 1024. Also, in ’Cost’ and ’Price’, data heterogeneity
of monetary units can be identified. For solving these differences of representa-
tions of data elements, mutual transformation between types, sizes, and units is
needed.

222 J.-O. Lee et al.

Fig. 3. An example of mappings of component databases and a MDR

Fig. 4. The differences of representations of data elements in different MDRs

4 Information Integration System for Interoperable
Databases

I have constructed an information integration system for interoperable databases
using ontology and metadata registries. Basis of information integration has been
established by constructing semantic network using ontology and by using infor-
mation sharability and standardization of metadata registries. The main com-
ponents of the system are ontology, metadata registry, structure mapping agent,
value mapping agent, broker agent, and so forth, as in figure 5. For independ-
ability of the system components, agents with intelligent are needed[11].

The Roles of Ontology and Metadata Registry for Interoperable Databases 223

Fig. 5. An architecture of the proposed information integration system for interoper-
able databases

The descriptions of main system components and agents are as follows.

– Ontology
Ontology defines concepts and relations among concepts and has a role of
semantic network which is for extracting concepts from user’s queries and
integrating information of data elements in MDRs.

– Metadata Registry(MDR)
Metadata Registry provides standard information to integrate component
databases and manages mapping information between data elements and
component database schemas.

– User Interface Agent
User Interface Agent parses user’s query, extracts concepts in the query using
concepts and relations in ontology, requests query processing, and displays
the processed results to the user.

– Broker Agent
With assistance of Ontology Agent, Broker Agent identifies information
sources where all the concepts extracted by User Interface Agent exist.

– Sub-Query Handling Agent
Sub-Query Handling Agent re-formulates the original user’s query into mul-
tiple sub-queries for each component database schema according to the infor-
mation provided from Structure Mapping Agent and Value Mapping Agent
and sends the sub-queries to the component databases.

– Structure Mapping Agent
Structure Mapping Agent generates mappings between concepts in original
query and schema of identified information sources.

224 J.-O. Lee et al.

– Value Mapping Agent
In the process of creating sub-queries, Value Mapping Agent resolves value
heterogeneity between data elements identified as equivalent concept using
Metadata Repository and Knowledge Base.

– Ontology Agent
Ontology Agent is an agent which conducts new mappings between ontology
and MDR, when new data element concepts must be added to the MDR
because of new databases being added to the system.

– Resource Agent
Resource Agent manages information source and co-operates with Sub-Query
Handling Agent. It executes received sub-query and returns the result to
Sub-Query Handling Agent.

– Knowledge Base(KB)
KB defines the rules of transformation and stores the transformed data for re-
solving data heterogeneity originated from representations of data elements.

5 Evaluation

Many approaches for resolving semantic heterogeneity and integrating informa-
tion in multidatabase systems have been developed with the various techni-
cal improvements. Early researches focused on procedures to merge individual
heterogeneous databases schema into a single global schema[12][13]. A global
schema multidatabase supports a single, integrated global view to the user and
provides simple and effective paradigm. However, creating and maintaining the
global schema is difficult. Also, a small change to a local schema may require huge
changes to the global schema. As the proposed approach in this paper needs not
build a global schema, it is easy to construct an information integration system.

In several researches such as SIMS[14], HERMES[15], InfoSleuth[16], and
etc., new approaches have been developed for integrating of information using
new technological developments such as agent technology, domain ontologies,
intelligent mediator, and high-level query languages, in dynamic and open envi-
ronments. These approaches were designed to support flexibility and openness.
However, a common assumption of these dynamic approaches is that the users
know domain knowledge for integrating information, which might be a burden
to the users. The proposed approach provides common domain knowledge using
ontology as knowledge base, so that each information source can be merged into
the system without needing to know specific domain knowledge of other sources.

A metadata registry has procedures for creating, registering, and authenticat-
ing standard data elements. And it can manage data consistently with referring
registered data elements. However, as in the aspect of common use, it has limita-
tions for representing relations among data elements. Ontology-based informa-
tion integration systems can create semantic networks for representing various
relations among terms. However, as in the aspect of representation ability in
data level, they can not provide standard data representations as in a metadata
registry. In my approach, for effective information integration, I have combined

The Roles of Ontology and Metadata Registry for Interoperable Databases 225

advantages of both ontology-based and MDR-based approach. That is, ontology
undertakes responsibility for identifying semantic relations among data elements
and metadata registry provides standard representations of data elements.

The proposed system combined the advantages of both kinds of systems
adopts the aspect of system extensibility using standardability of metadata reg-
istry and constructs semantic network which represents relations among terms(or
concepts) using domain-independent ontology. It does not have overheads of
adding new databases or deleting exiting databases and is independent of the
operation environment. Also, it gives users an efficient method for performing
general semantic queries.

6 Conclusions

Seen from a semantic perspective, the process of database design proceeds from
the real world to the data. The designer develops his own conceptualization
of the real world and turns his conceptualization into a database design. This
has led designers to develop different, often incompatible, schemas for the same
information. Therefore, users needing to combine information from several het-
erogeneous databases are faced with the problem of locating and integrating
relevant information.

This paper has suggested an information integration system which merges
the characteristics of the MDR-based information integration systems and the
ontology-based information integration systems. When a user who does not have
domain knowledge issues a query in a semantic query language using his/her own
concepts, ontology provides semantic network for analyzing concepts in the query
and mapping these concepts to the data elements in a metadata registry. A meta-
data registry plays an important role in resolving semantic heterogeneity and in-
tegrating component databases through management of standard data elements.

References

1. ISO/IEC, ”ISO/IEC FDIS 11179 : Information technology-Specification and stan-
dardization of data elements”, 1999.

2. Mike Uschold and Michael Gruninger,”Ontologies: Principles, Methods and Appli-
cations”, Knowledge Engineering Review, 1996.

3. R. Hull, ”Managing semantic heterogeneity in databases: a theoretical prospec-
tive”, Proc. 16th ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pp. 51-61, 1997.

4. C. Batini, M. Lenzerini, and S.B. Navathe, ”A comparative analysis of methodolo-
gies for database schema integration”, ACM Computing Surveys, 18(4), 1986.

5. A. M. Ouksel, A. P. Sheth, ”Semantic Interoperability in Global Information Sys-
tems: A Brief Introduction to the Research Area and the Special Section”. SIG-
MOD Record, 28(1), pp. 5-12, 1999.

6. G. A. Miller, R. Beckwith, C. Fellbaum, D.Gross, and K. Miller, ”Five Papers on
WordNet”, CSL Reort 43, Cognitive Systems Laboratory, Priceton Univ., 1990.

226 J.-O. Lee et al.

7. M. Garcia-Solaco, F. Saltor, and M. Castellanos, ”Semantic Heterogeneity in Mul-
tidatabase Systems”, in Object-Oriented Multidatabase Systems: A Solution for
Advanced Applications, ed. O. A. Bukhres, A. K. Elmagarmid, pp. 129-202, Pren-
tice Hall Inc., 1996.

8. Thomas R.Gruber, ”Toward Principles for the Design of Ontologies Used for
Knowledge Sharing”, International Journal of Human-Computer Studies, 1995.

9. Maurizio Panti, Luca Spalazzi, Alberto Giretti, ”A Case-Based Approach to Infor-
mation Integration” , Proceedings of the 26th VLDB conference, 2000.

10. J. Hammer, H. H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman, J.
Widom, ”Information translation, mediation, and mosaic-based browsing in the
tsimmis system”, In Proceedings of the ACM SIGMOD International Conference
on Management of Data, 1995.

11. Joseph P. Bigus, Jennifer Bigus, ’Constructing Intelligent agents with Java’, Wiley
Computer Publishing, 1998.

12. R. Ahmed, P. De Smedt, W. Du, W. Kent, M. A. Ketabchi, W. A. Litwin, A.
Rafli, and M. C. Shan, ”The Pegasus heterogenous multidatabase system”, IEEE
Computer, 1991.

13. C. Collet, M. Huhns, W. Shen ”Resource Integration Using a Large Knowledge
Base in Carnot”, IEEE Computer, 1991.

14. C. A. Knoblock et al., ”Modeling Web Sources for Information Integration”, In
Proceedings of 11th Nat’l Conference on Artificial Intelligence, 1998.

15. S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian, ”Query
caching and optimization in distributed mediator systems”, In Proceedings of the
ACM SIGMOD International Conference on Management of Data, 1996.

16. Marian Nodine, Jerry Fowler, Brad Perry, ”An Overview of Active Information
Gathering in InfoSleuth”, InfoSlueth Group, 1998.

 R.K. Ghosh and H. Mohanthy (Eds.): ICDCIT 2004, LNCS 3347, pp. 227–236, 2004.
© Springer-Verlag Berlin Heidelberg 2004

DHL: Semantically Rich Dynamic and
Active Hyperlinks

Gi-Chul Yang1 and Sanjay K. Madria2

1 Division of Information Engineering, Mokpo National University, Korea
2 Dept. of Computer Science, University of Missouri-Rolla, USA

gcyang@mokpo.ac.kr, madrias@umr.edu

Abstract. A novel hyperlink that can access more than one Web site
dynamically by using semantic information attached on the link and each Web
site is introduced in this paper. The (semantic) descriptions of Web sites are
represented by conceptual graphs and stored in a database. When a link is
clicked, the matching between the link and the sites is performed by a dynamic
hyperlink processor, which in turn performs a query to the database through a
technique of conceptual graph matching. It is definitely better than full-text
search and easier to implement.

1 Introduction

Presently, hyperlinks in Web sites are static and passive. The static hyperlink has only
one pre-designated URL as a destination and the passive hyperlink can faces the
problem of broken link. Hence, a user can access only one Web site with one
hyperlink and has no provision to access any other related Web site in case of the
designated Web site is down. Hence, the dynamic and active hyperlink is preferred in
many situations. Presenting more than one Web site would be advantageous in some
cases. For example, consider the hyperlink (i.e., research group) in the sentence
“There are many research groups for semantic Web in America”. It would be
preferable if the hyperlink has multiple URLs for its destinations. Dynamic hyperlink
can retrieve multiple Web sites.

Moreover Web sites are ephemeral, like living things. Many new Web sites are
born and many existing Web sites cease to exist every day. Hence, the hyperlink
should be active in order to keep it functioning. Active hyperlink can retrieve the
relevant Web sites even though the Web sites previously connected are down. Hence,
we propose the dynamic and active hyperlinks to be used in the Web pages to increase
the usability of the Internet. A unique way of implementing the dynamic and active
hyperlink is introduced in this paper. The implemented dynamic and active hyperlink
called DHL(Dynamic and active HyperLink). DHL uses semantic information in
order to retrieve the designated URLs. The semantic information is in the description
and is represented by conceptual graphs. Each Web site that participates in the
retrieval process has it’s own semantic description and the DHL has corresponding
conceptual graph attached in each DHL works as a query. Then a conceptual graph
matching is performed between the query graph and the conceptual graphs in
semantic descriptions to retrieve the destination Web sites.

G.-C. Yang and S.K. Madria 228

The component, which performs this match, is called DHL-Processor (DHLP).
The DHLP has the capability of exact matching as well as partial Matching. Partial
matching includes both syntactic and semantic partial matching. The range of partial
matching can be set when the DHLP is created.

The basic idea of DHLP is described in the next section and the architecture of
DHLP is presented in section3. In section 4, the matching process of DHLP is
presented with an example and an application of DHL in Web Warehouse is
introduced in section 5. The paper is concluded in section 6.

2 Overview of the Dynamic and Active Hyperlink

Dynamic and active HyperLink (DHL) performs a semantic search for the World
Wide Web (WWW). The essential component of DHL is DHL-Processor (DHLP).
The DHLP can retrieve semantically matched descriptions among the many
descriptions of the WWW sites. In order to use DHLP, each Web site should have
Semantic Description (SD) attached to it. This SD can be represented in any language
that can describe semantics of the document, and in our case Conceptual Graph (CG)
is used. Since, CG can describe semantics efficiently and it is easy to read by human
and machine. Also, the metadata represented in RDF (Resource Description
Framework) statements can be interpreted into CGs automatically [5]. The World
Wide Web Consortium (W3C) has introduced RDF [4,6] and it is widely used for
Semantic Web construction. The need of Semantic Web is more and more
emphasized [2,3,14] in order to manage the huge amount of information efficiently by
using the content semantics.

The relationship between DHL and destination Web sites is shown in Figure 1.
Any DHL in a Web site (i.e., DHL1 & DHL2 in Figure 1) has an attached conceptual
graph behind it instead of a destination URL. This conceptual graph is used as a
query. It is then matched with SDs in other Web sites by DHLP. As the DHLP finds
its matched SD, the corresponding URL(s) is (are) retrieved. Retrieved URLs are
listed in the pop-up window. The user will then be able to see the preferred Web site
by clicking the URL.

Error!

Fig. 1. Relationship between DHL and destination Web sites

…

…

�

����

�

�

�

�

�

DHL: Semantically Rich Dynamic and Active Hyperlinks 229

The number of Web sites to be retrieved is not fixed, but the implementers of the
DHLs can control the range of the search. The details of this process are explained in
section 4. There is a Semantic Index Table (SIT) which holds (SD, URL) pairs. The
URL attached to each SD is the address of the Web site that contains the document
explained in the corresponding SD. Hence, the SIT work as a bridge between SDs and
actual Web sites. Therefore, users can search the semantically relevant Web sites
easily through SIT by using DHLP.

3 DHL-Processor

Dynamic and active HyperLink (DHL) - Processor (DHLP) is a kind of semantic
search engine. When the user clicks a DHL the DHLP is triggered automatically and
the semantic search begins. The DHP is organized as shown is Figure 2.

Fig. 2. Architecture of DHLP

The DHLP consists of five components. The five components are Conceptual
Graph Acceptor (CGA), Conceptual Graph Storage (CGS), Semantic Index Table
(SIT), type hierarchy(ontology), and conceptual graph matcher. The CGA accepts the
conceptual graph attached in the pressed DHL. Incoming Conceptual Graphs (CG) are
stored in CGS with id number and corresponding URL attached in front of each CG.
In addition, it creates the indices and stores them in a table called Semantic Index
Table (SIT), thus maintaining semantic indexing information. Ontology Manager
(OM) is used to create and maintain the ontology (type hierarchy). Different
representation forms of CG with a brief introduction are shown in section 3.1. The
CGS is explained with an example in section 3.2 and SIT is described in section 3.3.

G.-C. Yang and S.K. Madria 230

3.1 Representations of Conceptual Graph

As we mentioned in section 2, conceptual graph is used to represent the Semantic
Description (SD) of each Web site. Conceptual Graph (CG) is one of a good formal
language for representing the meanings of natural language sentences [10,12,13] and
the RDF sentences can be interpreted to CGs automatically[5]. Hence, it is a good
idea to use CGs for SD. A CG is a finite connected bipartite graph. There are two
kinds of nodes; concept nodes (displayed as a box in graph notation) which represent
entities, attributes, states, and events, and relation nodes (displayed as a circle in
graph notation) which represent the relationship among concept nodes.

A CG can be represented in three different forms. There is a graphic notation
called the display form (DF), a more compact notation called the linear form (LF) as
well as a concrete syntax called the conceptual graph interchange form (CGIF),
which has a simplified syntax and a restricted character set designed for compact
storage and efficient parsing. Both DF and LF are designed for communication with
humans or between humans and machines. For communication between machines, the
CGIF has a simpler syntax. Hence, we will develop an efficient search engine for
SD’s represented in CGIF in this paper. Below descriptions of the three representation
forms are adapted from [12].

Figure 3 shows the display form of a conceptual graph that represents the
prepositional content of the English sentence John is going to Boston by bus [12].

Fig. 3. CG Display Form for John is going to Boston by bus

In DF, concepts are represented by rectangles: [Go], [Person: John], [City:
Boston], and [Bus]. Circles or ovals represent conceptual relations: (Agnt) relates
[Go] to the agent John, (Dest) relates [Go] to the destination Boston, and (Inst) relates
[Go] to the instrument bus. The linear form for CGs is intended as a more compact
notation than DF, but with good human readability. Following is the LF for Figure 3:

 [Go]-
 (Agnt)->[Person: John]
 (Dest)->[City: Boston]
 (Inst)->[Bus].

In this form, the concepts are represented by square brackets instead of boxes, and
the conceptual relations are represented by parentheses instead of circles. A hyphen at
the end of a line indicates that the relations attached to the concept are continued on
subsequent lines. Following is the CGIF for Figure 3:

DHL: Semantically Rich Dynamic and Active Hyperlinks 231

[Go *x] (Agnt ?x [Person: John]) (Dest ?x [City: Boston]) (Inst ?x [Bus])
or (Agnt [Go] [Person: John]) (Dest [Go] [City: Boston]) (Inst [Go] [Bus])

The developed DHL-Processor (DHLP) is intended for use of CGIF. CGIF can
be translated into different logical languages such as Knowledge Interchange Format
(KIF). Hence, it is better to have a system for CGIF instead of DF or LF.

3.2 Conceptual Graph Storage

Conceptual Graph Storage (CGS) is a simple storage that holds CGs. Here are four
CGs, which represents semantics of the corresponding natural language sentences, to
be used to show the structure of CGS. The CGs are:

a) John reads a book.

In CGIF: (AGNT [READ][PERSON:John])(OBJ [READ][BOOK])

b) Tom reads an interesting book.

In CGIF: (AGNT [READ][PERSON:Tom])(OBJ [READ][BOOK])
(ATTR [READ][INTERESTING])

c) Nancy gives a book to John.

In CGIF : (AGNT [GIVE][PERSON:Nancy])(OBJ [GIVE][Book:@1])
(RCPT [GIVE][PERSON:John])

d) John reads a book fast.

In CGIF : (AGNT [READ][PERSON:John])(OBJ [READ][BooK])
(MANR [READ][FAST])

If above four sentences (CGs) are given to CGS, the structure of CGS would be

G1: (AGNT [READ][PERSON:John])(OBJ [READ][BooK])
G2: (AGNT [READ][PERSON:Tom])(OBJ [READ][BooK])

(ATTR READ)[INTERESTING])
 G3: (AGNT [GIVE][PERSON:Nancy])(OBJ [GIVE][Book:@1])

(RCPT [GIVE][PERSON:John])
G4: (AGNT [READ][PERSON:John])(OBJ [READ][BooK])

(MANR [RAD][FAST])

As we can see above, CGS just stores the incoming CGS with a unique graph id
(called G-id) attached in front of each CG. Each G-id is connected to the
corresponding URLs of the Web sites. CGS is not enough to provide an efficient
retrieval system. An efficient indexing mechanism is necessary for a sophisticated
retrieval approach. Section 3.3 will present an efficient indexing mechanism.

3.3 Semantic Index Table

As we know, Conceptual Graph Interchange Format (CGIF) is organized with
parenthesis and each parenthesis contains one conceptual relation. Hence, the relation
name could be a table name for indexing in a database. When the first sentence is

G.-C. Yang and S.K. Madria 232

coming into CGS, the unique graph id called G-id attached to the coming graph and
stored in CGS. The structure of the index storage named Semantic Index Table (SIT)
will be

 AGNT := (1 [READ][PERSON:John]2)
 OBJ := (1 [RAD][BOOK]2)

Now we have two lists, named AGNT and OBJ, in the SIT with one element
(e.g.,(1 [READ][PERSON:John] 2) in the list AGNT) in each list. Since, the first
graph has two relations AGNT and OBJ. So, two Lists are created in an empty SIT.
Now the list named with AGNT contains one item, (1 [READ][PERSON:John] 2),
in it. Similarly, the second list, named OBJ, has one item: (1 [READ][BOOK] 2).
The first number in each item is the graph id (called G-id) and the number after the
concept indicates the length of the graph (i.e., the number of relations in a graph).
The length can be used to speed up the exact matches by discarding graphs, which
are different in length.

The list has been used as a data structure for the SIT, since it is simple and easy to
explain the basic concept of the SIT. Actual implementation should be done via a more
efficient data structure. We suggest extendable hashing for fast retrieval and a
commercial database for practical systems with large number of CGs. We used a
database for the developed System. The corresponding database tables are shown at the
end of this section. After the second sentence is accepted, the SIT becomes

 AGNT := (1 [READ][PERSON:John] 2) (2 [READ][PERSON:Tom] 3)
OBJ := (1 [READ][BOOK] 2) (2 [READ][BOOK] 3)
ATTR := (2 [READ][INTERESTIN] 3).

As the second graph is coming in, a new list named ATTR has been created in SIT
since there was no relation named in the first graph. The final SIT contains following
after the four graphs are stored.

AGNT := (1 [READ][PERSON:John] 2) (2 [READ][PERSON:Tom] 3)
 (3 [GIVE][PERSON:Nancy] 3) (4 [READ][PERSON:John] 3)
OBJ := (1 [READ][BOOK] 2) (2 [READ][BOOK] 3)
 (3 [GIVE][Book:@1] 3) (4 [READ][BOOK] 3)
ATTR :=(2 [READ][INTERESTING] 3)
RCPT :=(3 [GIVE][PERSON:Jhon] 3)
MANR :=(4 [READ][FAST] 3)

We explained SIT by using a data structure list, however, as we mentioned earlier
SIT can be a table in a relational DBMS. Followings are the tables for relations used
in the incoming CGs.

AGNT
G-id Concepts LENGTH
1 [READ][PERSON:John] 2
2 [READ][PERSON:Tom] 3
3 [GIVE][PERSON:Nancy] 3
4 [READ][PERSON:John] 3

DHL: Semantically Rich Dynamic and Active Hyperlinks 233

OBJ
G-id Concepts LENGTH
1 [READ][BOOK] 2
2 [READ][BOOK] 3
3 [GIVE][Book:@1] 3
4 [READ][BOOK] 3

ATTR
G-id Concepts LENGTH
2 [READ][INTERESTING] 3

MANR
G-id Concepts LENGTH
4 [READ][FAST] 3

RCPT
G-id Concepts LENGTH
3 [GIVE][PERSON:John] 3

SIT can be created and updated automatically depending on the incoming CGs

4 Matching Process of DHLP

In this section, we show how the destination URLs can be retrieved. The basic access
mechanism is matching, in which a query representation is matched to representations
of semantic description in each Web site. There are different conceptual graph
matching algorithms [7,9,11]. The DHLP use the similar conceptual graph matching
algorithm as in [11].

A query match can be performed through the SIT. For example, a query “John
reads a book.” Is translated into the following conceptual graph:

 [READ] – (AGNT)->[PERSON:JOHN]
 (OBJ)-> [BOOK]

which is represented in CGIF as

(AGNT [TEAD][PERSON:JOHN])(OBJ [READ][BOOK])

This query graph is separated into (relation concept) pairs. There are two pairs in
this case. The first step is to take the last pair from the query CG and search the SIT.
In this case, take the pair (OBJ [READ][BOOK]) and look at the OBJ table. The
system will find (1 [READ][BOOK] 2)(2 [READ][BOOK] 3)(4 [READ][BOOK] 3).
Here we got three G-ids; 1, 2 and 4. The next pair is (AGNT [READ][PERSON:
JOHN]; the search, in the AGNT table will find (1 [READ][PERSON: JOHN] 2) and
(4 [READ][PERSON: JOHN] 3). Each time any new elements are found then the G-
ids of those elements (i.e., 1 and 4 in this case) are intersected with the G-ids of old
elements (i.e., 1,2 and 4 in this case). Hence, G-id ‘1’ and ‘4’ are the G-ids left so far.
This process is performed until we have no more pairs in the query graph. The
Remaining G-ids are the result graph ids for the matching.

Partial matching is possible. In the case of partial matching, both syntactic and
semantic differences can be covered. For instance, we can get an answer with both
queries “John reads a book” and “Tom reads a book fast” by using partial match with

.

G.-C. Yang and S.K. Madria 234

the current SIT. In the case of semantic partial match, a concept type hierarchy (i.e.,
ontology) is utilized. The type hierarchy can be built by using Ontology Manager
(OM) that is implemented in DHLP. We can add new concept in the type hierarchy
through the OM. The newly added concept will be the sub-concept of the current
concept. Also the user can change the current concept by clicking any concept that
appeared in OM. In this way the user can “look around” the ontology.

“Tom reads a book.” and “A man reads a book.” are matched by semantic partial
matching, since ‘man’ is a super type of ‘Tom’ in the concept type hierarchy. On the
other side, “Tom reads a book in Edinburgh.” and “Tom reads a book.” can be
matched by syntactic partial matching. In each case of partial matching, DHLP allows
the user to select the Degree of Matching (DoM) and Degree of Inheritance(DoI) for
retrieval of relevant information where exact information is absent in the database.
The DoM and DoI show the closeness between a query graph and the matched
graph(s) form a different point of view. The DoM is calculated as

DoM = number of matched relation(s) / number of relation(s) in a query graph.

The DoM is crucial to retrieve the necessary information in a certain case. For
example, let us assume that the CGS contains “Tom reads an interesting book
yesterday.” and a user wants to match that with “Tom reads an interesting book.” If
DoM is not allowed or a user request 100% of DoM, then DHLP will not be able to
return any match, even though the CGS contains the relevant information (i.e., “Tom
reads an interesting book yesterday”). DHLP, however, will return a graph for “ToM
reads an interesting book yesterday”, for the query with 80% of DoM. DoI indicates
the inheritance path length in the type hierarchy. Path length of the immediate
predecessor of a concept is +1, and the immediate successor concept’s path length is
–1. Therefore, the positive integers can be used for generalization and the negative
integers can be used for specialization.

Fig. 4. Interface of the Semantic Description Search Engine

DHL: Semantically Rich Dynamic and Active Hyperlinks 235

For example, if a user wants to consider generalized graph matching (i.e., find the

graph more general than the query graph), then the user can specify the value of DoI
by using a positive integer (e.g., +3). In the case of the generalized graph matching,
DHLP allows the user to determine how many levels of the type hierarchy should be
searched for each concept in the query graph. Thus, the number indicates the levels in
the type hierarchy (e.g., +3 means three levels up). The implementer of DHLP can
predefine the DoI and DoM of the each DHL for the range of the retrieved Web sites.
This feature of DHLP offers great flexibility to the user and provides efficiency to the
system.

Figure 4, shows the interface of the semantic description search engine that is
using same matching technique with DHLP.

5 Application of Semantically Rich Dynamic Links in
Web Warehouse

As most users obtain WWW information using a combination of search engines and
browsers, these two types of retrieval mechanisms do not necessarily address all of a
user's information needs. The search engines do not incorporate effective query
mechanisms to address user needs, as they are purely resource locators with no
capability to reliably suggest the contents of the websites they return in response to a
query. Furthermore, the task of information retrieval still burdens the user, who has to
manually sift through 'potential' sites to discover the relevant information. The
presence of mirror sites makes the task of finding the document of user interest even
more tedious [1].

WHOWEDA (WareHouse Of Web Data) [1] is a project that deals with the
design and implementation of a web warehouse that materializes and manages useful
information from the Web to support strategic decision-making. WHOWEDA is a
meta-data repository of useful, relevant web information, available for querying and
analysis. As relevant information becomes available on the WWW, it is coupled from
various sources, translated into a common web data model (Web Information
Coupling Model), and integrated with existing data in the repository. At the
warehouse, queries can be answered and web data analysis can be performed quickly
and efficiently since the information is directly available. Accessing data at the
warehouse does not incur costs that may be associated with accessing data from the
information sources scattered at different geographical locations. In a web warehouse,
data is available even when the WWW sources are inaccessible.

In the current form of the query graph in web warehouse context, if the query is
not able to match constraints on hyperlinks (i.e., sports) on the query web page then it
does not process the query. Using the concepts discussed in this paper, the query
graph can be modified by adding DHL which uses the semantic information attached
to the links as discussed earlier. When the query is executed the semantic information
are compared with the conceptual graphs of the web site, and it can return the
multiple web sites in a single run of the query. Thus, it can retrieve much more results
as it also returns partial matches.

G.-C. Yang and S.K. Madria 236

6 Conclusions

A new type of hyperlink (Dynamic and Active HyperLink) called DHL has been
introduced in this Article. The DHL work through a DHL-Processor (DHLP), which
has the capability of syntactic and semantic partial matching. The semantic
description of the Web sites is represented in conceptual graphs. Unlike current
hyperlinks, DHL can show multiple destination Web sites. Internet users cannot
receive any help with current hyperlinks if the pre-defined designated Web sites are
down. However, we can retrieve relevant Web sites with DHL even in case of some
of the possible destination Web sites were down. The properties of DHL can increase
the usability of the Internet considerably. The DHLP is reliable and can handle a large
number of graphs easily since it uses a commercial DBMS. Also, the DHLP can be
used as basic conceptual graph retrieval engine for many different applications such
web warehouse discussed in the paper.

References

[1] Bhowmick, S., Madria, S. and W. K. NG, Wed Data Management: A Warehouse
Approach, Springer-verlag, pp. 1-459, 2003

[2] Berners-Lee, T. Semantic Web Road map. http://www.w3.org/DesignIssues /Semantic.
html

[3] Berners-Lee, T., D. Conoly, R. Swick. Senmantic Web. http://www.w3.org/1999/04/
WebData.html

[4] Brickley, D. & Guha, R. Resource Description Framework (RDF) Schema Specification,
W3C (World-Wide Web Consortium). At http//www.w3.org/TR/ 1999/ PR-rdf-schema-
19990303, 1999.

[5] Corby, O., R. Dieng, and C. Hebert. A Conceptual Graph Model for W3C Resource
Description Framework, Proceedings of the ICCS’00, Darmstadt, LNAI1867, 2000.

[6] Lassila, O. & Swick, R. Resource Description Framework (RDF) Model and Syntax.
W3C (World-Wide Web Consortium). At http//www.w3.org/TR/1999/REC-rdf-syntax-
19990222

[7] Mayaeng, H., et al. Conceptual graph matching: a flexible algorithm and experiments,
Journal of experimental and theoretical artificial intelligence, Vol 4, 1992.

[9] Poole, J., J.A. Campbell. A novel algorithm for matching conceptual and related graphs,
Conceptual structures : applications, implementation and theory, Eds. G. Ellis et al., New
York, (LNAI 954). 1995.

[10] Sowa, J. Conceptual Structure: Information Processing in Mind and Machine, Addison
Wesley, Massachusetts, 1994.

[11] Yang, G-C., Y. Choi, & J. Oh. CGMA : A novel conceptual graph matching algorithm,
Conceptual structures : theory and implementation, Eds. H.D. Pfeiffer, T.E. Nagle, New
York, (LNAI 754), 1993.

[12] http://www.bestweb.net/~sowa/cg/cgdpans.htm#Header_21.
[13] http://www.bestweb.net/%7Esowa/cg/cgdpans.htm
[14] http://www.cs.umd.edu/projects/plus/SHOE/search/

User-Class Based Service Acceptance Policy
Using Cluster Analysis

Hea-Sook Park1, Yan-Ha1, Soon-Mi Lee1,
Young-Whan Park2, and Doo-Kwon Baik3

1 Dept. of Computer & Information Technology, Kyungin Womens’s College,
548-4 Gyesan-dong, Gyeyang-gu, Incheon 407-740 Korea

{edpsphs, white, leesm}@kic.ac.kr
2 Dept. of Computer Science, Hansung University, Seoul, Korea

yhpark@hansung.ac.kr
3 Dept. of Computer Science Technology, Korea University, Seoul, Korea

baik@software.korea.ac.kr

Abstract. This paper suggests a new policy for consolidating a com-
pany’s profits by segregating the clients using the contents service and
allocating the media server’s resources distinctively by clusters using the
cluster analysis method of CRM, which is mainly applied to market-
ing. For the realization of a new service policy, this paper analyzes the
level of contribution vis-à-vis the clients’ service and profits through the
cluster analysis of clients’ data applying the K-Means Method. Clients
were grouped into 4 clusters according to the contribution level in terms
of profits. In addition, to evaluate the efficiency of CRFS within the
Client/Server environment, the acceptance rate per class was determined.
The results of the experiment showed that the application of CRFS led
to the growth of the acceptance rate of clients belonging to the cluster
as well as the significant increase in the profits of the company.

1 Introduction

1.1 Background

Given the recent development of the network/Internet technology, the scale
of the multimedia contents service market (entertainment, education, etc) has
expanded considerably. Obstacles such as service rejection, cutoffs, unstable
connection, frequent buffering have been resolved through effective admission
control, resource allocation methods, and development of H/W and Internet
technology. As a result, the number of clients utilizing multimedia contents ser-
vices has increased, and the market scale has expanded, thereby resulting in a
fiercer competition between corporations.

Currently, it is necessary to develop highly profitable contents and system
management methods that will ensure more stable profits to improve competi-
tiveness between corporations. In particular, corporations need to increase the
number of ways of utilizing the current system resources to sustain the clients’

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 237–242, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

238 H.-S. Park et al.

satisfaction, pleasure, and usefulness as well as the corporations’ demands, thus
leading to profits. This is because considerable expenses are necessary in setting
up and maintaining a system for the contents service business. This paper aims
to provide a CRM basis for contents service through client segmentation based
on a corporation’s profitability. This is because existing service policies provide
all clients with the same connection opportunities, offering service with the same
quality after connection.

The rest of this paper is organized as follows: Part 2 covers the existing differ-
entiated service control policies and differentiated resource allocation methods
from the market’s viewpoint as well as the exact definition and various methods
of CRM, Part 3 presents the structure of CRFS, Part 4 covers the experiment and
analysis of results by applying the corporation’s client data for CRFS efficiency
evaluation, Part 5 presents the conclusion.

2 Related Studies

This paper is related to the differentiated service control policy and to the fields
of authorization control and CRM.

2.1 Research on a Differentiated Control Model

[1] suggested that it is impossible to maintain a stable service quality and a
usage state that will guarantee the transfer band in terms of business, because
the current Internet technology is generally provided in its “best effort” format.

Although service models such as Diffserv and Intserv have been suggested
to resolve such problems, their application has been found to be difficult. The
next-generation Internet will require the accommodation of a new business model
alongside the existing features as well as techniques for controlling the clients’
service demands. In particular, utilizing the network resources effectively for
multimedia contents services is a very important issue, hence the need to divide
the class of service according to the different service characteristics (data, sound,
audio, and video/broadcast services). This approach manages resource and QoS
allocation optimally so that the total utility of the system is maximized through
the atonements process, in which operation markets for each resource is done
separately.

2.2 CRM (Client Relationship Management)

CRM is a strategy for increasing a corporation’s profits by providing better
service to the clients and efficiently managing interactions with clients to pro-
vide the corporation’s top clients with a more effective, personalized service and
allocate resources effectively [2]. As a matter of fact, manufacturers, medical
service providers, and telecommunications providers are already applying CRM
to business management to avoid losing clients and increase profitability.

Client segmentation [3], [4], [5] refers to the process of classifying the many
clients into similar groups of consumers. Classifying the clients according to gen-

User-Class Based Service Acceptance Policy Using Cluster Analysis 239

der, age, profession, etc., is also considered a segmentation operation. Segmen-
tation enables viewing the entire database in a single picture, thus allowing the
corporation to treat clients differently according to class and to pursue market-
ing that is suitable to each class. Most of the segmentation methods use decision
tree, cluster analysis, and neural network.

3 CRFS (Client Request Filtering System)

3.1 Architecture of CRFS

The proposed CRFS operates the contribution value of the visiting clients in
terms of profitability within the web server. It is split into two major areas:
yielding the relevant class and allocating media server resources according to
class. Unlike the admission control that operates on the media server, CRFS is
designed to operate within the web server for convenience. CRFS is composed of
the Client Segmentation Manager, Client Request Filter, Resource Monitoring
Manager, Client Information Manager, and Service Provider. Fig. 1 shows the
architecture of CRFS.

Fig. 1. Architecture of CRFS

The Client Segmentation Manager executes segmentation periodically using
the data saved to the client’s database. It applies the data of the client’s service
frequency during the analysis period, period of service usage, expenses, etc.. The
number and type of class as well as the percentage of clients per class are yielded
as the result of segmentation. Such data are transferred to the Resource Monitor-
ing Manager through the Client Request Filter. The Client Information Manager
yields the service requesting for the client’s contribution value as requested by
the Client Request Filter. The average service time during the website visit, av-
erage service time during the signup period, and percentage of client revenues

240 H.-S. Park et al.

from the total revenues are used to yield the contribution value. The Resource
Monitoring Manager monitors the media server resource status and transfers the
necessary information related to the request made by the Client Request Filter.

3.2 Client Segmentation

The Client Segmentation Manager analyzes the client’s data saved to the database
by applying the K-Means Method for the purpose of segmentation [6], [7], [8].
The client’s general characteristics (name, gender, residence), service character-
istics (service type, date of subscription, interest fields), and service use pattern
(total number of visits to the website, service type, service use time, total pay-
ment, average service use time, service payment per website visit) are analyzed.

The Resource Monitoring Manager allots the media server resources accord-
ing to class using the segmentation results. Here, the resource becomes the num-
ber of streams allowed by the media server, thus, it is allocated according to the
percentage per class within the total profit. The Client Information Manager
calculates the contribution value to determine which class does the client who
requested for the service belongs. In this paper, the method of references [9], [10]
was applied to calculate the contribution value.

Table 1. Segmentation of Clients

Class First Second Third Fourth
Total number of visits to the website 338.4 228.5 105.4 52.5
Service use days 320.5 202.3 120.8 170.5
Average service use time per subscription period 196.8 120.3 74.0 38.7
Average service payment (USD) per subscription period 281.25 177.83 89.47 54.16
Number of clients (%) 9.8 15.3 46.5 28.4
Profits rate (%) 48.7 30.8 15.5 5.0

4 Experiment and Results

4.1 Design of Experiment

To verify the capabilities of CRFS as suggested in this paper, a comparative eval-
uation was performed on the acceptance rate per class before and after applying
CRFS within the Client/Server environment. The experiment aimed to increase
the corporation’s profits through an increase in the higher class acceptance.

The subject of this paper is a contents service corporation called iteaching
(www.iteaching.co.kr). This corporation provides educational contents and gen-
erates annual revenues of USD1.2 million and has about 50,000 clients. A total
of 6,000 clients’ records in 2003 were used in the analysis. To analyze the data,
the segmentation analysis tool, SAS’s Enterprise Miner 4.0, was used. Out of the
yearly clients’ data, the subscription period, total number of visits to the web-
site, service type, service use time, payments, average service time, and average
service payment were analyzed for segmentation.

User-Class Based Service Acceptance Policy Using Cluster Analysis 241

Fig. 2. Acceptance Rate Before and After Applying CRFS

4.2 Acceptance Rate Evaluation by Class Before and After
Applying CRFS

Fig. 2 shows the results of the experiment. The acceptance rate per class (First,
Second, Third, Fourth Classes) before and after applying CRFS was derived
within the Client/Server environment. The results of the analysis revealed several
findings. Fig. 2(a) presents the comparison of the acceptance rate of clients
belonging to First Class before and after applying CRFS. On the other hand, Fig.
2(b) shows the comparison of the acceptance rate of clients belonging to Second
Class before and after applying CRFS. Fig. 2(c) represents the comparison of the
acceptance rate of clients in Third Class before and after applying CRFS. Since
Third Class has the highest number of clients, the acceptance rate before the
CRFS application was 61.54%, decreasing to 50.46% after the CRFS application.
Finally, Fig. 2(d) shows the comparison of the acceptance rate of clients in Fourth
Class before and after applying CRFS.

5 Conclusion

This paper proposed the system for controlling clients’ service requests using
the CRM policy of multimedia contents service through client segmentation,
based on a corporation’s profitability. Thus, clients with higher profitability will
have more chances of accessing media server resources. In addition, experiment
was conducted to evaluate the performance of the algorithm. The experiment
evaluated the acceptance rate per class before and after applying the CRFS.

242 H.-S. Park et al.

Results showed that the acceptance rate of the First and Second Classes,
which affect the corporation’s profits the most, improved greatly. As further
studies, there is a need to explore ways to enable the CRFS to operate not
only on the web server but also on the media server. The relationship between
a corporation’s profits and the acceptance rate per class should be modeled to
determine the optimum acceptance rate per class, thus maximizing the corpora-
tion’s profits.

References

1. Jun-kyun Choi, “Technology of the Assurance of QoS for Next Generation Net-
work”, Journal of KISS, Vol. 21, No. 8 (2003) 51 - 66

2. Y. J. Lee, E. S. Hyun, T. Y. Kim, “Connection Management for QoS Service on
the Web”, Journal of Network Computer Applications, Vol.25. No.1 (2002)

3. E. S. Hyun, Y. J. Rhee, and T. Y. Kim, “Differentiated-HTTP for Differentiated
Web Ser-vice”, Journal of KISS, Vol.28, No. 1 (2001) 126 - 135

4. Alex Berson, Stephen Smith, Kurt Thearing, “Building Data Mining Applications
for CRM”, McGraw-Hill, 4 - 14, ISBN 0-07-134444-6

5. W. Kamakula, “A Least Squares Procedure for Benefit Segmentation with Conjoint
Experi-ments”, Journal of Marketng Research (1998) 157 - 167

6. Kye-sun An, Se-Jin Go, Jun Jiong, Phill-Kue, Rhee, “Generator of Dynamic User
Profiles Based on Web Usage Mining”, Journal of Korea Information Processing
Society, Vol.9-B, No.4 (2002) 389 - 398

7. M. Wedel, W. Kamakula, “Market Segmentation: Conceptual and Methodological
Founda-tion”, Kluwer Academic Publisher (2000)

8. Tae Hyup Roh, Ingoo Han, “Customer Relationship Management Under the En-
vironment of Internet Business”, Telecommunications Review, Vol.12, No.1 (2002)
50 - 60

9. Sang-Hee Rou, Su-Kyung Baik, “Market Segmentation of the Clients for CRM of
Health Service”, Journal of Health Care Marketing, Vol.3 (2002) 22 - 34

10. Hea-Sook Park, Yan-Ha, Soon-Mi Lee, “A User Class-based Service Filtering Policy
for QoS Assurance”, Journal of KISS: Computing Practices, Vol. 10, No. 4 (2004)
293 - 298

Tools and Techniques for Multi-site
Software Development

Satish Chandra

IBM India Research Lab, New Delhi, India
satishchandra@in.ibm.com

Abstract. Business reasons are increasingly causing software develop-
ment projects to be distributed across the globe. However, software de-
velopment tools and techniques in use today largely ignore the needs
of distributed software development. At IBM India Research Lab, we
have been looking at global software development practices to under-
stand problem areas and propose solutions that could be of help. In the
first part of this talk, I will chalk out a broad agenda for research in soft-
ware engineering in aid of multi-site software development. The areas
that we will consider are requirements management, application knowl-
edge management, project dashboarding, and software quality assurance.
I will touch upon various research efforts at IBM Research and elsewhere
in these areas.

In the second part of the talk, I will describe our recent work in
multi-site requirements management. Among the many challenges that
arise in multi-site development, precise communication and management
of requirements appears to be of immense importance. This particular
challenge arises in the need for collaboration between the analysts and
the systems engineers in mapping business requirements to system re-
quirements, for communication between systems engineers and testers
to create test cases for requirements, for coordination between the cus-
tomer, analyst, developers and testers during requirement changes, and
so on. Remoteness and time-zone differences strain each part of this sce-
nario, leading to excessive re-work, delays and cost escalations. We are
building a tool for multi-site requirements management. The salient fea-
tures of this tool include views into the requirements and traceability
information, synchronous as well as asynchronous communication facili-
ties integrated in the views to enable in context communication; assisted
change management; search on persisted communication and change logs;
and visual clues to provide a heightened sense of awareness, indicating
which stakeholders are online, which artifacts have pending notifications,
current discussions etc.

This talk is based on joint work with Bikram Sengupta and Vibha S.
Sinha of IBM India Research Lab.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, p. 243, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Specifying a Mobile Computing Infrastructure
and Services

Satyajit Acharya1,�,��, Chris George2, and Hrushikesha Mohanty1

1 Department of CIS, University of Hyderabad, Hyderabad - 500046, India
satyajit2k3@yahoo.com, hmcs@uohyd.ernet.in

2 UNU/IIST, P.O. Box. 3058, Macao SAR, China
cwg@iist.unu.edu

Abstract. We present a model of a mobile computing application en-
vironment and its formal specification using the RAISE specification
language. Special care is taken to specify the location based operations
that are typical of mobile computing. In the process of specifying the mo-
bile environment, we give precise semantics to different services identified
with Mobichart notations, an extension to Objectcharts and Statecharts
to make them suitable for graphical specification of mobile computing en-
vironment and applications. Thus we show the usability of both graphical
and formal specification methods in development of mobile computing
applications. We also discuss different techniques applied to detect faults
and gain confidence in the correctness of the specification using consis-
tency and confidence conditions, prototyping and testing.

Keywords: Mobile Computing, Specification, Mobicharts, Testing, RSL

1 Introduction

Mobile computing (henceforth MC) is a new paradigm characterized by the
ability of computers to change location while still able to communicate with
one another. Because of movement, frequent disconnections, power limitations,
bandwidth restrictions, and limited local resources; MC represents a major point
of departure from the traditional distributed computing paradigm and existing
methods for distributed computing, including client/server computing, are not
suitable to handle the typical issues (or challenges) raised by the MC environ-
ment [1, 2]. The challenges raised by the (independent) mobility of devices and
applications in MC environment requires a rethinking of the classical distributed
systems design techniques and these techniques need to be extended taking into

� Part of this work was carried out while the author was a visiting fellow at United
Nations University, International Institute for Software Technology (UNU/IIST),
Macao SAR, China.

�� The author is supported by the CSIR SRF Fellowship under the grant number
9/414(587)/2k3/EMR-I.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 244–254, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Specifying a Mobile Computing Infrastructure and Services 245

account these new challenges. Design of an application has to be sensitized so
that it copes up to these challenges and generic solutions should be available
(with the infrastructure as services) to the developer for developing applications
that can have seamless execution and consistent behavior.

In [3], we investigated the application of statecharts [4, 5] and objectcharts
[6] to MC environments to find the insufficiency of these formalisms to ex-
pressively model MC applications. We extended the Objectchart notation to
make it suitable for specifying typical features of MC environment and named
it as Mobicharts [3, 7]. The Mobichart notation is capable of modelling generic
services (called Mobichart services) like specifying object location, migration,
hoarding, cloning, and disconnected operations. Its graphical specification style
is intuitive for designers to comprehensively view the behavior of MC appli-
cations. But the notation, being graphical, does not provide precise seman-
tics. Also, since execution of applications using the Mobichart services depends
on the environment and its infrastructure, specifying these services in detail
using Mobichart becomes cumbersome. That is why we have resorted to for-
mal methods for expressing these services in detail. Having precise semantics
of the Mobichart services is useful to reason about their validity, correctness
and other characteristics. Once validated, application designers can make use
of these services in building applications. Since specifying the environment is
useful to understand its role in the execution of applications, in this paper,
we present a model of an MC environment and its formal specification us-
ing the RAISE Specification Language (RSL)[8], a formal, modular, and typed
specification language suitable for development of large and complex software
systems.

In order to avoid errors in a later stages of system development, it is im-
portant to identify and specify the consistency conditions (henceforth CCs)
during the initial stages. We discuss the importance of CCs and how these
CCs help in finding logical errors in the specification. To gain confidence on
the correctness of specification, we adopted techniques like manual inspection
of the confidence conditions generated by an automatic tool provided by RSL
[9] and testing the executable specification of a prototype by using test cases.
Due to limitation of space, we only give a skeletal structure of the specifica-
tion and discuss the observations made during testing. Readers may refer to
[10] (available at [11]) for the detailed specification and discussions on testing
methods.

In Section 2, after a brief on the entities involved in an MC environment
and the characteristics of applications in this environment, a model of the en-
vironment and its RSL specification is given. A brief summary of the Mo-
bichart notation with an example is presented in Section 3. Here, some remarks
on the overall RSL specification of the environment and the Mobichart ser-
vices are also provided. Section 4 describes different techniques we used to gain
confidence on the correctness of the specification. The paper concludes with
Section 5.

246 S. Acharya, C. George, and H. Mohanty

2 Modelling MC Environment

The class diagram that depicts the structure of an MC environment is given in
Fig. 1. The environment includes Mobile Support Stations (MSSs) and Mobile
Hosts (MHs). Each MSS is responsible for managing a number of MHs in a
geographic location called a cell. A set of MHs may be present in an MSS’s cell.
Such an association is given by the link ‘Has residing MHs’. In a system, each
MSS acts as the Base MSS for a number of MHs and each MH has one MSS as
its Base MSS. This is represented in the diagram as a link ‘Has MHs as Base’.
An MSS is responsible for the authentication information for all the MHs for
which it acts as the Base MSS.

Fig. 1. Class Diagram for MC Environment Specifications

Class System consists of all the MHs and MSSs in the system. The system is
modelled as a record type System given below. The subtype Sys is defined with
the auxiliary function consistent to ensure the well-formedness of the system
by specifying certain consistency conditions.

type
System ::

msss : M.MSSs ↔ change mss
mhs : H.Mhs ↔ change mh
task : TS.TASKs ↔ change task
res : RS.Resource ↔ change res,

Sys = {| s : System • consistent(s) |}
Here, msss, mhs and task represent all the MSSs, MHs and tasks present in

the system. Some of these tasks may be running in the MSSs and some oth-
ers in the MHs. Also, some of them may be in the ‘Transit’ state [3, 7] and
hence do not belong to any MH nor to any MSS but are present in the network
(being routed to its destination during migration). This is represented in Fig.
1 as a link between TASK and System. res represents all resources present
in the system, i.e. the collection of every resource located at different devices

Specifying a Mobile Computing Infrastructure and Services 247

(MSSs and MHs) in the system. The Class Mobile Host consists of a number
of tasks and resources. The attributes of the class represents different compo-
nents of an MH, as given below. Here, device represents the device identifier for
an MH and baseMSSid represents the MSS that acts as the Base station for
the MH. is active represents the state of an MH. When active, an MH is run-
ning some tasks. When the MH does not have any task to run, it goes to ‘doze’
mode (‘is active’ is false) to save its battery. The fields tasks and resources
represent the set of running tasks and the set of resources present in an MH,
respectively.

type
MHost ::

device : Dev id
self : MH id
baseMSSid : MSS id
is active : Bool ↔ changeStatus
location : MH loc ↔ changeLoc
tasks : TSK.TASKs ↔ changeTasks
resources : R.Resource ↔ changeRes

The field location gives the current physical (geographic) location of an MH.
It is of variant type MH loc i.e. MH loc == nilL | mhloc(l : Location). An MH
can either be connected to an MSS or it is disconnected. When connected, an MH
belongs to the cell for which the MSS is responsible and its location is determined
(or inherited) from the location value of the MSS. When disconnected, the
location of an MH can not be determined and hence its location is nilL. Items
location and device serve as the values for the container handle variables of
the Mobichart notation [3, 7].

Class TASK is the aggregation of classes Hoard, Requirement and As-
signment. Class Hoard represents the items to be hoarded by a task and the
locations from where these items have to be hoarded. A task may require dif-
ferent kinds of resources to do its computation and this is modelled by the
class Requirement. Also, a task may have been assigned a number of re-
sources (possibly from different devices/locations) and this is represented by
Assignment.

type
Task info ::

taskReqment : RB.RBag ↔ changeReqments
assigned : ASIGN.R assign ↔ changeAssigned
hoardList : HL.Hoard ↔ changeHrdList
is transit : Bool ↔ changeStatus
is active : Bool ↔ changeActive

Class Resource represents a resource in the system and is specified below.

248 S. Acharya, C. George, and H. Mohanty

type
R info ::

kind : R kind ↔ changeKind
resVal : R val ↔ changeVal
loc : R loc ↔ changeLoc
users : T id-set ↔ change users
is hoarded : Bool ↔ hoardStatus

Here, kind represents the kind of a resource. A resource can be of different
kinds viz. R kind == prn | cpu | mem | db | buf | var | file. resVal stores the
state information of a resource, e.g. files, variables, databases and buffers may
have values which can be updated. loc represents the resource location (an MH
or an MSS). Each resource may have some tasks as its users. If the resource is
not sharable, then at most one task can use it, else, a set of tasks can share the
resource. Since a resource can be shared by a number of tasks and a task can
use multiple resources, we have shown in Fig. 1, the many-many link between
TASK and Resource.

3 Formal Specification of Mobichart Services

Mobicharts have extended Objectcharts with the following additions [7, 10]:

Container (Handle): Each state of a task is associated with its operating
environment called its container. It is used to represent the (location and device)
ambients of a task. Containers in Mobicharts enable us to model the physical
location of a task by the variable Loc and the device containing the task by
Device id. Thus, containers in Mobicharts enable us to model the states of a
task at a particular location.

Transit State: A special state designated as transit (drawn in dotted lines), is
inserted between every two states, between which a task can be disconnected. In
this state, a task belongs neither to any MH nor any MSS, but it is being routed
on the network to its destination during migration.

Inheritance: When a task joins a new container, all variables qualified with
the keyword inherit in the task are automatically updated with values of cor-
responding variables in the container. There is a requirement on a system that
there is a collection of inheritable variables that must be defined for all devices
and only such variables can be qualified by inherit.

Apart from these extensions, different services like migration, cloning, hoard-
ing, sharing have been identified as essential services that are required by the
tasks to adapt to typical environmental situations [3]. We take the migration
service as an example and explain its descriptive semantics.

Task migration across different hosts and/or MSSs may take place to per-
form some action in the environment. This requires that a task must be able
to save its state prior to migration, and resurrect as a new task with a pre-
determined state at a new location. The migration behavior of a mobile task

Specifying a Mobile Computing Infrastructure and Services 249

Fig. 2. Migration Behavior of a Mobile Task

is depicted in Fig. 2. In ‘Active’ state, a task in a device does its compu-
tations using local resources from the device and/or remote resources from
the network. Before a task migrates, the resources that are used by it are re-
leased and the task is ‘Frozen’ by saving its state. Then it is transmitted to
the destination by taking the transition ‘Leave’. During migration, a task is
in ‘Transit’ state which represents a task in transition from its source device
to a destination device. During this transition, it may be necessary to route
a task through different MSSs in the network. When a task is being moved
from one device to another, the Loc variable in its container handle is <nil>.
And, when a task is at an intermediate MSS (enroute to its destination) of
the fixed network, the Loc variable assumes the identity of this MSS. When
a task arrives at its destination, the transition ‘Join(Newloc)’ is taken. Upon
joining the new location, a task goes to ‘Frozen’ state and updates the vari-
ables in the container by inheriting the corresponding values from the new de-
vice. As shown in the figure, the container after migration has been changed
to (Loc:<newloc>, Device id:<NewID>). Apart from automatic inheritance of
the values of container variables, values of other user defined variables quali-
fied with the keyword ‘inherit’ are inherited by their corresponding values from
the new device. After the end of migration, a frozen task can be reactivated
at its new location and the required resources may be acquired from the new
device.

Service related activities are modelled in terms of events and actions that
can be pictorially shown in a Mobichart. With respect to a service, Mobichart
shows events, corresponding states and their transitions. For example, consider
the transition ‘Leave’ in Fig. 2. If a task is running in an MSS, this transition
causes the task to go from the ‘Frozen’ state to the ‘Transit’ state. In ‘Transit’
state, a task does not hold or use any resources from the host device. So, before
a task goes to ‘Transit’ state, all resources assigned to the task from the MSS
are released from the task’s assignment and the corresponding resources at the

250 S. Acharya, C. George, and H. Mohanty

MSS are updated by removing the task entries in their users field. These actions
(related to the transition ‘Leave’ from an MSS) can be specified by a function
(e.g. taskLeaveMSS below). Note that when a task is running in an MH, the
actions related to transition ‘Leave’ are different from those mentioned above.
This is because, a task may have hoarded some resources when running in an MH
but not when running in an MSS. Hence, depending on the current location of a
task (an MH or an MSS), the transition ‘Leave’ does its actions accordingly. So,
we first find the location of a task in the system (using observer getTaskLoc). If
the task is present in an MH, taskLeaveMH is used to specify the corresponding
actions and if the task is present in an MSS, taskLeaveMSS is used. When a
task (in ‘Transit’ state) arrives at its destination after the migration, it joins
the device by using the transition ‘Join(Newloc)’. Here, Newloc determines the
destination of the task (either an MH or an MSS).

taskleave : T id × Sys ∼→ Sys
taskleave(t, sys) ≡

let tskLoc = getTaskLoc(t, sys) in
case tskLoc of

mh loc(mh) → taskLeaveMH(t, mh, sys),
mss loc(ms) → taskLeaveMSS(t, ms, sys)

end /∗ CASE ∗/
end /∗ let ∗/

pre t ∈ task(sys) ∧ ∼ TS.is in transit(t, task(sys)),

We give few remarks about the overall specification for the MC environment
and the Mobichart services. A total of 13 modules were written. These modules
contained a total of 210 functions (97 generators, 68 observers and 45 functions
representing the CCs). The total size of the specification was approx. 3200 lines
(including comments, around 20%). For specifying the Mobichart services, we
used 16 functions to represent different states (6 functions) and transitions (10
functions) between these states. The CCs found at various levels of the specifi-
cation helped us to detect some potential conceptual errors.

4 Ensuring the Correctness of Specification

There are various ways by which one can gain confidence on the correctness of
specifications viz. validation, verification and formal proof. It is also possible
to use formal methods without formal proof, and such use of formal method is
sometimes called “lightweight” [8]. We adopted this approach and used various
techniques (like specification inspection, prototyping and testing) to increase the
confidence in the specification as explained below.

4.1 Consistency Conditions

Consistency refers to situations where specification of a system contains no inter-
nal (logical) contradictions. There is a useful slogan, ”No Loss, No Confusion”,

Specifying a Mobile Computing Infrastructure and Services 251

related to consistency. CCs try to ensure that there is neither any loss of infor-
mation (No Loss) nor any confusion between various components in a system
during its operation No Confusion. The effects of loss of information may not
be immediately apparent, but they may have devastating effects on the system
in the long run. Also, when such an inconsistency is detected later, it may be
difficult to find its cause. No Confusion means that a system does not do any
operation that leads to disparity in information at different parts of the system.

While designing a system, a designer can view it from two perspectives. First,
each operation on a system changes the state of the system (Change Perspective).
A designer tries to make sure that such changes comply with the requirements
of the system (provided by the use cases). Second, almost every system has a
set of properties (called invariants or CCs) that should not change during the
system’s lifetime (Invariants Perspective). So, every operation on the system
should preserve these invariants. Using these two perspectives together helps a
designer to identify and deal with problems during design. An operation may
give the results expected from it, but, apart from that, the operation may also
have some side effects on the system that violates its invariants. The CCs help
a designer to find and avoid such side effects.

While specifying the mobile environment, we found 45 different CCs at var-
ious levels of the specification. Out of these, 12 CCs were found at the system
level. These CCs are to be satisfied (maintained) prior to, during, and subsequent
to the actions of Mobichart services. We think of a mobile task as a composition
of a set of Mobichart services that conforms to the system level CCs. A task is
well behaved if the Mobichart actions taken by the task preserve the consistency
of the system. An example of a CC is that every MH in the system must have an
MSS in the system as its base, and that MSS must record the MH as belonging
to it (which is modelled as the MH’s identifier being in the set mhsAsBASEMSS
for that MSS). Readers will find all the CCs specified in the full report [10].

baseCons : System → Bool
baseCons(sys) ≡

(∀ h : MH id • h ∈ mhs(sys) ⇒
(∃ m : MSS id • m ∈ msss(sys) ∧

H.HS.baseMSSid(mhs(sys)(h)) = m)) ∧
h ∈ M.MS.mhsAsBASEMSS(msss(sys)(m)),

4.2 Inspecting Confidence Conditions

Confidence conditions are conditions that should generally be true if an RSL
module is not to be inconsistent, but that cannot in general be determined as
true by a tool. The types of conditions that are generated by the confidence con-
dition generator tool are given in [9]. While writing the specification, confidence
conditions helped us to find errors, particularly when a function was applied
without considering its preconditions. We inspected the generated (a total of
859) confidence conditions and believe them all to hold. Note that consistency
conditions that are expressed as subtype conditions give rise to confidence con-

252 S. Acharya, C. George, and H. Mohanty

ditions on the results of functions generating values in the subtypes, and this
helps to identify the functions that need careful inspection.

Consistency conditions can (optionally) be translated, so the testing we de-
scribe below gave us further assurance that they are in fact satisfied.

4.3 Prototyping and Testing

To generate and run the test cases, we prototyped the system specification by
doing a simplified refinement of all the abstract types in it. We then used the RSL
to SML translator provided by the RAISE tools [9] to run some test cases. We
used the bottom-up testing strategy by first testing each lower level module in
the specification and then testing the higher level modules. At least one test case
was used to test each function in a module (function coverage). Some examples
of test cases used to test the behavior of the function taskleave (page 250) are:

test case
[test1] init(); consistent(s), /∗Result: true∗/

/∗Testing t̀askleave′ of Mobichart∗/
[test2] init(); consistent(taskleave(t1, s)), /∗Result: true∗/

The test case [test1] is used to ensure that initialization of the prototype
of the system does not violate any CCs. After ensuring the consistency of initial
state of the system, we use test case [test2] to call taskleave and ensure that
the resulting state of the system is consistent. When this function is used, the
task t1 (initially present in an MSS m1 in the protoype) is removed from MSS
m1 and goes to transit state.

Table 1. Faults found during Testing using 309 test cases. ‘New CCs added’ indicates
the number of new CCs found necessary during testing. ‘CCs Changed’ gives the num-
ber of constraints changed in different CCs. Similarly, ‘Functions Changed’ indicates
the number of functions (other than CCs) where we had to add new statements

Type of Change Made No. of Changes
Typographic 8
New CCs Added 4
CCs Changed 5
Sequence of Function Calls 1
Functions Changed 10

TOTAL = 28

We used a total of 309 test cases on different modules and found 28 errors in
the specification. Out of these errors, 8 were typographic (typo) errors and 20 were
conceptual/logical errors. A typo is a discrepancy between author’s intention and
specification. Other errors (conceptual/logical) represent an inadequate or mis-
taken understanding of the problem. These are potentially more damaging than
typos because they are less likely to be discovered during development. Table 1

Specifying a Mobile Computing Infrastructure and Services 253

summarizes the categories of changes made at different levels of specification to fix
the errors during testing. Most of these errors were found because of the CCs. Re-
sults of some test cases did not give a consistent system. It implies that, if the CCs
had not been taken into account, these conceptual errors would have gone unno-
ticed. It is also interesting to observe here that out of 20 conceptual errors, almost
half of them are related to changes in the CCs. Detecting these types of faults in
the specification is more useful, since they generally go unnoticed and the effects
of such faults can be catastrophic during later stages of system development.

5 Conclusion

There have been efforts to specify this new computing paradigm in formal meth-
ods [12, 13, 14]. In this paper we have presented a model of a MC environment
and discussed the behavior of applications in this environment. We also dis-
cussed the formal specification of the environment and the Mobichart notation
and its services to support execution of applications in this environment. In the
process of developing the specification, we thereby provide semantics to the Mo-
bichart services. The importance of finding and specifying CCs in a specification
is discussed. Different methods were used to gain confidence on the correctness
of the specification, like confidence conditions, and specification-based testing
using test cases. Some observations on the faults found during testing and their
causes have been reported.

This work is a step towards the main objective of developing automated
tools to support the process of application development in MC environment
using Mobicharts and the semantics of the Mobichart services provided by the
specification. We believe that the specification will help in generating such an
automated supporting tool for the MC application developers. We also believe
that the identified precondition for each operation would help in formulating
some exception handlers during the development of such tools.

References

1. B.R.Badrinath et al. Impact of Mobility on Distributed Computation. ACM
SIGOS Operating System Review, 27(2):15–20, February 1993.

2. G.H.Formen et al. The Challenges of Mobile Computing. IEEE Computer,
27(4):38–47, 1994.

3. S.Acharya, H.Mohanty, and R.K.Shyamasundar. MOBICHART: A Notation to
Specify Mobile Computing Applications. In Proc. of the 30th Hawaii International
Conference on System Sciences (HICSS’03). IEEE, January 2003.

4. David Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8:231–274, 1987.

5. David Harel and Amnon Naamad. The STATEMATE Semantics of Statechart.
ACM Trans. on Software Engg. & Method., 5(4):293–333, October 1996.

6. D.Coleman et al. Introducing Objectchart or How to Use Statecharts in Object-
Oriented Design. IEEE Trans. on Software Engg., 18(1):9–18, January 1992.

254 S. Acharya, C. George, and H. Mohanty

7. H.Mohanty, S.Acharya, R.K.Ghosh, and R.K.Shyamasundar. Mobichart for Mod-
eling Mobile Computing Tasks. In Convergent Technologies for the Asia-Pacific,
pages 193–197. IEEE TENCON, Bangalore, India, Oct. 14-17 2003.

8. Chris George. Introduction to RAISE. Technical Report 249, UNU/IIST, P.O.
Box 3058, Macau, March 2002.

9. Chris George. RAISE Tools User Guide. Technical Report 227, UNU/IIST, P.O.
Box 3058, Macau, February 2001.

10. Satyajit Acharya and Chris George. Specifying a Mobile Computing Application
Environment using RSL. Technical Report 300, UNU/IIST, P.O. Box 3058, Macau,
May 2004.

11. http://www.iist.unu.edu. UNU/IIST, P.O. Box 3058, Macau SAR, China.
12. L.Cardelli et al. Mobile Ambients. In Foundation of Software Science & Compu-

tational Structures, LNCS 1378, pages 140–155. Springer, 1998.
13. G.C.Roman et al. Mobile UNITY: Reasoning and Specification in Mobile Com-

puting. ACM Trans. on Software Engg. & Method., 6(3):250–282, July 1997.
14. Luca Cardelli. Abstractions for Mobile Computation. In Security Issues for Dis-

tributed & Mobile Objects, LNCS 1603, pages 51–99. Springer-Verlag, 1999.

Generating a Prototype from a
UML Model of System Requirements

Xiaoshan Li1, Zhiming Liu2, Jifeng He2, and Quan Long2,3

1 Faculty of Science and Technology, University of Macau, Macao, China
xsl@umac.mo

2 International Institute for Software Technology, United Nations University, Macao, China
{lzm, hjf, longquan}@iist.unu.edu

3 Department of Informatics, School of Mathematical Sciences,
Peking University, China

Abstract. We present a method for automatically generating a prototype from
a UML model of system requirements that consists of a use-case model and a
conceptual class model. The method is based on a formalization of UML in which
a use case is formally specified by a pair of pre and post conditions in the context
of a conceptual class model. To generate a prototype, we translate the pre and post
conditions of a use case into a sequence of executable atomic actions. These ac-
tions are to create or delete an object, update an object, establish or remove a link
between two objects with respect to an association. Such a prototype can be used
to validate requirements and check system invariants. An automated prototype
generator is developed in Java, and a simple library system is used as an example
to illustrate the feasibility of the method.

Keywords: Prototype, Requirements analysis, Formal Specification, Code Gen-
eration.

1 Introduction

Early acquired requirements are difficult to validate without testing. Prototyping is ef-
ficient and effective to expose errors in the early stages of requirements analysis and
design. The general purposes of building a prototype include [14, 2, 13, 15]

– to ensure that the designers and implementors understand requirements directly,
– to help to demonstrate to the customers for validating the requirements,
– to cope with changing requirements better,
– to be used for test planning.

This paper presents a method for automatically generating a prototype from a model
of system requirements so that the extra development cost of prototyping can be avoided.
A model of requirements consists of a use-case model (UCM) and a conceptual class
model (CCM).

A UCM consists of a use case diagram and textual descriptions of use cases. How-
ever, a use case diagram provides only static information about use cases. The dynamic

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 255–265, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

256 X. Li et al.

semantic aspects are described in the textual descriptions as sequences of interactions
between actors and the system. Therefore, formalizing and prototyping the requirements
of a system should focus on the textual descriptions.

A CCM for an application is a class diagram consisting of classes (also called con-
cepts), and associations between classes. A class represents a set of conceptual objects
and an association determines how the objects in the associated classes are related (or
linked). For example, we have two concepts Publication and Copy in a library system.
They are associated so that a copy is copy of a publication. In addition to associations
between concepts, a concept may have some properties represented by attributes, e.g.,
User has an attribute uid.

The correctness of a requirements model is validated in general by simulations with
a prototype of the system. However, a prototype is usually a simplified version of the
system with a smaller set of functionalities, but with design and implementation details
[7, 15]. The framework presented in this paper supports the generation of prototypes for
validating requirements without the need of going into the design. It also supports a fuller
scale of prototyping, especially for these object database management functions. We
believe this is more cost effective as it is only added as part of the requirements analysis,
and its automation can even reduce the cost by making the requirements analysis more
efficient and effective.

Outline of the Method. The method is based on a formalization of UML in which a
use case is formally specified by a pair of pre and post conditions in the context of a
conceptual class model. To generate a prototype, we translate the pre and post conditions
of a use case into a sequence of executable atomic actions, as well as non side-effect
queries [12, 13]. These actions are to create or delete an object, update an object, and
build or remove a link between two objects with respect to an association. Such a pro-
totype can be used to validate requirements and check system invariants which can be
embedded into pre and post conditions. An automated prototype generator is developed
in Java, and a simple library system is used as an example to illustrate the feasibility of
the method.

Based on the formal semantics of a UCM and a CCM, a prototype is generated
as follows: first generate a system entity object database (SEOD) from the semantics
of the CCM, and then a system prototype interface which displays the buttons for the
names of the use cases in the UCM (this can be generated from the use-case diagrams),
and finally a use-case handler for each use case in the UCM that handles the execution
of specification of the use case. A use case handler maps the executable parts of each
use case in the UCM into a sequence of atomic actions on the SEOD. The framework
architecture of generating prototype is shown in Figure 1.

The rest of this paper is organized as follows. Section 2 describes the formalization of
UML models of requirements by using a simple library system as a case study. Section 3
focuses on the method to generate prototype from a UCM and a CCM. An automated
prototype generator is designed to achieve this transformation. Consequently, the library
prototype is generated automatically from the tool in Java in section 4. Finally, Section 5
discusses some problems and future work.

Generating a Prototype from a UML Model of System Requirements 257

Use Case Model Conceptual Model

Automated Prototyping Generator

UML Model

Prototype Interface

Object DatabaseUse Case Handlers

Prototype

Fig. 1. Architecture of generating prototype

2 Formal Requirement Model of a Library System

We use a library system to describe how we can formally specify CCM and UCM in the
formal theory of Hoare and He in [4]. Due to the limitation of pages, for more details
about the formal semantics of UML and formal specification of the library case study,
please refer to [8, 10].

A Library System. The system provides the services for the librarians of a library.
Librarians maintain a catalogue of publications which are available for lending to users.
There may be many copies of the same publication. Publications and copies may be
added to and removed from the library. Registered users can borrow the available copies
in the library. When a copy has been borrowed by a user, it is on loan and is not available
for lending to other users. When a copy is returned, it should be available to all users
again after deleting the corresponding lending loan.

From above informal description of system requirements, the following use cases
can be identified in the system. Librarian maintains the library, such as add and remove
publication, copy, and user. And a librarian lends a copy to a user. A user returns a copy.

After analyzing the system, a CCM of the library can be created and it is shown
in Figure 2 for realizing the system use cases AddUser, AddCopy, AddPublication,
RemoveUser, RemoveCopy, RemovePublication, LendCopy, and ReturnCopy.

A system state is an object diagram which is the instance or snapshot of system’s
CCM at a time. A use case is a system operation which can transfer from a pre-state to a
post-state. We assume that each class C defines a type, also denoted by C, of elements
similar to records, and allow the construction of a type from the direct product of two
types, and the power set P(T) of a type T. For each class C and association A in CCM,
we use global variables C and A to express the current exiting objects of class C and
links of association A.

For simplification, we omit the many-to-many association IsLendableto by assum-
ing any user is allowed to borrow any publication. And association IsAvailable in

258 X. Li et al.

*

*

1

1
*

IsCopyof1 *

User
Takes

Borrows

*

*

1

IsLendableTo
IsAvailable

Publication

Loan

Copy

Fig. 2. Conceptual Model of Library

CCM is implemented by introducing an attribute available into the class Copy, i.e.
availabe = false means the copy is not available; otherwise it is available to any user.

The conceptual model of library system in Figure 2 is formulated as follows:

CName = {User,Loan,Copy,Publication};
attr(User) = {< uid : String >};
attr(Loan) = {< lid : String >};
attr(Copy) = {< cid : String >, < available : B >};

attr(Publication) = {< pid : String >, < author : String >};
AVar = {Takes : P(User × Loan), Borrows : P(Loan × Copy),

IsCopyof : P(Copy × Publication)};
CVar = {User : P(User), Copy : P(Copy), Loan : P(Loan),

Publication : P(Publication)}
Therefore, variables in CV ar and AV ar should be defined as global variables in the prototype

system. We also assume initial conditions for these variables before the system carries out any use
cases. For above CCM of library system, we have

PUser User = ∅; PCopy Copy = ∅; PLoan Loan = ∅;
PPublication Publication = ∅; PIsCopyof IsCopyof = ∅;
PTakes Takes = ∅; PBorrows Borrows = ∅

Use Cases. Informal identifying and describing use cases is important for establishing the CCM
[6]. However, formal specification of use cases depends on specification of CCM. We propose a
canonical form for the specification of a UCM by introducing a use-case handler (UCH) for each
use case1. This class encapsulates the classes and associations of the CCM, and it declares each
system operation [6, 9] of the use case as a method in the form

op
def
= pvar x : T1; rvar y : T2

Pre : p
Post : R

where pvar and rvar declare the value parameter(s) and the result parameter(s). This method
was also used by B. Meyer [11], called design by contract.

At any time during the execution, this class will only have a single instance. Some methods
in the UCH class of the library system are specified as follows.

1 This is suggested by the facade controller pattern.

Generating a Prototype from a UML Model of System Requirements 259

Use CaseAddCopy. Use case AddCopy adds a new copy of a publication to the library after its
corresponding publication has already been created. If there is not the corresponding publication
of the new copy, we should first call use case AddPublication to create the publication, and then
carry out AddCopy. The use case AddCopy is therefore defined as follows:

AddCopy
def
= pvar c : Copy, p : Publication;

Pre : c �∈ Copy ∧ p ∈ Publication
Post : Copy′ = Copy ∪ {c} ∧ c.available′ = true

∧ IsCopyof ′ = IsCopyof ∪ {< c, p >}

Use Case LendCopy. This use case is about how the library lends a copy of a publication to a
user. Obviously, a user u and a copy c are participants in this action, and a loan � should be created
for user u and copy c. The three preconditions say that c and u are known by the system, and c is
available ; and the post conditions assert that a new loan is created to record the loan of c and u,
and that c becomes unavailable shown in figure 2. This use case can be formally specified as

l : Loan

c : Copy c : Copy

pre state

=>

post state

u : Useru : User (u, l)

(c , l)

Fig. 3. Pre and Post Object Diagrams of LendCopy Use Case

LendCopy
def
= pvar c : Copy, u : User;

Pre : c ∈ Copy ∧ u ∈ User ∧ c.available = true
Post : ∃� : Loan • � �∈ Loan ∧ Loan′ = Loan ∪ {�} ∧ c.available′ = false

∧Borrows′ = Borrows ∪ {< �, c >} ∧ Takes′ = Takes ∪ {< u, � >}

3 Generating an Executable Prototype

Prototyping of requirements analysis should demonstrate the important functional effects of use
cases in terms of atomic state changes rather than the detailed algorithms for internal object
interactions. State changes are mainly about creating new objects or links, removing old objects
or links, or modifying object attributes. Therefore, the prototype concentrates on the atomic actions
on the SEOD which are about creating an object or a link, removing an object or a link, and getting
and setting an attribute of an object. A complex functional algorithm on attributes which makes
a complex equation satisfaction in post conditions of use cases may not be executable in abstract
analysis model, and they will be left for further refinement. However, the prototyping can give the
corresponding warning information on the non-executable parts.

260 X. Li et al.

As shown by the architecture in Figure 1, the prototype can be generated by a prototype
generator. The prototype interface can be generated easily from the names of use cases from the
given UCM. The main problem is to generate the SEOD from the given CCM, and to generate the
UCH (i.e. its methods) for each use case.

Generating the Entity Object Database. The conceptual model identifies the object entities
as well as the associations among them. It corresponds to the declaration part in the program of
the prototype. It is used for constructing of the SEOD of the system prototype.

For each class C in the CCM, a corresponding class C can be defined in the Java program of the
prototype. We introduce a special attribute id for each class so that each object can have a unique
name for reference since the object name is implicitly as a reference in a Java program. When
creating an new object, the object is given a unique identity name id. We use a global variable C
for each class C to record the set of current existing objects of class C, and it is initialized in the
prototype declaration part. For simplification, we only record an object’s identity name in such a
set variable in the prototype implementation.

The attributes of classes in the CCM can be directly coded into the Java notation by syntax
translation.An association can be coded as an array of a pair of object names. For example, suppose
c and � are objects of corresponding Copy and Loan, we can use the corresponding object identity
names cid and lid for the objects. We use identity attribute names instead of the object and link
identities (references) which are unique. Similarly, < cid, lid > can be considered as the link
identity name for Borrows.

Defining the Atomic Actions of Object Database. In the context of the CCM that derives
the SEOD, the use cases correspond to the operations on the database which transfer the database
from one stable state to another. The database state is a UML object diagram.

In the implementation of the prototype, for each class C we define auxiliary system meth-
ods C.find(), C.add(), C.delete() and C.get() on the SEOD, where C is variable with type
P(C) defined in the previous paragraph. For example, suppose c is an object of class Copy,
Copy.find(c) will return a boolean value to check whether c exists in current system state or not,
i.e. to return the truth value of the condition c ∈ Copy; Copy.add(c) will add c to the set Copy;
Copy.delete(c) will remove c from Copy; and Copy.get(cid) will get the object reference with
name cid.

A use case can be realized by a sequence of atomic actions on the SEOD of two cate-
gories: object level actions and attribute level actions. Object level actions include AddObject
(creating an object), RemoveObject(deleting an object) , AddLink (creating a link) , and
RemoveLink(deleting a link). In Java programming, AddObject(c : C) can be implemented by
creating a new object c of class C, and then adding it into the class variable C, i.e. new C(c) or
C.add(c). Similarly, RemoveObject(c: C) is to delete an existing object c from C, i.e. destroy(c)
or C.delete(c)). Meanwhile sometimes finding actions are needed, which are FindObject and
FindLink by calling methods C.find() and A.find(), where C ∈ CVar and A ∈ AVar.

The attribute level atomic actions are basic reading and writing an object attribute in the
database, i.e. class methods: aget and aset for each attribute a of a class. For example, there are
two corresponding methods availableget() and availableset(v) for the attribute availble of
Copy.

Checking a Precondition. The precondition of a use case describes execution constraints, i.e.
before executing the use case to modify the SEOD, the constraints are checked on current system
state. This checking is static operation on the database. It does not change system state, i.e. without
side effects like evaluating expressions of Object Constraint Language (OCL) [16].

Generating a Prototype from a UML Model of System Requirements 261

The task of checking a precondition is to read the relevant information from SEOD, and then
evaluate the condition. If the value is false, the prototype will stop the use case and output a
corresponding warning information. Otherwise, it will continue executing the use case.

The precondition of a use case can be interpreted as a boolean expression in a Java program.
The corresponding actions are finding objects and links, FindObject() and FindLink(), as well
as reading the object attributes in the database attributeget().

Concretely, if c ∈ C appears in precondition, it means to check whether object c exists in the
current database by calling method C.find(c). An attribute reading can be directly coded as Java
get method.

Checking a Postcondition. Each use case describes a sequence of interactions between the
actors of the use case and the system, and will be realized as sequences of interactions among
objects which are described in sequence diagrams in the design stage. The pre and post conditions
of a use case describe the result of the execution of its uses in terms of its pre and post states
without any details of the interactions among system objects in the design interaction diagrams.
Prototyping is to find the executable parts of a use case specification and translate them into
atomic actions on the SEOD. These atomic actions include attributeset, AddObject, AddLink,
RemoveObject, and RemoveLink.

Obviously, each use case generally involves only a few objects. It is not difficult to find out
the participating objects and links from the pre and post conditions of the use case. From the
precondition, the participating objects and links in the pre state can be identified and put into
the sets preobject and prelink of objects. Similarly, two set variables postobject and postlink
of objects are used for the postcondition. Of course, a tool can also be designed to generate the
sets of objects and links automatically by parsing the pre and post conditions. Another informal
way is that we can directly obtain the four sets from the use case state transition diagram like
Figure 3.

The four sets contain the information about the change of the SEOD from the pre state to post
state. From the four sets, we know that if the use case is successfully executed as required, it will
create all the new objects in createobject and all the new links in createlink which only appear
in the post state but do not appear in the pre state, and delete all the old objects from deleteobject
and all the old links from deletelink which only appear in the pre state but do not appear in the
post state. These four sets of objects and links to be created and deleted can be calculated by the
following formulas.

createobject = postobject − preobject; deleteobject = preobject − postobject;
createlink = postlink − prelink; deletelink = prelink − postlink.

For example, according to the specification of use case LendCopy, its precondition relates
two existing objects, a user u and a copy c, and its postcondition requires to create a new object,
loan �, and two links, < u, � > and < �, c > (see Figure 3). We thus get the following four sets:

preobject = {u, c}; postobject = {u, c, �};
prelink = ∅; postlink = {< u, � >, < �, c >}

And then the set of objects and the set of links to be created:

createobject = {�}; deleteobject = ∅;
createlink = {< u, � >, < �, c >}; deletelink = ∅

So the corresponding Java source code of use case LendCopy method can be generated some-
thing like as follows.

262 X. Li et al.

public void LendCopy(String cid, String uid){
if (User.find(uid) == false)
{System.out.println("Cannot find object" + uid)};
else u = User.get(uid);
if (Copy.find(cid) == false)
System.out.println("Cannot find object" + cid);

else {c = Copy.get(cid);
if (c.available get() == false)
System.out.println(cid + "is not available");

else {� = new Loan(lid);
Loan.add(lid);
Takes.add(< uid, lid >);
Borrows.add(< lid, cid >);
c.availableset(false); }
} }

To summarize, a prototype of a use case demonstrates the sequence of atomic actions on the
SEOD. The first step is to check the precondition on preobject and prelink, i.e. any object and
link in the two sets should exist in the SEOD; otherwise, the use case will preform alternative
exception scenarios. Also, the precondition should be checked to ensure that the objects and links
to be created in createobject and createlink should not exist in the database in the pre state.
And then some actions are performed to transfer system from pre state to post state. That is , the
prototype should first create all objects in createobject, second create the links in createlink,
and then delete the links from deletelink, and finally delete the objects from deleteobject. For
example, in the use case LendCopy, a loan � should be created, i.e. � ∈ createobject. There is
a corresponding predicate in the post condition: Loan′ = Loan ∪ {�}. Supposing that the four
sets have already defined, the algorithm can be simply described as the following 8-step sequence
of actions.

1. check whether all objects of preobject set exist in pre-state;
2. check whether all links of prelink set exist in pre-state;
3. check whether all objects of createobject set do not exist in pre-state ;
4. check whether all links of createlink set do not exist in pre-state
5. create all objects of createobject set in post-state;
6. create all links of createlink set in post-state;
7. delete all links of deletelink set in post-state;
8. delete all objects of deleteobject set in post-state.

Some complex predicate in the postcondition describes the complex algorithm of use case on
several attributes from different objects. They may not be executable in the early requirements
analysis stage, and need to be refined to be executable in the later. It is acceptable for a prototype to
ignore the non-executable parts. However, prototype can print out the corresponding information
to explain the post state should make the predicate holds. For example, ob.x′ = f(ob1.a, ob2.b)
appears in a post condition where a, b and x are attributes of objects ob1, ob2 and ob. It can
be coded in Java programming as an action ob.xset(f(ob1.aget(), ob2.bget())) by calling the
corresponding attribute get and set methods.

4 Prototyping Library System

Based on the method described in the previous section, a tool is developed to generate prototype
automatically in Java programming language shown in Figure 4. The tool is developed by using

Generating a Prototype from a UML Model of System Requirements 263

 Fig. 4. Interface of prototype generator tool

Fig. 5. Prototype interface of library system

Fig. 6. Prototyping LendCopy use case

Java and XML by reading information of use case diagram and conceptual class diagram from
XML files which are generated by MagicDraw or Rational Rose CASE tools, as well as inputting
the information of the pre and post object and link sets for each use case manually.

A prototype has three parts as defined by the architecture shown in Figure 1: the SEOD
generated after inputting the CCM, the system prototype interface that shows the buttons for
execute all the system use cases, and a UCH which defines system methods for all use cases.

264 X. Li et al.

The SEOD stores the current state of system, i.e. a object diagram of the CCM. We need for
each class, such as Copy, a class name“Copy”, and its attribute names cid and available as well
as their types ’String’ and ’Boolean’. The tool will define a class Copy in SEOD, and generate
class CopyDB (realize the global variable Copy) to store all the objects of class Copy in the
system, and provide the general methods find(), add() and delete() for the class Copy().

The system prototype interface is generated by inputting use case names or reading from XML
files of UCM. The generated prototype interface of library system is shown in Figure 5.

If the name of a use case on the prototype interface is clicked, the corresponding UCH of the use
case will be invoked.A method of a UCH is generated by inputting the use case information defined
in the pre and post conditions defined in early sections, such as preobject, postobject, prelink
and postlink. For example, if the use case LendCopy is clicked on the interface in Figure 5, the
corresponding UCH method LendCopy will be invoked, and its function is prototyped as shown
in Figure 6.

5 Discussion and Conclusion

Based on the formalization of a UML model requirements [8, 10], a method of prototyping is
proposed. A prototype contains three main parts as shown in Figure 1: SEOD generated from
the UML conceptual class model, a system prototype interface generated from names of the use
cases in the use-cased model, and a UCH generated from each use case in the UCM. The key idea
is to map the formal specification of a use case defined on the CCM in pre and post conditions
to a sequence of executable atomic actions on the SEOD. The source code of prototype can be
generated automatically by tool support. An automated generator has been developed and will be
improved for adapting the complex composed use case with an interaction event flow, including
and extension cases [1]. We can introduce a sub-interface with some buttons for system interactions
in the complex use case which can be decomposed into basic use cases by << include >> and
<< extend >> relationships [13].

The method can be used to generate evolutionary system prototypes [15] step by step following
the iterative and incremental RUP [5]. And it can also be used to generate rapid throw-away
prototypes. Meanwhile, the prototype system can also be modified to generate different styles
corresponding to customers, system analysts and designers. For example, customers are generally
interested in system level interaction and explorative dialog prototypes; and system designers
usually pay more attention on system internal interactions among application domain objects.

The prototype generation is supported by the formal method developed in [8, 10]. That model
is based on the simple set theory and predicate logic, rather than a particular formal language,
such as Z or VDM. The semantics of a use case is defined in the context of a CCM as a design in
Hoare and He’s Unifying Theories of Programming [4]. Of course, we can use OCL in [16] for
the proposed method. The pre and post conditions, and invariants in OCL are generally used to
define methods in a class. However, generally several objects consists of the context of a use case.
It is not easy to specify a use case in OCL by using association navigation way under one object
context. Therefore, we chose the simple predicate logic in [4] that is easier to understand than
other formalisms such as the description declarative language in OCL and the one used in other
work on formalizing UML (see the webpage of the precise UML consortium at www.pum.org).

A prototype generated from a formal model of requirements can support the practical use of
the underlying formal theory. For example, we can use such a prototype to check system invariants,
such as multiplicity constraints, that describe the static conditions that should always hold on any
stable state of the system database. This is done in a similarly way by coding the invariants into
the pre and post conditions. Prototyping in this way can also be used for checking the consistency
between a CCM and a UCM because the precondition will be evaluated to false if the CCM

Generating a Prototype from a UML Model of System Requirements 265

is not consistent with a use case in the UCM. Prototypes of two UML models of requirements
can be compared to check whether one model is a refinement of another and this allows software
engineers to use the formal method without the need to worry about the “formalities”.

One advantage of the prototype generator is that people can use the tool just by deriving the
four sets from a use case textual description like in Figure 3, without knowing formal specification
or writing out formal pre and post conditions of use cases.

Future work will focus on improving the method and its automated prototype generator tool
with some AI techniques to handle non-deterministic and algorithmic non-executable specifi-
cations into executable ones, as well as combining design models (class diagrams, sequence
diagrams, state diagrams, and activity diagrams) by referring to work and tools of D. Harel’s
Play-Engine [3]. The method can also be extended by combining scenario descriptions (activity
diagram) of use cases in [13].

Acknowledgement: The first author would like to thank his master student, Percy Loi for imple-
menting the prototype generator tool.

References

1. A. Cockburn. Writing Effective Use Cases. Pearson Education, 2001.
2. D. Collins. Designing Object-Oriented User Interfaces. Benjamin/Cummings, 1995.
3. D. Harel and R. Marelly. Come, Let’s Play, Scenario-Based Programming Using LSCs and

the Play-Engine. Springer-Verlag, 2003.
4. C.A.R. Hoare and J. He. Unifying theories of programming. Prentice-Hall, 1998.
5. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.

Addison-Wesley, 1999.
6. C. Larman. Applying UML and Patterns. Prentice-Hall International, 2001.
7. R.C. Lee. UML and C++: a practical guide to object-oriented development, 2nd. Prentice

Hall, 2001.
8. X. Li, Z. Liu, and J. He. Formal and use-case driven requirement analysis in UML. In

COMPSAC01, pages 215–224, Illinois, USA, October 2001. IEEE Computer Society.
9. Z. Liu. Object-oriented software development in UML. Technical Report UNU/IIST Report

No. 228, UNU/IIST, P.O. Box 3058, Macau, SAR, P.R. China, March 2001.
10. Z. Liu, X. Li, and J. He. Using transition systems to unify uml models. In ICFEM2002, in

LNCS 2495, Shanghai, China. Springer-Verlag.
11. B. Meyer. Object-oriented Software Construction (2nd Edition). Prentice Hall PTR, 1997.
12. R. Mitchell and J. McKim. Design by Conctract by Example. Addison-Wesley, 2002.
13. Reinhold Plosch. Contracts, Scenarios and Prototypes: An Integrated Approach to High

Quality Software. Springer-verlag, 2004.
14. M.F. Smith. Software Prototyping: Adoption, Pratice and Management. McGraw-Hill, 1991.
15. I. Sommerville. Software Engineering (6th Edition). Addison-Wesley, 2000.
16. J. Warmer and A. Kleppe. The Object Constraint Language: precise modeling with UML.

Addison-Wesley, 1999.

A Type System for an Aspect Oriented
Programming Language

M. Devi Prasad and Banshi Dhar Chaudhary

MNNIT, Allahabad – 211004, Uttar Pradesh, India
dprasadm@acm.org, bdc@mnnit.ac.in

Abstract. We present a type system for pointcut designators (pcds)
and advice forms of an aspect oriented programming langauge. The type
system classifies pcds as static, dynamic and implausible based on the
static type information of the join points selected by the pcds. Typing the
pcds assists in statically restricting the applicability of around advice to
procedure call and procedure execution join points. This enables better
reasoning about the behavior of around advice.

1 Introduction

In this paper we develop a type system for an Aspect Oriented Programming
(AOP) language. The procedure core of this language consists of integer and
boolean data types, and recursive procedures. Aspect oriented features of this
language support expressive pointcut designators, before, after and around ad-
vice. The type system presented here statically types pointcut designators (pcds)
as static, non-static and implausible, depending upon the kinds of join points
they select. It types before and after advice to void since they are always executed
for effect rather than for value. The type system of this language restricts pcd
of an around advice to match only procedure call and procedure execution join
points. This enables controlled evolution of new behavior in a type safe manner.

In the following discussion, we assume that the reader is familiar with the
abstraction principles of AOP languages. There are some excellent sources widely
available, and we refer the reader to [1, 2].

Rest of this paper is organized as follows: Section 2 presents the formal,
concrete syntax of the language. Section 3 shows the syntax domains used in type
judgements. Section 4 details typing rules for pcds, and section 5 types advice
definitions. Section 6 treats proceed expression and in section 7 we conclude.

2 Formal Syntax of the Language

The concrete syntax of the language resembles list forms of Scheme language.
In Fig. 1, integers and booleans are expressed values, while void is the typical
Unit type [3]. The production rules for procedure declaration, statements and
arithmetic, logical and relational expressions are given in [4].

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 266–272, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Type System for an Aspect Oriented Programming Language 267

Program ::= (program ProcAdv+)
ProcAdv ::= ProceDecl | AdviceDecl
Formals ::= (Typeexp id)∗

Body ::= (Localvar? Stmt∗)
Localvar ::= (auto (Typeexp id const)+)
Expr ::= id | const | (id Expr∗) | (proceed Expr∗) | . . .
AdviceDecl ::= (before (Formals) Pcd Body) | (after (Formals) Pcd Body)

| (around Type (Formals) Pcd Body)
Pcd ::= (call id) | (execution id) | (advice-execution)

| (within id) | (cflow Pcd) | (cflowbelow Pcd)
| (args id+) | (and Pcd Pcd) | (or Pcd Pcd) | (not Pcd)

Type ::= int | bool | void
Typeexp ::= int | bool

Fig. 1. Concrete syntax of the language

3 Syntax Domains

Figure 2 presents the syntax domains employed in typing judgements of different
syntactic phrases in the language.

fe ∈ F = (id : τ)∗ formal parameter types
pe ∈ P = id → (τret × F) procedure environment
ρ ∈ E = τret × F × (id → τ) type env of advice body
o ∈ AO = before | after | around
α ∈ Advice = AO × τret × F
℘ ∈ Pcdtype = JPtype × Argstype

κ ∈ JPtype = call jp[id] | exec jp[id] static join points
| aexec jp | dynamic jp dynamic join points
| nonsat jp impossible ones

R ∈ Argstype = {idi : τ i∈1...n
i } record of args bindings

τ = int | bool expressed values
τret = int | bool | void expressed values and Unit type

Fig. 2. Static semantics model

Argstype represents record type [3, 5]. The notation used here is identical to
the one found in [3].

4 Typing the PCDs

Figure 3 presents typing rules for pcds. A pcd expression is part of advice decla-
ration. It is typed using two environments: P – the procedure environment, and
F – the formal parameters in advice declaration.

There are two rules for (call pname) pcd. The T−CALL−PCD rule verifies
that pname exists in P and types it to PCDtype value. This value is a pair whose
first component is a call join point, and the second an empty record indicating

268 M. Devi Prasad and B.D. Chaudhary

no bindings. The second rule, T−CALL−NONSAT is applicable when procedure
pname does not exist in P . This yields a nonsat jp. Typing an
(execution pname) pcd yields similar judgements [4]. As evident from these
rules, call and execution pcds always offer concrete, static type information about
their intended join point shadows [6].

P, F � Pcd : Pcdtype

T-call-pcd
pname ∈ dom(P)

P, F � (call pname) : (call jp[pname], {})

T-call-nonsat
pname /∈ dom(P)

P, F � (call pname) : (nonsat jp, {})

T-advexec-pcd
P, F � (advice-execution) : (aexec jp, {})

T-args-pcd
for each i F � idi : τi

P, F � (args id1, . . . , idn) : (dynamic jp, {idi : τi
i∈1...n})

T-cflow-pcd
P, F � pcd : (−, {xi : τi

i∈1...n})

P, F � (cflow pcd) : (dynamic jp, {xi : τi
i∈1...n})

T-and-pcd
P, F � pcd1 : ℘1 P, F � pcd2 : ℘2

AndPcds(℘1, ℘2) : ℘res

P, F � (and pcd1 pcd2) : ℘res

Fig. 3. Typing Rules for PCDs

Rule T−ARGS−PCD verifies that each identifier used in the pcd is bound
in the environment of formal parameters and creates a record of these bindings.
Since there could be more than one procedure call or execution join point that
matches the type signature indicated in args pcd, it is not possible to statically
type it to one concrete join point. Therefore, it is typed to a PCDtype value
with the first component being a dynamic join point and the second component
being a record of bindings.

A (cflow pcd) is used to pick up join points that occur in the call graph of
some other join point. This may in general include too many join points with
varying (incompatible) signatures. Therefore, the T−CFLOW−PCD rule types
it to a dynamic jp while still retaining the bindings created by the inner pcd.

A Type System for an Aspect Oriented Programming Language 269

Rule T−AND−PCD first types operand pcds of and operator and combines
them using an auxiliary function named AndPcds. Figure 4 shows the formal
definition of AndPcds. It defines two separate operators for composing join point
components and parameter-type bindings contributed by operand pcds. The ⊗jp

operator deals with join point components while the ⊗bind handles bindings.

AndPcds : Pcdtype × Pcdtype → Pcdtype

AndPcds = λ(κ1, R1) (κ2, R2). (κ1 ⊗jp κ2, R1 ⊗bind R2)

(A) ⊗jp : JPtype × JPtype → JPtype

⊗κ dynamic−jp pj nonsat−jp
dynamic−jp dynamic−jp pj nonsat−jp

pi pi κres nonsat−jp
nonsat−jp nonsat−jp nonsat−jp nonsat−jp

where pi and pj are one of call jp or exec jp and

κres =
{

pi if pi = pj

unsat jp otherwise

(B) ⊗bind : Argstype × Argstype → Argstype

⊗bind = λ{li : τi
i∈1...m}, {kj : τj

j∈1...n}.
if ({li

i∈1...m} ∩ {kj
j∈1...n} = ∅) then

merge-records({li : τi
i∈1...m}, {kj : τj

j∈1...n})
else error “duplicate bindings′′

Fig. 4. The AndPcds operator

Stage (A) computes join point conjunction while stage (B) determines new
set of bindings. The latter step verifies that record labels in both pcds are dis-
tinct. It does so by verifying that the intersection of labels from both records
is empty. This enforces unique bindings for formal parameters. We presume a
function merge–records that combines the fields of argument records resulting in
a composite record.

The typing rules for (or pcd pcd) and (not pcd) are shown in [4].

5 Advice Definition

As seen from the syntax of the langauge, advice forms can declare formal pa-
rameters to access the run-time context available at a join point. However, both
before and after advice do not declare a return type. They are executed at re-
quired join points for their side effect rather than for value. For this reason, we
type the body of a before and after advice to void.

Figure 5 presents typing judgements for before advice. In T−BEFORE, the
formal parameters are first typed in an empty environment. This yields an en-
vironment F that binds identifiers with their types. Next, P and F are used to

270 M. Devi Prasad and B.D. Chaudhary

judge the well-typedness of the pcd associated with the advice. Finally, the ad-
vice body is typed using P and a new environment consisting of the return type
of the advice (void), F , and an empty component representing environment of
local variables. If an advice body declares auto variables, the empty environment
component is updated within the advice body with the identifier-type bindings
of local variables.

Typing after advice is structurally similar to the typing rules of before advice
and is elaborated in [4].

P � AdviceDecl : Advice

T-before
∅ � Formals : F P, F � Pcd : ℘

P, (void, F, ∅) � Body : void

P � (before (Formals) Pcd Body) : (before, void, F)

Fig. 5. Typing before advice

Around advice requires careful attention. First, since an around advice is de-
clared to return typed value, we should ensure that the associated pcd represents
a join point with the same return type. Second, return type of proceed expres-
sion within around advice body must be typed to the return type declared by
the advice. Third, in our language, as in AspectJ, the arguments of proceed are
matched with the formal parameters of the advice and not with the join point
selected by the associated pcd.

Figure 6 presents typing judgements for around advice. We show how around
advice is typed at a procedure call join point. The other variation involving
procedure execution join point is similar in structure and is detailed in [4].

P � AdviceDecl : Advice

T-around1
∅ � Formals : F P, F � Pcd : (call jp[pname], −)

P � pname : (τret, −)
P, (τret, F, ∅) � Body : τret

P � (around τret (Formals) Pcd Body) :
(around, τret, F)

Fig. 6. Typing around advice

T−AROUND1 first types formals in an empty environment and carries the
resulting bindings F to type the pcd. When the form of pcd type represents a
call join point, it ensures that the return type of the procedure (representing the

A Type System for an Aspect Oriented Programming Language 271

join point) is same as declared in the advice. Finally, it expects advice body be
typed to τret to establish the well-typedness of the advice definition.

6 Proceed Expression

Figure 7 presents the typing rules for proceed expression inside an around advice
body. In our formulation, E represents an environment used to type procedure
and advice bodies. In rule T−PROCEED, it contains the return type of the
(around) advice, types of formals declared in the advice and the types of local
variables.

The T−PROCEED rule first extracts τret – the return type of the advice,
and fe – the formal parameter environment, from E. It ignores the local variable
environment component. Next, it uses fe to retrieve the formal parameters-type
bindings declared in the advice. A check ensures that n, the number of actual
arguments matches m, the number of formal parameters. Then it verifies that
the type of each argument matches corresponding formal parameter.

P, E � Expr : τret

T-proceed
E = (τret, fe, −) fe = (id1 : τ1, . . . , idm : τm) n = m

P, E � exp1 : τ1 . . . P, E � expn : τm

P, E � proceed (exp1, . . . , expn) : τret

Fig. 7. Typing proceed expression

7 Conclusion

The major contribution of this paper is a type system that uses static properties
of join points selected by pcds to type the pcds. It exploits pcd type to statically
type the advice forms. It types before and after advice to void, and types around
advice only at procedure call and execution join points. This ensures type safe
evolution of program behavior.

References

1. Special issue on aspect-oriented programming: In Communications of the ACM,
44(10), October 2001.

2. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W.:
Getting started with AspectJ. In Communications of the ACM, 44(10):59–73, Oc-
tober 2001.

3. Benjamin C. Pierce: Types and Programming Languages. MIT Press, Cambridge,
MA, 2002.

272 M. Devi Prasad and B.D. Chaudhary

4. Devi Prasad, M., and Banshi Dhar Chaudhari: Type System and Advicve Com-
position Semantics of an AOP Language. Technical report. Computer Science and
Engineering Department, MNNIT, Allahabad. January 2004.

5. Cardelli, L.: Type Systems, Chapter 97. CRC Handbook of Computer Science and
Engineering. CRC Press, Second edition.

6. Hilsdale, E., and Hugunin,J.: Advice Weaving in AspectJ. In Third International
Conference on Aspect-Oriented Software Development, April 2004.

Secure Requirements Elicitation Through Triggered
Message Sequence Charts

Arnab Ray1, Bikram Sengupta2, and Rance Cleaveland3

1 Department of Computer Science SUNY at Stony Brook,
Stony Brook, NY 11794-4400, USA
arnabray@cs.sunysb.edu

2 IBM India Research Labaratory,
Block-1, Indian Institute of Technology, Hauz Khas,

New Delhi-110016, India
bsengupt@in.ibm.com

3 Department of Computer Science SUNY at Stony Brook,
Stony Brook, NY 11794-4400, USA

rance@cs.sunysb.edu

Abstract. This paper argues for performing information-flow-based security
analysis in the first phase of the software development life cycle itself ie in the re-
quirements elicitation phase. Message Sequence Charts (MSC)s have been widely
accepted as a formal scenario-based visual notation for writing down requirements.
In this paper, we discuss a method for checking if a TMSC (Triggered Message
Sequence Chart), a recently propsed enhancement to classical MSCs, satisifes one
of the most important information flow properties namely non-interference.

1 Introduction

With our increased reliance on computer systems in all aspects of life, protecting the
confidentiality of information being manipulated has become an increasingly important
research problem To be confident that a system is secure with respect to confidentiality,
it should be rigorously analyzed as a whole to check if it enforces good confidentiality
practices. The aim of the analysis should be to demonstrate that the information con-
trolled by a confidentiality policy cannot leak out to a location where that policy is being
violated. These policies which govern the movement of information through the system
are called information flow policies.

Information flow is traditionally checked through run-time monitoring of systems
[4], or by static analysis of the source-code [2] [3]. But these are post-implementation
approaches—finding spurious information flow at this stage may result in the entire
system being sent back to the drawing board for possible redesign and reimplementation.
Model-based approaches for information-flow analysis that check for information leaks
at the design phase [7], [5] developed out of the need to isolate security bugs as early
as possible in the development life-cycle with the broader aim of reducing the cost that
would otherwise be incurred implementing an insecurely designed system.

What should be noted however is that models are not the earliest artifacts in the
software development process. Before models are constructed by the design team, the

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 273–282, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

274 A. Ray, B. Sengupta, and R. Cleaveland

client or customer typically provides requirements which encapsulate her demands from
the final system. Traditionally these requirements have been textually represented in a
natural language like English. But in modern software engineering, requirements are
expressed in precise formalisms like Message Sequence Charts (MSC) [6] which are
now accepted as standard notation for systems by the International Telecommunications
Union (ITU).

In practice, the software design phase consists of an iterative process with devel-
oper’s designs being refined by client’s requirements and vise versa. A system which is
developed based on “sensitive-information leaky” requirements is bound to be insecure
no matter how well designed the ultimate system is. An implementation that meets these
faulty requirements will be doomed to be information-unsafe.The solution to such a prob-
lem would not be found in better implementations or in better models but in more secure
requirements. Thus any software engineering solution for secure information-flow that
does not analyze requirement elicitation formalisms will always be incomplete. In this
paper, we endeavor to provide methods to formally analyze information flow violations
on requirements expressed in terms of a recently proposed variant of MSCs called Trig-
gered Message Sequence Chart (TMSC)s [11] which enrich scenarios with the notions
of conditional and partial behavior so as to facilitate early stage requirements modeling.

The paper is organized as follows. Section 2 provides the background for the con-
cepts introduced, Section 3 illustrates an example of information-flow analysis on TM-
SCs while Section 4 shows how TMSCs may be characterized as ready sets. Section 5
illustrates the formal way of doing non-interference analysis on TMSCs and Sections
6 and 7 introduce TMSC expressions and investigates whether application of TMSC
operators preserve NI. The last section concludes the paper.

2 Background

A process is a tuple 〈S, A, →, sI〉 where: S is a set of states; A is a action set consisting
of named-actions and the internal transition τ ; −→ ⊆ S×A×S is the transition relation,
and sI ∈ S is the start state.

A set X of actions is a ready set of a state p in process P ie Ready(p) = X if the
state p offers X to the environment. In figure 1 we see an example of a process with the
ready set of state 1: Ready(1) = {{a, b}}.

Non-interference (NI) is an information flow property which states that if there are
two privilege levels for all the actions of a process –HI and LO it is impossible for an
observer who can observe only LO events to deduce any information about HI events.
Alternatively this can be interpreted as: for any system trace (sequence of visible actions)
consisting of HI(H) and LO(L) events there is a second trace consisting of the same
subsequence of LO events as the first trace but with no HI events. Since both these
traces are legal traces of the system, an observer (who can look at only LO actions)
would not know whether the first trace occurred or the second. Hence he would obtain
no information about the HI events from his observation.

If P be a process with its action set partitioned into two sets L and H (corresponding
to low and high privilege actions respectively) and tr be a trace then P/tr denotes the
process state after executing trace tr and traces(P) denote all the traces of P . Then:

Secure Requirements Elicitation Through Triggered Message Sequence Charts 275

b

b

a

a

1

2 3

4

Fig. 1. Process and Ready Set

ReadySets(P/tr)= {Ready(p) | for all traces tr from sI to p}
ReadySetsL(P) denotes ReadySets(P) restricted to the L alphabet.

In [8] a formulation for NI is given as:

∀tr ∈ traces(P).ReadySetsL(S/tr) = ReadySetsL(S/tr ↑ L))
tr ↑ L projects tr down to the event set L ie purges out all the H actions.

[5] provides several characterizations for NI using a process model and ready sets of
which we consider one above.

M1

b

W R

a

M2

b

a

W R

Fig. 2. Two TMSCs M1 and M2

Triggered Message Sequence Charts. Triggered Message Sequence Charts (TMSC)s
[11], like MSCs [1] describe system scenarios in terms of the atomic actions (message
sends and receives and local actions) that each parallel instance may engage in. However
unlike traditional MSCs each TMSC instance’s action sequences are partitioned into two
subsequences: a trigger and an action. A TMSC scenario stipulates that in any system
execution, if the sequence of events performed by an instance constitutes the trigger,
then the subsequent behavior of the instance must include the sequence of events that
constitute its action. In an implementation, an instance is not required to display the
behavior performed by the trigger, but if it does so, its subsequent behavior is limited
by the action.

Graphically we denote TMSCs as shown in Figure 2. The partitioning of the se-
quences of events into the trigger and action sequences is indicated by the horizontal

276 A. Ray, B. Sengupta, and R. Cleaveland

line running through the instances of the MSC. For each instance, the sequence of events
above the line constitute the trigger while that below constitutes the action.

In Figure 2 we have two TMSCs M1 and M2. Each TMSC has 2 instances called
W and R respectively. Another novelty of TMSCs, in comparison with MSCs, is that a
scenario may be partial. This is depicted by the presence/absence of a bar at the foot of
an instance in a TMSC. The presence of such a bar, as in TMSC M2, indicates that the
instance has to terminate on reaching that point, whereas the absence, as in M1, indicates
that there are no constraints on the subsequent behavior of the instance. As such, the
scenario is partial, and may be extended later on.

M1 trigger consists of a message from W to R labeled by a and its action consists
of a message from R to W labeled by b. M2 has an empty trigger followed by the same
exchange of messages present in M1.

3 Information Flow in TMSCs

The information-flow we shall be concerned with in this paper is Non-interference or NI
for short. We defined non-interference in terms of processes in the previous section. Over
here we lift that definition to TMSCs and use it to define the concept of information-safety
on requirements.

Let us associate one of 2 security levels (HI or LO) with each message in a TMSC. The
intuition behind NI is as follows. Actions having a LO security level may be observed by
anyone but not HI actions. For a system to have the non-interference property, it should
be impossible for a user observing LO actions to deduce anything about the occurrence
or non-occurrence of HI actions. In other words, for an insecure system even though the
attacker cannot directly observe HI actions, she may still be able to deduce information
about HI actions from observing LO actions only. Thus if a HI action is preceded (or
followed) by a LO action, it should also be possible for the HI action to occur without
being preceded (or followed) by the LO action. If that be the case, then even if the LO
action is observed no information is leaked about the HI action as the HI action can also
occur without the LO action.

In Figure 2, let a be a HI action and b be a LO action. In M1 , a triggers b. However,
this does not mean that b cannot occur without the occurrence of a. It just means that
if a happens then b has to happen. Hence if any observer observes b she cannot deduce
that a definitely happened as b may follow or may not follow a. Hence NI holds for M1.
However M2 has an empty trigger which means it is always true. This implies that the
action always has to happen and since the action imposes a total ordering on a and b,
an observer who observes b (the LO action) will know for sure that a (the HI action)
happened. Information will thus flow in a spurious fashion from HI to LO which means
that M2 does not satisfy NI and consequently is “unsafe”.

This example shows the necessity of checking information-flow properties like NI
on requirements. As is evident, despite the fact that M1 and M2 are requirements very
similar to the other one exhibits information-leak while the other does not. This motivates
us to look at formal ways of analyzing TMSCs for NI. In Section 2 we saw how NI can
be formulated in terms of ready sets on processes. Using that fact, if we may provide a
ready set characterization of TMCSs we can obtain a method for checking if a TMSC
satisfies the property of NI.

Secure Requirements Elicitation Through Triggered Message Sequence Charts 277

4 From TMSCs to Ready Sets

We will now show how individual TMSCs may be equipped with a ready-set semantics,
which makes information-flow analysis on requirements expressed as TMSCs, feasible
in practice. The basic idea is that triggers are handled via non-determinism: a TMSC
is essentially treated as a non-deterministic choice of all behaviors violating the trigger
together with those in which the trigger is satisfied and progresses made on performing
the action; and if the action does not terminate the behavior of the instance (i.e. the
scenario is partial), then the subsequent allowed behavior is again given by the non-
deterministic choice of all possible behaviors.

The formal semantics of single TMSCs is described in detail in [11]. This definition
translates a TMSC to an acceptance tree. In the TMSC setting, the main difference
between the acceptance set semantics of [11] and the ready set semantics we show
here, is that the former needs to satisfy a closure property called saturation, which
simplified the definition of the refinement relation needed in [11], but which is not
relevant in the information-flow context. Otherwise, the technical development needed
for both the acceptance set and ready set semantics is exactly the same and we will not
repeat the account in [11] in its entirety here. Rather, we will present only the relevant
definitions for the ready set semantics here, and the interested reader is referred to [11]
for details.

In the following, we consider 3 kinds of events: out(Ii, Ij , m) corresponds to Ii

sending m to Ij . Ij will receive m by performing in(Ii, Ij , m). Also, if Ij is waiting to
receive m from Ii but m is yet to be sent, then this will be indicated by the potential
event wait(in(Ii, Ij , m)). We will denote by I, E and R, the set of all instances, all send
and receive events, and all receive events respectively.

We assume all events in E to have a security level associated with them, where the
security level has the domain {HI, LO}. We define the function sec level : E −→
{HI, LO} which maps every event to a security level.

We first define how to associate a ready set with an instance Ii in a TMSC M . The
ready set construction differs from the traditional one for LTSs given previously in that
it is given relative to a set of “enabled inputs”. An instance can only emit an input
event if another instance has emitted the corresponding output; otherwise, this input
event is not enabled. To capture this behavior, we introduce an additional parameter,
eR ⊆ R, into the ready-set definition.An input event in eR is deemed enabled; otherwise,
it is defined to be disabled. We also need the following operation on languages. Let
L ⊆ A∗ and w ∈ A∗. Then the next set, next(L, w) ⊆ A, of L after w is given by:
next(L, w) = {a ∈ A | ∃w′ ∈ L. w · a � w′}. Finally, we define the nondeterminism
set of E ⊆ E and enabled inputs eR ⊆ R as follows.

ND(E, eR) = ({{e} | e ∈ E ∧ (e ∈ R ⇒ e ∈ eR)}
∪{{wait(r)} | r ∈ ((E ∩ R) − eR)})

ND(E, eR) represents the ready set of a system that can nondeterministically decide to
perform any event in E that is enabled, where any output or local event, and any input
in eR, is enabled, or wait for any input event in E that is not yet enabled.

278 A. Ray, B. Sengupta, and R. Cleaveland

Definition 1. Let Ii ∈ I, w ∈ E
∗ and eR ⊆ R{Ii}. Then ReadySets(Ii, M, w, eR) is

defined as follows.

ReadySets(Ii, M, w, eR) =⎧⎪⎪⎨
⎪⎪⎩

∅
if w
∈ LM (Ii)

ND(next(LM (Ii), w), eR)
otherwise

We will first explain some of the notation used above. The language, LM (Ii), of
an instance Ii records the possible sequences of events the instance might generate as
it executes. Intuitively, if a sequence does not “satisfy” the trigger of Ii, then it will
be admitted as a sequence. Otherwise, it will be constrained to “satisfy” the action.
ReadySets(Ii, M, w, eR) is the ready set of instance Ii in TMSC M after w. The first
clause above handles the case when Ii is incapable of performing w, while the second
one computes the ready set based on events that are possible “next” after w, together
with any potential receive events that are not enabled.

We assume that any such instance, whose behavior is not explicitly described in M ,
has empty trigger and action in M and must terminate.

Definition 2. Let Ii ∈ I − I. Then ReadySet(Ii, M, w, eR) is defined as follows.

ReadySet(Ii, M, w, eR) =

⎧⎨
⎩

{{end(Ii)}} if w = ε
{∅} if w = end(Ii)
∅ otherwise

Thus, any instance Ii ∈ I − I can only perform the event end(Ii) in M , after which
it terminates.

Interpreting TMSCs. We now define the ready set ReadySets(M, w) as follows.

Definition 3. The ready set ReadySets(M, w), of M after w ∈ E
∗ is defined as:

ReadySets(M, w) =

⎧⎪⎪⎨
⎪⎪⎩

∅
if w is not well-balanced

��Ii∈IReadySets(Ii, M, w�Ii, eR(w))
otherwise

We call w well-balanced if every receive event is preceded by a corresponding send.
The projection, w�Ii returns Ii’s contribution in w, i.e. the longest subsequence of w
containing only events in which Ii is active. Also, the receive event in(Ii, Ij , m) is called
enabled by w if |w|out(Ii,Ij ,m) > |w|in(Ii,Ij ,m). We use eR(w) to stand for all receive
events enabled by w. Finally, the �� operator takes the pairwise union of a set of ready
sets. Intuitively, we first compute the local ready set of each instance Ii after the execution
w�Ii, and then combine the local states across all the instances in all possible ways, to
generate the global system configurations.

Secure Requirements Elicitation Through Triggered Message Sequence Charts 279

5 Example of Readyset Analysis of TMSCs

In section 2, we showed how to characterize TMSCs in terms of ready sets. In or-
der to show non-interference, we need to show that for all traces tr of a TMSC M ,
ReadySetsL(M/tr) = ReadySetsL(M/tr ↑ L)) where L or LO is obtained from
applying the function sec level on its set of actions.

To illustrate our approach, we take the two TMSCs M1 and M2 we had in our initial
example where a is a HI action and b is a LO action.

As mentioned before, a TMSC can be looked upon as a non-deterministic choice of
all behaviors violating the trigger together with those in which the trigger is satisfied
and progress is made on performing the trigger. As a result, for M1 if the trigger is not
satisfied (ie a is not sent from W to R) there are a myriad number of things it can do,
some of them being:the sending out and reception of b alone, termination of W at the
very beginning, termination of R at the very beginning, the sending out of an event while
the receiver is still waiting for it. In other words, for a conditional scenario like M1 there
are many ways in which it may be satisfied.

Revisiting our previous example from the stand-point of the readyset characterization
of NI we can see that we get the same result we obtained from intuition. That is in M2 if
the trace considered is w = out(W,R, a).in(R, W, a).out(R, W, b) then readyset of M2
after the perfomance of this trace projected on the set of low actions ie RDL(M2/w) =
{{in(W,R, b)}} is not equal to RDL(M2/w ↑ L) = {∅} ie the set containing the
empty trace.

However for the same trace in M1, RDL(M1/w) = {{out(R, W, b), in(W,R, b)}}.
Since M1 is a partial scenario, after the performance of out(R, W, b) the actions it can
perform (projected on the low alphabet) may be to either receive the emitted b at W
or for R to emit another b. For RDL(M1/w ↑ L) the trigger is not satisfied and the
projection of the ready set onto the low alphabet will be {{out(R, W, b), in(W,R, b)}}
ie RDL(M1/w) = RDL(M1/w ↑ L).

These results tie in with the intuition that a system with more redundancy is likely
to be more secure with respect to a behavior obfuscation property like non-interference.
A partial scenario like M1 having more non-determinism than a complete scenario like
M2 has a greater likelihood of being secure.

This leads to an important lesson for requirements and software engineers working
together to design a system: while going from partial specifications to more refined ones,
it should be remembered that the behaviors which are thrown out during the refinement
process may be important in keeping the system’s behavior obfuscated from an attacker.
Hence, for systems in which security is a concern, there is a need to check for information
leaks at every stage of the specification and system refinement process.

6 TMSC Expressions

So far we have been working with single TMSCs that serve as the basic building blocks
for structured requirements specifications. An algebra of operators is used to generate
larger specifications out of sub-specifications. The resulting terms, which are referred to
as TMSC expressions, have the following syntax:

280 A. Ray, B. Sengupta, and R. Cleaveland

S ::= M (single TMSC)
| X (variable)
| S ‖ S (parallel composition)
| S ∓ S (delayed choice)
| S; S (sequential composition)
| recX.S (recursive operator)
| S ⊕ S (internal choice)
| S ∧ S (logical and)

The TMSC language offers a selection of “behavioral” and “logical” operators (as op-
posed to purely behavioral constructs typically used in MSC specifications) to facilitate a
structured approach to requirements management whereby composite requirements are
generated by interweaving prescriptive and constraint-based requirements. ‖, ∓,; and
recX falls into the behavioral category, ∧ is a logical construct, while ⊕ falls into both
categories. The ‖ operator runs two TMSC expressions in parallel. S1∓S2 represents the
“deterministic choice” between S1 and S2 while S1⊕S2 represents the nondeterministic
choice: a successful refinement can choose either. In this respect ⊕ has overtones of log-
ical disjunction. S1; S2 denotes the asynchronous sequential composition [6] of S1 and
S2. The recursive operator, rec allows us to model infinite behavior of processes, where
a new execution cycle starts whenever there is a reference within S, to the variable used
in the recursive definition (say X). Finally, S1 ∧S2 represents the logical conjunction of
S1 and S2, i.e. it specifies a system that needs to satisfy the requirements expressed by
both S1 and S2. (A detailed account of the use of the TMSC framework in requirements
modeling can be found in [9])

The formal semantics of TMSC expressions is given in [10] by translating them to
acceptance trees. Specifically, the TMSC operators are interpreted in terms of accep-
tance trees, i.e. they take the acceptance trees of the sub-expressions as parameters, and
generate the acceptance tree of the larger expression. The ready set semantics of TMSC
expressions is defined in an analogous manner, the only difference being we use ready
sets in place of acceptance sets, and do not use the saturation operator as in [10]. For
more details about the approach, the reader is referred to [10].

7 TMSC Expressions and NI

Now an interesting question is whether NI is preserved by the application of these
standard operators. Or in other words if M1 and M2 are TMSCs that satisfy NI is it
mandatory for M1 op M2 also satisfy NI.

The answer to this question is that With the exception of ⊕ none of the TMSC
operators preserve NI. This means that while building up more complex TMSCs from
simpler TMSCs the user has to check NI at each stage of composition as there is no
guarantee that just because the components are safe the total system will be safe. Due
to shortage of space we demonstrate how ⊕ preserves NI and how ∧ does not. Counter-
examples of the other operators can be constructed similarly and we plan to provide
them in an expanded version of this paper.

Secure Requirements Elicitation Through Triggered Message Sequence Charts 281

Internal Choice. The ⊕ operator offers non-deterministic choice. Given two TMSC
specifications S1 and S2, and a sequence of events w, let RD(S1/w) and RD(S2/w)
be the ready sets of S1 and S2 after a trace w then RD[S1 ⊕ S2/w] = RD(S1/w) ∪
RD(S2/w) as shown in [10]. If A is a readyset then A ↑ L denotes the A projected on
the low actions.

As a result,

RDL(S1 ⊕ S2/w) = (RD(S1/w)∪RD(S2/w))↑L
= RDL(S1/w)∪RDL(S2/w)
= RDL(S1/w↑L)∪RDL(S2/w↑L) [Assuming S1 and S2 satisfy NI]
= (RD(S1/w↑L)∪RD(S2/w↑L))↑L
= RDL(S1 ⊕ S2/w↑L)

This shows that that internal choice operator preserves NI.

Logical And. In Figure 3 we have 2 TMSCs S1 and S2 and their “logical and” S =
S1 ∧ S2 and each li ∈ L and each hi ∈ H . Again due to shortage of space we do not
provide a formal definition for construction of the logical and of the two processes . The
intuition is that at each state of the process S1 we calculate its ready set and logically
“and” it with the ready set of the corresponding state in S2. For example in the state A
for S1 the ready set is {{l2, h1}} while for S2 it is {{l2}} and so state A in S has its
ready set as: {{l2, h1}} ∧ {{l2}}= ∅ ie state A in S has no outgoing transitions.

h

hl

l

l

l

1

1

1

1

2

2l

2

h

l

l

l1

1

1

2

h

l

l

l1

1

1

2
2

l2

S S S
1

2

A A A

Fig. 3. Two TMSCs S1 and S2 and their “logical and” TMSC S

Both S1 and S2 satisfy NI because it is evident that by observing l1 and l2 we cannot
deduce any information about the occurrence or non-occurrence of h1. However their
“logical and” S does not satisfy NI as an observer may observe the occurrence of l1 and
l2 in sequence and deduce the occurrence of h1.

The same result may be obtained formally from the ready set characterization of
NI. We see that if we consider the trace w = h1l1 then RDL(S/w) = {{l2}} while
RDL(S/w ↑ L) = φ and hence RDL(S/w) is not equal to RDL(S/w ↑ L).

8 Conclusion and Future Work

This paper provides a way in which information-flow analysis can be done on speci-
fications expressed as TMSCs. As we can see that with a ready-set based analysis of

282 A. Ray, B. Sengupta, and R. Cleaveland

non-interference already in place, all that is needed are means to convert specification
input formalisms to their respective ready-set characterizations. We have done this for
TMSCs in this paper but there are several widely-used formal/informal/semi-formal
notations that may be treated similarly. The analysis presented also makes a case for
providing a rigorous formal semantics to a modeling/specification language because
once one does that, it becomes easier to provide a translation to a form amenable to
information flow analysis. With so many system description languages that still have
an informal/semi-formal semantics, there is now an added incentive (ie the power to
automatedly analyze information flow) to provide them with a formal semantics.

This paper also provides us an important intuition about the application of security
analysis at each phase of requirements construction. As we construct more and more
refined specifications by the application of operators, we have to keep note of the fact
that by potentially removing traces (ie performing refinement) at each stage we may be
introducing information leaks due to the removal of redundancy [In the previous section
we saw how the ∧ operator removed a trace that led to the violation of NI in S]. This
makes it imperative to do NI analysis at each phase of requirements construction.

References

1. Message sequence charts (MSC). ITU-TS Recommendation Z.120, 1996.
2. D.E.Denning and P.J.Denning. Certification of programs for secure information flow. Comm

of the ACM, 20(7):504–513, 1977.
3. D.Wagner. Static analysis and computer security:new techinques for software assurance. PhD

thesis, University of California, Berkeley, 2000.
4. J.S. Fenton. Information protection systems. Ph.D thesis, University of Cambridge, England,

1973.
5. P.Ryan. Mathematical models of computer security–tutorial lectures. Foundations of Security

Analysis and Design, 2171:1–62, 2001.
6. M.A. Reniers. Message sequence chart: Syntax and semantics. PhD Thesis, Eindhoven

University of Technology, 1998.
7. R.Focardi, R.Gorrieri, and F.Martinelli. Information flow analysis in a discrete-time process

algebra. IEEE Computer Security Foundations Workshop, pages 170–184, 2000.
8. Peter Ryan. A csp formulation of non-interference and unwinding. Presented at CSFW 1990

and published in Cipher, Winter 1990/91.
9. B. Sengupta and R. Cleaveland. Refinement-based requirements modeling using triggered

message sequence charts. IEEE International Requirements Engineering Conference, 2003.
10. Bikram Sengupta. Triggered message sequence charts. Ph.D Thesis, State University of New

York, Stony Brook, 2003.
11. Bikram Sengupta and Rance Cleaveland. Triggered message sequence charts. Proceedings

of ACM SIGSOFT Foundations of Software Engineering, pages 167–176, 2002.

Framework for Safe Reuse of Software Binaries�

Ramakrishnan Venkitaraman and Gopal Gupta

Applied Logic, Programming-Languages and Systems (ALPS) Laboratory,
Department of Computer Science,
The University of Texas at Dallas

Abstract. In this paper we consider reusability of software component
binaries. Reuse of code at the binary level is important because usually
only the machine code for system components is available; vendors do
not want to share their source code for proprietary reasons. We develop
necessary and sufficient conditions for ensuring that software binaries
are reusable and relate them to the coding standards that have been de-
veloped in the industry to ensure binary code reusability. These coding
standards, in essence, discourage the (i) use of hard-coded pointers, and
(ii) writing of non-reentrant code. Checking that binary code satisfies
these standards/conditions, however, is undecidable, in general. We thus
develop static analysis based methods for checking if a software binary
satisfies these conditions. This static analysis rests on the abstract in-
terpretation framework. We illustrate our approach by showing how we
statically analyze the presence of hard coded pointer variables in assem-
bly code obtained from binaries of digital signal processing applications.
The analyzer we have developed takes the binary to be checked for reuse
as input, disassembles it, builds the flow graph, and statically analyzes
the flow graph to check for the presence of code that will hinder its reuse.

1 Introduction

Software components have received considerable attention in recent years. The
dream is to develop a virtual marketplace of commercial-off-the-shelf (COTS)
software components developed by third party vendors. To assemble new appli-
cations, developers merely choose the right components and glue them together,
perhaps with small amount of additional code (glue code). Software components
thus promote software reuse (plug-and-play) which helps reduce software devel-
opment time, development cost, and the time-to-market for new software based
systems.

Most third party vendors are unwilling to provide the source code of the
component due to proprietary reasons. Thus, in most cases, only binary code
is available. Distributing software in binary form means that integration of the
software with other applications does not require recompilation but only linking

� Authors have been partially supported by grants from the National Science Foun-
dation, the Department of Education, and the Environmental Protection Agency

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 283–293, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

.

284 R. Venkitaraman and G. Gupta

with the application. That is, application developers will use the API provided
to call the functions available in the component, the application code will then
have to be linked to the software components’ binary prior to being loaded in
the main memory for execution.

However, the problem that arises then is ensuring that the software compo-
nent is written in such a way that it does not hinder reuse of its binary. For
example, the execution of component binary should not alter the application’s
binary code. In this paper we are interested in analyzing the necessary and suf-
ficient conditions under which a component binary can be reused.1 We are also
interested in detecting automatically if a binary satisfies these conditions.

Our work is motivated by practical concerns for software reuse in the digital
signal processing (DSP) industry [4]. Texas Instruments (TI), world’s leading
manufacturer of DSP hardware, is interested in developing a marketplace for
DSP software COTS component. However, most of the DSP code from vendors
is available as a binary for DSP processors in the TI TMS320 family. DSP soft-
ware developers tend to use low level optimizations to make their software very
efficient. One has to ensure that these low level optimization do not interfere with
reusability. Researchers at Texas Instruments have developed “general program-
ming rules” as part of their Express DSP Algorithm Interoperability Standard
(XDAIS) [21] that defines a set of requirements for DSP code (for TI TMS320
family of DSP processors). If DSP software developers follow this code, then it
will be possible for system integrators to quickly assemble production quality
DSP systems from one or more subsystems. The programming rules essentially
lay down the restrictions that, if not followed, will result in code incompatibil-
ity during reuse (e.g., one rule restricts the usage of hard coded pointers in the
program).

In this paper we analyze necessary and sufficient conditions for software bi-
nary code reusability. We relate these conditions to the TI’s XDAIS standard.
The necessary and sufficient conditions are derived from the fact that linking
and loading of binaries is done under certain assumptions. The binaries must
not execute any instruction that will violate these assumptions.

Further, we are interested in developing automatic tools that will detect if a
program is not compliant with these conditions. However, the compliance check-
ing is undecidable in general (this constitutes the reason why TI has found it
hard to develop tool for checking compliance of a program code with XDAIS
standard [4]). We propose to use static analysis to perform this compliance
check. However, static analysis of the program code is complicated by the fact
that the source code of the program is not available—vendors generally just ship
their binaries that can be linked with other codes. Thus, to check for compliance
assembly code has to be analyzed. It should be noted that static analysis of
assembly code is quite hard, as no type information is available. Thus, for exam-

1 Note that software reusability is a very broad term [11], however, for our work we
are primarily interested in reuse of software binary code. In the rest of the paper,
the term software reuse should be taken to mean software binary code reuse.

Framework for Safe Reuse of Software Binaries 285

ple, distinguishing a pointer variable from a data value becomes quite difficult.
Also, most compilers take instruction level parallelism and instruction pipelining
provided by modern processors into account while generating code. This further
exacerbates the automatic static analysis of assembly code. Our static analysis
framework is based on abstract interpretation. Thus, assembly code is abstractly
interpreted (taking instruction level parallelism and pipelining into account) to
infer program properties. A backward analysis is used since in most cases data
type of a memory location has to be inferred by how the value it stores is used.
Once a point of use is determined, the analysis proceeds backwards to check for
the desired property.

We illustrate our approach by considering how we statically analyze the pres-
ence of hard-coded pointers (rule 3 of the TI XDAIS [21] standard), i.e., how we
check whether a pointer variable has been assigned a constant value by the pro-
grammer. We give details of the tool that we have built for this purpose. Other
rules can be checked in a similar manner. Note that our goal in this project
has been to produce an analyzer that can be used to check for compliance of
large commercial quality program codes. Thus, all (nasty) features of C that
may impact the analysis have been considered (most DSP code is written in
C). For example, in hard-codedness analysis, we have to consider cases where
pointers are implicitly obtained via array declarations, pointers with double or
more levels of indirections (e.g., int **p), pointers to statically allocated global
data area, etc. Our work makes the following contributions:

– Necessary and sufficient conditions are developed for checking if a software
binary code is reusable.

– A static analysis based framework is proposed for checking if these reusability
conditions are satisfied. We show that software binaries can be successfully
analyzed via abstract interpretation based techniques, even in the presence
of instruction level parallelism and pipelining.

– The static analysis based framework is used to develop a practical system for
compliance checking for one of the conditions (hard codedness of pointers).

We assume that the reader is familiar with abstract interpretation; tutorial
introduction can be found in chapter 1 of [1].

2 Reuse of Software Binaries

Third party code is generally made available by supplying a software binary
that is linked with the applications that makes use of it. Vendors are generally
reluctant to share their source code due to proprietary reasons. If software com-
ponent binaries are to be reused, then one must ensure that these binaries do
not include code that will compromise the reusability of the code. Reusability
can be compromised, for example, if the code contains hard-coded pointers, or
if the code is self-modifying or modifies other binaries that are linked to it.

Note that it is important to make a distinction between usability vs reusabil-
ity of a software system. Certain, programming idioms, if used, may appear to

286 R. Venkitaraman and G. Gupta

compromise the reusability of the software system, however, on closer analysis
they relate to issue of usability. For example, if a binary code makes array ref-
erences that are out of bound, then this may appear as violating binary code
reusability (the references may be to addresses outside the binary’s code or data
area). Indeed, reusability is compromised if out of bound array references are
made unintentionally. However, if out-of-bound array references are present un-
intentionally, then this means that the program still has software bugs that have
not been removed. Thus, the software is not even usable, let alone reusable. In
this paper we are not interested in issues of software usability.

Once binary code is given, it goes through two more steps prior to execution:
(i) linking this binary with other binaries (done by a linker); and, (ii) the final
loading of the resultant executable in the main memory by the loader after
address relocation. A linker primarily performs the task of symbol resolution
(determining relative offsets for labels), while a loader adds the proper offsets to
addresses so that the program can be loaded in the area of the virtual memory
allocated by the OS. Linking and loading operations are performed under certain
assumptions. Reusability is compromised if the execution of this binary code
results in these assumptions being violated.

A linker obviously assumes that the offset of a label will not change later.
That is, given an instruction in a binary B1 involving a label, e.g., jump L1,
where L1 is a label defined in another binary B2 that is being linked to B1, then
the offset for L1 should not change after linking. That is, the code starting from
location L1 will not be relocated somewhere else after the linking phase is over.
Similarly, a loader assumes that an executable can be loaded anywhere in the
virtual memory. Thus, to ensure reusability of binary code the following two
conditions must hold:

C1 The binary code should not change during execution in a way that link-time
symbol resolution will become invalid.

C2 The binary code should not be written in a way that it needs to be located
starting from some fixed location in the virtual memory.

We assume that no additional information is given w.r.t. conditions under
which a software component binary is to be used, apart from a specification of
the API.

Theorem: Conditions C1 and C2 are necessary for binary code reusability.

Proof: The proof by contradiction is straightforward and is omitted.

These conditions are also sufficient, because they cover all the assumptions made
during linking and loading. Note, however, that the necessary conditions above
are hard to characterize and even harder to detect. Thus, in practice we broaden
these conditions and consider more general conditions that are easier to charac-
terize and detect. A broader condition that captures C1 is that the binary code
should be re-entrant. Similarly, for C2 it is sufficient to check that there are
no hard coded memory addresses in the program. Thus, checking for reusability
can be reduced to checking for the following conditions: (i) C3: that the binary

Framework for Safe Reuse of Software Binaries 287

code is re-entrant; (ii) and, C4: the binary code does not contain any hard-wired
memory addresses. Note that code re-entrance is a very useful way of character-
izing conditions for reusability, because very often the same component binary
may be executed by multiple threads or processes. Code re-entrance implies that
such concurrent execution can take place safely.

Theorem : If conditions C3 and C4 hold, then the binary code is reusable (i.e.,
C3 and C4 are sufficient).

Proof: We will show that if C1 (resp. C2) does not hold then C3 (resp. C4)
does not hold either. If C1 does not hold, then the symbol mapping for address
labels determined at link-time does not hold at execution time. This implies
that the symbol mapping was altered at execution time, i.e., the binary code got
altered during execution, which in turn implies that the code is non re-entrant.
Similarly, if C2 does not hold, then there must be some address in the binary
code that is used during the execution that is fixed. Thus, C4 does not hold. �

Note that while C1 implies C3 and C2 implies C4, the implication does not
necessarily hold in the other direction. Thus, the code may not be re-entrant yet
may be reusable, as long as the modifications made to the binary at run-time
are such that the symbol mapping is not altered and only one thread uses the
binary code at any given time. Likewise, hard wired addresses may be present,
yet the code may still be loaded any where as long as the specific hard-wired
addresses are known and they do not interfere with the area where the code is
loaded. Thus, C3 and C4 are sufficient conditions, but not necessary conditions.

Finally, note that the application must be re-entrant as a whole. Checking
for re-entrancy of a component binary may not be enough, because some other
component binary may modify it during execution. Thus, each component binary
when checked in isolation appears to be re-entrant, but when put together, it is
not re-entrant.

2.1 The XDAIS Programming Standard

The coding standard rules, published by TI for software vendors of its DSP
chips, that fall under the category of “general programming rules” [21] are the
following:

1. All programs must follow the runtime conventions imposed by TI’s imple-
mentation of the C programming language.

2. All programs must be reentrant within a preemptive environment including
time sliced preemption.

3. All data references must be fully relocatable (subject to alignment require-
ments). That is, there must be no “hard coded” data memory locations.

4. The code must be fully relocatable. That is, there can be no hard coded
program memory locations.

5. Programs must characterize their ROM-ability; i.e., state whether they are
ROM-able or not. ROM-ability means that if part of the executable is placed
in the DSP ROM, it would still function; this restricts the way global data
can be accessed (data cannot be placed in ROM) [21].

288 R. Venkitaraman and G. Gupta

6. Programs must never directly access any peripheral device. This includes
but is not limited to on-chip DMA’s, timers, I/O devices, and cache control
registers.

Rule 1 is not really a programming rule, since it requires compliance with TI’s
definition of C. However, rules 2 through 5 are manifestations of conditions C3
and C4 above. Thus, Rules 2 and 5 correspond to condition C3 while Rules 3,
4 and 6 correspond to condition C4. In light of these conditions, and examining
the entire instruction set of TI’s TMS320 family of DSP processors, one can
show that indeed the XDAIS standard is sufficient for ensuring that binary code
that is compliant with it is reusable.

There are a number of advantages to DSP software vendors writing pro-
grams that comply with the published standards [21]. Compliance to standards
(i) allows system integrators to easily migrate between TI DSP subsystems; (ii)
enable host tools to simplify a system integrators tasks, including configuration,
performance modeling, standard conformance, and debugging; (iii) subsystems
from multiple software vendors can be integrated into a single system; (iv) pro-
grams are framework-agnostic, that is, they are reusable: the same program can
be efficiently used in virtually any application or framework; and, (v) programs
can be deployed in purely static as well as dynamic run-time environments (due
to code relocatability).

2.2 Automatic Reusability Analysis

Next, we are interested in developing tools that automatically detect if a binary
code is reusable. This entails automatically determining if any of the 5 program-
ming rules above are not complied with. Detecting if rules 3, 4 or 6 are violated
involves checking that there are no hard-coded references in the code. Checking
for rules 2 and 5 involves ensuring that no writes are made to the code area dur-
ing execution. Checking for hard codedness or checking that no writes are made
to a specific memory area is undecidable [12] in general. Thus, one has to resort
to approximating this automated checking. A standard method is to use static
analysis [2]. Static analysis however is complicated by the fact that only binary
code is available. All the type information is lost in the binary code, thus even
determining if a value is an address or data is not quite that easy. In the rest
of the paper we consider the problem of detecting hard-codedness and develop
an abstract interpretation based framework for detecting hard-coded references.
A similar analysis can be developed to check for code re-entrance (that is, for
checking that no writes are made to the code area; we do not discuss this any
further due to lack of space.)

3 Analysis of Hard-Coded Pointers

We illustrate our static analysis based approach to compliance checking by show-
ing how we check compliance for rule #3, which states that there should be no
hard-coded data memory locations. A data memory locations is hard coded in

Framework for Safe Reuse of Software Binaries 289

Fig. 1. Lattice Abstraction

the assembly code if a constant is moved into a register Ri, and Ri is then used
as a base register in a later instruction. The constant value may of course be
transferred to another register Rj directly or indirectly, and then Rj used later in
dereferencing. Since most of the TI’s DSP code is written in C, data memory lo-
cations can be hard coded either in assembly code embedded in a C program, or
by using pointers provided in the C language[18]. Note also that the problem of
detecting dereferencing of hard-coded pointers subsumes the problem of detect-
ing dereferencing of NULL pointers. This is because a NULL pointer is a pointer
that has been assigned a special constant (usually 0x0). Thus our analysis will
also detect NULL pointer dereferences. Similarly, hard-codedness analysis sub-
sumes analysis for checking if un-initialized pointer variables are dereferenced.
This is because hard-codedness analysis attempts to check if a pointer derefer-
ence is reachable from a point of initialization; and thus will detect any pointers
that are dereferenced but not initialized. Thus, our hard-codedness analysis per-
forms two of the checks proposed by the UNO project [15] at the assembly level.
The UNO project claims that NULL pointers, un-initialized pointers, and array
out of bounds reference are three most common run-time programming errors.

3.1 Abstract Interpretation Based Static Program Analysis

Static program analysis (or static analysis for brevity) is defined as any analysis
of a program carried out without completely executing the program. Clearly,
the problem of detecting hard coded references is undecidable in general. So we
employ static analysis for detection of hard codedness (from this point on, we’ll
call the analysis hard-codedness analysis). The hard-codedness analysis analyzes
each pointer variable and determines if the pointer is definitely hard-coded (HC),
definitely not hard-coded (NHC), or that its hard-codedness status cannot be
deduced. The abstract domain [7] is quite simple and consists of four values:
⊥, �, HC and NHC. In the abstract interpretation framework [7], a collecting
semantics is used which consists of the abstract environments that might be
associated with a program point (an arc in the flow-graph). An environment
maps a pointer variable to an address in the set A, where A is the set of all

290 R. Venkitaraman and G. Gupta

memory addresses (note that for hard codedness analysis we are only interested
in pointer variables). Following the abstract interpretation approach, we define
the abstraction and the concretization functions, α and γ, respectively, as maps
between concrete and abstract contexts as follows:
α : Contexts → Abstract Contexts, where Abstract Contexts consists of ab-
stract environments which map pointer variables to values in Aα.

α(C) = ⊥, C = {};
= nhc, C ⊆ Anhc;
= hc, C ⊆ Ahc;
= � otherwise;

γ : Abstract Contexts → Contexts
γ(S) = {}, S = ⊥,;

= Ahc, S = hc;
= Anhc, S = nhc;
= A, otherwise

We next have to abstract the operators involving pointer arithmetic.
(Table 1).

Table 1. Pointer Arithmetic

+/- hc nhc ⊥ �
hc hc nhc ⊥ �
nhc nhc nhc nhc nhc
⊥ ⊥ nhc ⊥ ⊥
� � nhc ⊥ �

Once the abstract operators are defined, we can compute the abstract se-
mantics of the program by computing the fix-point. Finally, we have to show
that our analysis is sound. The soundness of the analysis follows if we can show
that α and γ are mutually consistent and that Abstract Contexts form a lattice.
Detailed description about our abstract interpretation framework and soundness
proof can be found in [18].

3.2 The Analysis Algorithm

As discussed earlier, the analyzer has access only to the object (binary) code
which is to be checked for compliance with the standard. The analyzer disas-
sembles the object code and to obtain the corresponding assembly language code.
The disassembly is performed using TI Code Composer Studio [21]. The disas-
sembled code is provided as input to the static analyzer which produces a result
which indicates whether the code is compliant with the rule. Figure 2 shows the
various steps involved in the analyzer we have developed. It should be noted
that there are advantages as well as disadvantages of performing static analysis
at the assembly level. Detailed descriptions with examples can be found in [18].

Framework for Safe Reuse of Software Binaries 291

The analyzer functions in two phases. In the first phase, it scans through
the flow-graph and detects all the register dereferencing that correspond to the
dereferencing of pointer variables in the source code. We call such a set a (po-
tentially) unsafe set. The unsafe sets represent the abstract contexts discussed
earlier. In the second phase the unsafe sets are iteratively refined, until a fix-
point is reached. During phase 2, unsafe sets from multiple paths are merged to
reduce execution time. Merging results in information loss. But, merging infor-
mation does not make the analyzer give incorrect results as the integrity of the
individual unsafe sets is preserved. The analyzer can handle complex program-
ming constructs including loops, arrays, global variables, functions, multi-level
pointers, parallelism, and pipelining. The analyzer was run over a suite of test
code obtained from TI. Detailed description of the analysis algorithm and the
performance results are reported in [18].

Fig. 2. Activity Diagram

4 Related Work

Static analysis has been recognized as an important technology for software
quality assurance [17, 19], however, the limited efforts described in the literature
primarily analyze the source code [8, 5, 6, 19, 15, 17]; none of them deal with code
reusability. Those that analyze assembly code are only interested in security
properties [3, 8] and not in reusability. Thus, to the best of our knowledge there
is no existing work that statically analyzes assembly code to check for software
reusability.

5 Conclusions and Future Work

In this paper, we developed and analyzed necessary and sufficient conditions
for binary code reusability. We showed that absence of hard-coded memory ad-
dresses and code re-entrance are sufficient conditions to ensure binary code reusa-
bility. However, automatically checking that these conditions hold for a binary
code is undecidable in general. We proposed static analysis as a technique for
approximating this check. We illustrate the approach by developing a static ana-
lyzer for analysis of hard-coded pointers, and develop an abstract interpretation
based static analysis framework for this purpose. Our results show that static
analysis based approaches are viable in industrial settings for checking for cod-
ing standards compliance. Code compliance checking is critical for code reuse

292 R. Venkitaraman and G. Gupta

and COTS compatibility in applications. A complete analyzer has been devel-
oped for pointer hard-codedness analysis and shown to run successfully on code
samples taken from Texas Instruments’ DSP code suite. The prototype system
is currently being refined to provide more accurate results in presence of global
pointers and mutually recursive functions. We are also extending the system to
handle rules 2, 4 through 6 [21] laid out by TI. The analysis needed for these
rules is similar to that for hard-codedness and we are quite confident that a
abstract interpretation based static analysis framework is sufficient.

References

1. S. Abramsky and C. Hankin Abstract Interpretation of Declarative Languages,
Ellis Horwood, 1987.

2. Alfred V.Aho, Ravi Sethi and Jeffrey D.Ullman Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1988.

3. J. Bergeron, M. Debbabi, M.M. Erhioui, B. Ktari. Static Analysis of Binary Code
to Isolate Malicious Behaviors. IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 1999. Palo Alto, Cali-
fornia

4. S. Blonstein (Texas Instruments). Personal Communication.
5. Hao Chen, Jonathan S. Shapiro. Exploring Static Checking for Software Assurance.

SRL Technical Report SRL-2003-06.
6. B.V. Chess. Improving computer security using extending static checking. IEEE

Symposium on Security and Privacy, 2002.
7. P. Cousot, R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction of Approximation of Fixpoints. Fourth An-
nual ACM Symp. on Principles of Programming Languages. 1977. pp. 238-252.

8. Mihai Christodorescu and Somesh Jha. Static Analysis of Executables to Detect
Malicious Patterns. 12th USENIX Security Symposium, August 2003.

9. Saumya Debray, Robert Muth, Matthew Weippert Alias analysis of executable
code. POPL’98.

10. M. Fernandez and R. Espasa. Speculative alias analysis for executable code. Inter-
national Conference on Parallel Architectures and Compilation Techniques. 2002.

11. W. Frake, C. Terry. Software Reuse: Metrics and Models. In ACM Computing
Surveys 28(2):1996.

12. M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Company. New York. 1979.

13. Bill Gates. The Future of Programming in a World of Web Services (keynote ad-
dress). 17th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages and Application Seattle, Washington Friday, November 8, 2002

14. Nevin Heintze, Oiivier Tardieu. Demand-Driven Pointer Analysis Conference on
Programming Language Design and Implementation 2001

15. Gerard J. Holzmann. Static Source Code Checking for User-defined Properties.
Conference on Integrated Design and Process Technology, IDPT-2002.

16. W. Landi and B. G. Ryder, A Safe Approximate Algorithm for Interprocedural
Pointer Aliasing. Proc. SIGPLAN PLDI ’92. pp. 235–248.

17. Horst Licheter and Gerhard Riedinger Improving software quality by static pro-
gram analysis Proc. of SPI 97 software process improvement, Barcelona, 1997

Framework for Safe Reuse of Software Binaries 293

18. R. Venkitaraman and G. Gupta, Static Program Analysis of Embedded Executable
Assembly Code. Compilers, Architecture, and Synthesis for Embedded Systems
(ACM CASES), September 2004 pp. 157-166.

19. David A. Wagner. Static analysis and computer security: New techniques for Soft-
ware Assurance. University of California at Berkley Phd Dissertation. Dec. 2000.

20. W. E. Weihl. Interprocedural data flow analysis in the presence of pointers, pro-
cedure variables, and label variables. Proc. ACM POPL. Jan. 1980. pp. 83–94.

21. Texas Instruments Code Composer Studio and XDAIS/TMS320 Algorithmic
Standards Literature (No: SPRU509C, No: SPRU301C, No: SPRU352D, No:
SPRU189F).

Supporting Partial Component Matching

Padmanabhan Krishnan� and Lei Wang

Centre for Software Assurance,
Faculty of Information Technology,

Bond University,
Gold Coast, Queensland 4229,

Australia
{pkrishna, lwang}@staff.bond.edu.au

Abstract. In this paper we define a formal framework for describing components
and gaps or holes (where components can be plugged in). This is based on the
theory of interface automata. The main focus is to define a component partially
satisfying the requirements of a hole. A partial plug-in of a hole will result in
other holes. The definition of a partial plug-in does not result in a unique set of
holes, i.e., the resulting holes can have different properties. We define an software
engineering process which uses the formal framework to complete the component
selection and insertion process. The process is defined in terms of the possible
interactions between a component vendor and a customer seeking a component.

1 Motivation

Software components have been proposed as the main technology to address the prob-
lem of complexity. The principal thesis is that components, by enabling reuse permit
one to rely on subsystems developed by external vendors to simplify the customer’s de-
sign and implementation. This reduces the effort required to develop the entire system.
That is by using pre-packaged code, building complex systems can be simplified. Users
of components must be able to identify components that suit their needs. This is the
problem of component retrieval.

To enable components to be plugged in, frameworks which specify standardized
interfaces have been proposed. For example, the Enterprise JavaBeansTM (EJB) frame-
work is aimed at distributed systems and provides support for services such as transac-
tions and persistent objects. The customer can then use tools which perform syntactic
checks using the interface signatures.

However, before one can use such components in a meaningful way, it is important
to understand the functionality provided. Some of this information is captured by the
API of the component and its associated documentation. But this is not adequate for
the application specific aspects of components. However, the technique to construct a
particular application given a set of beans is not obvious. For both EJBs and JBs the
emphasis is only on the signature. Hence a ‘type correct’ use of the components will
not result in compilation errors but could result in unexpected or unwanted behaviours.

� Corresponding Author.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 294–303, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Supporting Partial Component Matching 295

The idea of contracts [Pah01], i.e., the obligations of the provider and the user
of the components has been proposed to facilitate smooth integration of components.
These contracts usually capture multiparty agreements. There have been various sug-
gestions for specifying contracts — pre and post conditions being the most common.
Pre and post conditions are useful in describing the internal features of a component at
a high level of abstraction. Semantically components can be described using interfaces
[dH01b].

However the key issues that remain include the ability to use the services pro-
vided by the component to suit the needs of the application. The selection problem
for formally defined components has been addressed via specification matching [ZW97,
BG97]. As noted by various practitioners (e.g., http://www.cbdiforum.com), having
a specification for the component is necessary but not enough. Without a specification,
it is not possible to choose a component. However, if the specification is too detailed, it
may not match the situation in which it might be relevant. This has been recognised as
the retrieval and adaptation problem [ZW97].

Pahl [Pah01] introduces the concept of components to UML. This is achieved by
extending packages with the notion of interfaces to capture some semantic information.
The main emphasis in the paper is on developing a framework for reasoning about com-
ponent composition and contracts. This is based on the notion of a connector between
the provider and the consumer. The paper also defines suitable notions of refinement
and implementation. This is done using the π-calculus [MPW92].

ISpec [Jon00] provides a mixed approach to the specification of interfaces. Speci-
fications in ISpec can range from completely formal to completely informal. All spec-
ifications are in general a multi-party contract for services. These can be at one of six
levels. The IDL level is mainly syntactic and describes the signature of the interface.
The summary level describes the effect of the operations while the model level describes
the various abstract classes representing the parties to the contract. The action level de-
scribes the effect (presented in the summary level) in an algorithmic style to describe
behaviour. One can also use pre and post conditions or a complete formal specification.

Most of the theories for component selection assume that a single component to suit
the requirements can be found. However that is rarely the case and in most situations
some gluing code has to be written. This can also be viewed as a-posteriori integration
without modifying the component code [MO02]. That is the pre or post condition need
not match precisely. It can be leave certain conditions to be satisfied by other com-
ponents. This allows the incremental addition of components to fill the various holes.
The use of multiple components to fill different holes needs care. If two components
make different assumptions about the flow of data and control they are defined to be
mismatched [GAO95].

Greenfield and Short propose the idea of a software factory [GS03]. This is based
on the observation that approximately two thirds of a system will consist of pre-built
components. A third of the system will contain application specific software and even
that will be related to the customisation of components to suit the particular application.
This process is called development by assembly.

While the theories above describe the semantics of interfaces and combining them,
they do not describe the process for selecting components that can meet the require-

296 P. Krishnan and L. Wang

ments. The interaction between the possible vendors of the components and the con-
sumer of the components is not specified. As we will show there are various possi-
ble outcomes when considering partial plug-ins. Hence a suitable software engineering
process is necessary to ensure that both vendors and customers are satisfied. The PORE
technique [NM99] proposes an iterative technique to ensure compliance between the
customer’s needs and the services provided by the component. Agent based techniques
[WF03] where co-operation between expert agents to solve the component selection
problem can also be used to describe a process. Voas [Voa99] advocates the role of the
end user to certify components. Here there is an implicit process followed by both the
end user and the component creator. In another approach a knowledge based technique
for off the shelf components [CC02] is integrated with the requirements process. In
many cases this is not suitable as the potential use of components may be known only
after detailed design.

In this paper we show how holes in partially assembled systems can be modelled. This
includes partial filling of the holes which can then generate other holes. A model based on
interface automata and its associated algebraic properties [dH01b, dH01a] is presented.
We also show how this presents a number of practical problems, which is then solved by
a collaborative process for component selection. The paper is organised as follows. In the
rest of this section we present an overview of our notion of pre-assembly, components
and filling in gaps with components. In the next section we present the formal details
of interface automata [dH01a] and a modified notion of composition that is useful for
partial plugins. In Section 3 we develop the process which uses the formal details.

As is typical we assume that both a component and pluggable hole has the notion
of input and output ports (see Figure 1 where inputs are shown as circles and outputs
as lines). A pre-assembly is an incomplete system which has some existing subsystems
along with various holes (see Figure 2). We prefer the term pre-assembly to frameworks
as the term frameworks has a variety of meanings.

Fig. 1. Hole and Component

The various holes could be interlinked; i.e., the behaviour of one hole can affect
another. In general a component’s input port can be linked with an output port in a
pluggable hole. In this case the link is no longer available. We also allow a synchronous
interpretation where a hole and a component can share inputs or outputs. When they are
combined these inputs and outputs continue to be remain as inputs or outputs. Figure 3
shows three cases of a partial plugin. Assume that the hole has three inputs and two
outputs. In the first case the component consumes one input and generates an output
which synchronise with one output and input respectively. Hence they are no longer
available in the new preassembly. In the second and third cases the inputs and outputs
remain. The benefit of this is shown in the third case where the same input can be reused
by two different components.

Supporting Partial Component Matching 297

Fig. 2. Preassembly

Fig. 3. Partial Plugin: Three Examples

This is related to the semantics of PIN [ISW02] and allows both synchronous and
asynchronous composition. If a component only partially satisfies the resulting hole
can be viewed as a hole into which another component can be plugged in or can be
viewed as a place holder for a connector. In our general model, especially without a
specific architecture, the separation between a hole an a place holder for a connector is
artificial. Hence we do not formally distinguish a connector and a hole. The definition
of holes, components and partial composition is formalised in the next section.

2 Formal Model

As for interface automata, the structure of the automata used to describe the expected
behaviour of holes or gaps and components is given in the following definition.

2.1 Behaviour

Definition 1. A finite automaton representing a gap or a component is defined as A =
(Q,Σ,−→,qs) where

– Q is a finite set of states with qs the start state.
– the alphabet Σ is partitioned into three sets ΣI (the input actions), ΣO (the output

actions) and Στ (the internal actions). As a notational convenience ΣV = ΣI ∪ ΣO

will denote the set of visible actions.
– −→ ⊆ Q × Σ × Q is the transition relation to describe behaviour.

The above definition is standard except for the notion of acceptance. For the pur-
poses of this work, all words that have a run are accepted. That is, there is no accepting
state. As the internal actions are not relevant for the behaviour described at the inter-
face, only the strings over the input and output actions are relevant. The language over
the visible actions associated with an automaton A is indicated by Lτ(A). The erasing
of internal actions and the associated language that is accepted is defined below.

298 P. Krishnan and L. Wang

Definition 2. The restriction of a word (denoted by ↑) to an alphabet Σ is defined as:

ε ↑ Σ = ε

aw ↑ Σ =
{

a(w ↑ Σ) if a ∈ Σ
w ↑ Σ otherwise

A run of an automaton over a word a0a1 · · ·an is a sequence of states q0,q1 . . .qn+1

such that q0 = qs and qi
ai−→ qi+1 for every i between 0 and n.

A word w belongs to Lτ(A) iff there is a word w′ such that there is a run of A over
w′ and w = w′ ↑ ΣV

The main difference between a component and a gap is that a gap has no internal
actions. That is, Στ for a hole is the empty set. A pluggable hole should describe only
the input output behaviour and not specify the internal behaviour or structure.

Two automata (irrespective of whether they represent a hole or a component) can
be composed if the set of internal actions of one component is disjoint with the actions
of the other component. An input for one automata can be the same as the output of
another. The linking of the input with the output results in the action being an internal
action. Unlike interface automata, input and output actions can be shared (they continue
to remain as input our output actions). This adopts a synchronous notion to the actions.
This is useful as inputs or outputs when used by one component do not become un-
available to other components. It allows for an input or an output action to be used as
many times as necessary. It is only when an input is combined with an output the action
becomes an internal action and hence is no longer available.

Definition 3. Formally, the composition of two automata A1 = (Q1,Σ1,−→1,qs
1) and

A2 = (Q2,Σ2,−→2,qs
2) (written as A1 ⊗A2) is an automaton A = (Q,Σ,−→,qs) where

– Στ
1 ∩ Σ2 = /0 and Στ

2 ∩ Σ1 = /0.
– Q = Q1 × Q2

– Σ = Σ1 ∪ Σ2 such that
ΣI = (ΣI

1 − ΣO
2)∪ (ΣI

2 − ΣO
1)

ΣO = (ΣO
1 − ΣI

2)∪ (ΣO
2 − ΣI

1)
Στ = (Στ

1 ∪ Στ
2 ∪ (ΣI

2 ∩ ΣO
1)∪ (ΣO

2 ∩ ΣI
1)

– (q1,q2)
a−→ (q′

1,q
′
2) iff

If a ∈ Σ1 ∩ Σ2, q1
a−→1 q′

1 and q2
a−→2 q′

2

If a ∈ Σ1 − Σ2, q1
a−→1 q′

1 and q2 = q′
2 and

If a ∈ Σ2 − Σ1, q2
a−→2 q′

2 and q1 = q′
1

– qs = (qs
1,q

s
2)

The input actions of the composite automaton include all the original inputs except
those that have been combined with an output. Similarly the output actions includes all
original outputs except for those that have been combined with an input. These com-
bined actions are added to the set of internal actions. The transition relation requires
synchronisation on common actions and asynchronous behaviour on any action that
belongs to only one automaton. This definition is similar to the behaviour of asyn-
chronous automata [DR95] and it permits different parts of the system to either evolve

Supporting Partial Component Matching 299

asynchronously or co-operate via synchronisation (i.e., reuse the input or output ac-
tions).

The partial matching of a component to a hole can now be defined. This is the
process of fitting a component which may not exactly match a given hole. The result of
such a partial plug is holes which satisfy a modified specification. The end result should
be that the new holes combined with the component automata should yield the original
behaviour.

The requirement can be defined as follows.

Definition 4. Let AH be the original hole or gap and AC the candidate component.
If plugging in the component into the hole results in the new holes AH1 · · ·AHn , then
Lτ(AH) = Lτ(AC ⊗ AH1 ⊗ ·· ·⊗ AHn).

2.2 Partial Assembly

There are various possibilities while filling a hole with a component. There are four
main cases to consider. The initial focus is on the alphabet of the interface. In Sec-
tion 2.3 the behavioural issues for one particular case will be discussed. Due to space
limitations the behavioural aspects of the new holes will be discussed only for this spe-
cific case.

Assume that ΣI
C and ΣO

C are the input and output actions the component that is under
consideration. Also assume that ΣI

H and ΣO
H are the input and output actions associated

with the exist hole.
If ΣI

H ⊆ ΣI
C the component may accept more inputs than the original gap. These extra

inputs are valid when considering refinement but from a pragmatic point they could
cause difficulty. For instance, these extra inputs could influence the flow of control.

Hence a new hole whose output is the set ΣI
C − ΣI

H is required. The extra inputs
accepted (or perhaps required) by the component are not generated by the environment
of the original gap. Hence the new gap must be able to generate them from the original
set of inputs viz., ΣI

H . When the new gap is combined with the component the extra
inputs will become internal actions.

If ΣI
C ⊆ ΣI

H , there are two principal choices for the new hole’s input actions. The
first is to exploit the synchronous composition and assume that the entire input set
is available. The second choice is to restrict the input to only those not used by the
component, viz., ΣI

H − ΣI
C.

It is possible to consider other cases where the new hole’s input language is ex-
panded and another hole which can generate these inputs (there by creating a number
of internal actions). This is acceptable as the final set of visible actions remains the
same.

If ΣO
H ⊆ ΣO

C the component generates more outputs. This may not be acceptable
and a new hole is created whose task will be convert the extra outputs to the original
outputs. The input alphabet of the new hole should contain at least ΣO

C − ΣO
H which will

make then internal actions after composition. Any action in the ΣI
H can also belong

to the set of input actions. That way, the new hole may be able to communicate (via
synchronisation) with the component. The output actions will be ΣO

H .
If ΣO

C ⊆ ΣO
H two main options are available. The new hole can be permitted to gen-

erate all actions in ΣO
H or it can be restricted to the actions in ΣO

H − ΣO
C .

300 P. Krishnan and L. Wang

2.3 Analysis of a Particular Case

A particular situation based on the above general conditions is discussed below. The
other situations are similar. Using this case we show that the resulting hole after a partial
plug-in of a component is not unique.

We consider the case ΣI
C ⊆ ΣI

H and ΣO
C ⊆ ΣO

H to show the existence of various pos-
sibilities. It is clear from the above discussion that there are a number of choices for
the input/output alphabets of the new hole. Assume that the resulting hole’s input and
output alphabet is ΣI

H and ΣO
H respectively. That is the resulting hole can still use some

of the original inputs (that is used by the component) to generate the outputs. This is
possible because of the synchronous composition.

Towards understanding the behaviour of the new hole, consider the case when
Lτ(AC) ⊆ Lτ(AH). If the behaviour associated with the new hole is the same as the
Lτ(AH), the problem is not really solved. Ideally, we need to identify the smallest au-
tomaton that characterises the new hole. However, that is not always possible or is not
practical [SEM03]. In general we can have a variety of resulting automata that when
composed with the component can generate the same language.

Recall that it is also possible that the resulting hole’s input and output alphabet can
be ΣI

H − ΣI
C and ΣO

H − ΣO
C respectively. In this case the resulting hole can use only those

inputs and generate outputs that are not used by the components. Any combination of
the above is also possible. That is, the input can be ΣI

H while the output can be ΣO
H −ΣO

C .
Some of these choices may be inappropriate for the new hole. This is shown by

the following trivial example. If the behaviour of the original hole is given by the set
{abc,acb} and the behaviour of the component is {ab} no automaton with c as the sole
alphabet (which is the difference between the two sets) can satisfy the required result.
The alphabet a needs to be part of the alphabet.

Furthermore the synthesis of such implementable automata is in many cases either
undecidable or NP-complete [SEM03]. Hence in order to use the theory of interface
automata and partial component matching effectively a more user driven process is
necessary. In summary, it is not possible to automatically generate the best alphabet
and behaviour of the resulting hole.

3 Practical Considerations

As there are various options resulting from a partial plug-in, and not all possibilities can
be automatically computed, the notion of a collaboration based component selection is
used. One can use a trader to effect this collaboration [ITV04]. Leung and Leung [LL03]
propose a domain specific model which does not rely solely on the customer’s intuition
or detailed evaluation of the component. It is in the vendor’s interest to assist in the
process of component selection.

The collaboration model (component retrieving protocol) is described informally by
the following steps:

1. A component purchaser builds pre-assemblies (in our case described using interface
automata) and then starts the component selection process. For each hole in the pre-
assembly the following procedure is followed.

Supporting Partial Component Matching 301

2. If a vendor has a complete component assembly (that is, fills the hole completely),
it is the best choice.

3. If a vendor only has a partial component, the vendor computes the partial plug-
in and returns the new pre-assembly to the purchaser. Here the expertise of the
vendor in selecting the properties of the remaining hole is utilised. We assume that
the vendor can help to complete the assembly based on their own knowledge of
components. The vendor could also advertise the various operations possible on
components and allow the customer to select not only the component but also how
it partially fits into the hole.

4. If the vendor is unsure about the situation, the interface specification of the compo-
nent can be shipped to the customer and the customer can decide on the properties
of the resulting holes. As the interface specification is only a finite automaton, it is
cheaper to send than the component itself. It also solves the problem of sending a
component before it is purchased.

5. If more information about interface requirements is required, the vendor and cus-
tomer can exchange this information. Such information is not described by the the-
ory of interfaces and plug-ins. Other issues as the general architecture of the system
can be used.

This process will enable the customer to identify and purchase the appropriate com-
ponents to complete the assembly of the system. The steps involved in the purchase and
completing the assembly are not covered by the above process but can be generated
from the interface automata specifications.

Our model is very similar to the DESS (software Development process for real-time
Embedded Software Systems) model http://www.dess-itea.org/. Although the
focus of the DESS approach is real-time or embedded systems the process is similar.
We have made the DESS process more concrete by making the role of the interface
automata explicit. By shipping only the automata, the customer and the vendor need
not release code or other design documents. However, the vendor and customer have
to construct suitable interface automata for the task. The vendor and the customer can
share the task of identifying the resulting holes. For example, if the customer is prepared
to write the software to fill the hole completely, no interface automata specification is
necessary. Otherwise the hole can be completed by an iterative process.

We conclude the paper by specifying the tools used in the above process. An abstrac-
tion tool which can take a code fragment or a system design and generate an interface
automaton is necessary. This can also be template driven where the requirements are
specified by completing existing templates. These templates can be designed to hide
sensitive information which the customer does not want to release. If necessary the
architecture of the intended system can be also be released separately. Extra infrastruc-
ture to locate potential vendors is essential. Here agent based technology is useful. The
vendor needs a repository of components and some techniques for component match-
ing and plug-in. An interface automata description for the set of available components
needs to be publicly available. This will aid the agents in locating potential vendors.
An experience repository will also be useful. A particular run of the system is shown
in the sequence diagram in Figure 4. Here p and q indicate pre-assemblies while the
various hs are holes. Two potential vendors, v1 and v2, are identified by the agent. The

302 P. Krishnan and L. Wang

vendors return options (hole that they can fill, along with the result of filling the hole) to
the customer. The customer chooses from the suggestion made by the second agent and
receives a new pre-assembly. The customer re-contacts the first agent with a modified
pre-assembly.

fill(q,h1,h3,h4)

newAssembly(q)

canFill(h2,(d1,p1),(d2,p2))

select(h2,(d1,p1))

canFill(h1,(c1,o1),(c2,o2))

fill(p,h1,h2,h3,h4)
fill(p,h1,h2,h3,h4)

find(p,h1,h2,h3,h4)

canUse(v1,v2)

:agent :Customer v1:Vendor v2:Vendor

Fig. 4. Sequence Diagram

In summary, we have proposed a framework based on interface automata for partial
assembly using components and perhaps custom software. We have identified a few
practical problems which prevent complete automation. To overcome this, a collabora-
tion model along with the architecture of a solution has been described. Although we
have focused on the use of components to implement a system, a similar approach can
also be used at the design phase. That is, designs described using interface automata
can be traded. A formal evaluation of the model based on a number of case studies is
necessary.

References

[BG97] D. Batory and B. Geraci. Composition validation and subjectivity in GenVoca gener-
ators. IEEE Transactions on Software Engineering, 23(2):67–82, February 1997.

[CC02] L. Chung and K. Cooper. A knowledge-based cots-aware requirements engineering
approach. In Proceedings of the Software Engineering and Knowledge Engineering
Conference, pages 175–182, Ischia, Italy, 2002.

[dH01a] L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering (FSE), pages 109–120.
ACM Press, 2001.

[dH01b] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In
Proceedings of the First International Workshop on Embedded Software (EMSOFT),
LNCS 2211, pages 148–165. Springer-Verlag, 2001.

[DR95] V. Diekert and G. Rozenberg. The Book of Traces. World Scientific, 1995.
[GAO95] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so

hard. IEEE Software, pages 17–26, November 1995.

Supporting Partial Component Matching 303

[GS03] J. Greenfield and K. Short. Software factories assembling applications with patterns,
models, frameworks and tools. In Proceedings of OOPSLA, pages 16–27. ACM,
2003.

[ISW02] J. Ivers, N. Sinha, and K. Wallnau. A basis for composition language CL. Technical
Report CMU/SEI-2002-TN-026, Software Engineering Institute, 2002.

[ITV04] L. Iribarne, J. M. Troya, and A. Vallecillo. A trading service for cots components.
The Computer Journal, 47(3):342–357, May 2004.

[Jon00] H. B. M. Jonkers. ISpec: Towards Practical and Sound Interface Specifications. In
W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated Formal Methods (IFM),
LNCS 1945, pages 116–135. Springer Verlag, 2000.

[LL03] H. K.N. Leung and K. R.P.H. Leung. Domain-based cots-product selection method.
In Component-Based Software Quality, LNCS 2693, pages 40–63, 2003.

[MO02] M. Mezini and K. Ostermann. Integrating independent components with on-demand
remodularization. In Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 52–67. ACM
Press, 2002.

[MPW92] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes I/II. Information
and Computation, 100(1):1–77, Sept 1992.

[NM99] C. Ncube and N. A. Maiden. PORE: Procurement-Oriented Requirements Engineer-
ing Method for the Component Based Systems Engineering Development Paradigm.
In Proceedings of International Workshop on Component Based Software Engineer-
ing, 1999.

[Pah01] C. Pahl. Components, Contracts and Connectors for the Unified Modelling Language
UML. In J. Oliveira and P. Zave, editors, FME–Formal Methods for Increasing Soft-
ware Productivity, volume LNCS 2021, pages 259–277, Heidelberg, Germany, 2001.
Springer Verlag.

[SEM03] A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms using
asynchronous automata. In Proc. of CONCUR’03, LNCS 2761, pages 27–41, 2003.

[Voa99] J. Voas. User participation based software certification. In The 5th European Sym-
posium on Validation and Verification of Knowledge Based System, pages 267–276,
1999.

[WF03] T. Wanyama and B. H. Far. Agent-based commercial off-the-shelf software com-
ponents evaluation method. In The First International Conference on Agent Based
Technologies and Systems (ATS2003), pages 133–141, 2003.

[ZW97] A. M. Zaremski and J. M. Wing. Specification Matching of Software Components.
ACM Transactions on Software Engineering Methodology, 6(4):333–369, October
1997.

A Novel Approach for Dynamic Slicing of Distributed
Object-Oriented Programs

Durga Prasad Mohapatra, Rajib Mall, and Rajeev Kumar

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur,

Kharagpur, WB 721 302, India
{durga, rajib, rkumar}@cse.iitkgp.ernet.in

Abstract. Program slicing has many applications such as program debugging,
testing and maintenance. We propose a new dynamic slicing technique for dis-
tributed object-oriented programs. We introduce the notion of Distributed Pro-
gram Dependence Graph (DPDG). Our dynamic slicing technique uses DPDG as
the intermediate program representation and is based on marking and unmarking
the edges in the DPDG as and when the dependencies arise and cease during run-
time. Our approach eliminates the use of trace files and is more efficient than the
existing algorithms.

1 Introduction

The concept of a program slice was introduced by Weiser [1]. A static slice consists of
those parts of a program that affect the value of a variable selected at some program point
of interest. The variable along with the program point of interest is known as a slicing
criterion. More formally, a slicing criterion < s, V > specifies a location (statement s)
and a set of variables (V). A dynamic slice contains only those statements that actually
affect the value of a variable at a program point for a given execution [2, 3]. Therefore,
dynamic slices are usually smaller than static slices and have been found to be useful in
debugging, testing and maintenance etc. [4, 5, 6].

To slice an object-oriented program, features such as classes, dynamic binding, en-
capsulation, inheritance, message passing and polymorphism need to be considered
carefully. Due to the introduction of inheritance and dynamic binding in OOPs, the pro-
cess of tracing dependencies becomes more complex than that in a procedural program.
Larson and Harrold were the first to consider these aspects in their work [7]. To address
these O-O features, they extended the system dependence graph (SDG) proposed by
Horowitz et al. [8].

Many of the real life OOPs are concurrent which run on different machines connected
to a network. It is usually accepted that understanding and debugging of concurrent
OOPs are harder compared to those of sequential programs. The non-deterministic nature
of concurrent programs, the lack of global states, unsynchronized interactions among
processes, multiple threads of control and a dynamically varying number of processes
are some reasons for this difficulty. Slicing techniques promise to come in handy at
this point. Although researchers have extended the concept of program slicing to static

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 304–309, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Novel Approach for Dynamic Slicing of Distributed Object-Oriented Programs 305

slicing of distributed programs, the dynamic slicing of distributed OOPs is still being
missing until now.

We propose a new dynamic slicing algorithm for computing slices of distributed
C++ programs. Only the concurrency and communication issues in C++ are of concern,
many sequential O-O features are not discussed in this paper. Larson and Harrold have
discussed about the representation of O-O features in their work [7]. So, these repre-
sentations can be easily incorporated into our technique to handle the O-O features. We
have named our algorithm edge-marking dynamic slicing (EMDS) algorithm.

The rest of the paper is organized as follows. In section 2, we discuss about the
intermediate program representation. In section 3, we briefly present our edge-marking
dynamic slicing (EMDS) algorithm. In section 4, we compare our algorithm with related
algorithms. Section 5 concludes the paper.

2 Graphical Representation of Distributed Programs

A distributed program P = (P1, P2, . . . , Pn) is a collection of concurrent sub-programs Pi

such that each of the Pi’s communicate through reception and transmission of messages.
We assume asynchronous send and synchronous receive message passing mechanism
in our algorithm. The language constructs for message passing are msgsnd and msgrcv
statements, for sending and receiving messages respectively.

The intermediate representation for a concurrent OOP on a single machine is con-
structed statically as in [9]. But for distributed programs, we can have data dependency
due to shared variables updated by statements executed in some process on some re-
mote machine. Also communication dependency can exist between processes running
on different machines. A msgrcv() call executed on one machine, might have a pair-
ing msgsnd() on some remote machine. To incorporate this paradigm, we introduce a
logical(dummy) node in the DPDG. We call this logical node as a C-node. Now, we
define the C-node and the intermediate representation for distributed OOPs used by our
proposed algorithm.

Definition 1. C-Node. Let GD be a DPDG. Let x be a send node and y be the receive
node. A C-Node represents a logical connection of a node y of a DPDG with a node x
of a remote DPDG. The node x is the pairing send for a receive call at node y, and y is
communication dependent on x.

Definition 2. Distributed Program Dependence Graph (DPDG). Let P = (P1, . . . , Pn)
be a distributed program, and Pi be a sub-program of P. The distributed program depen-
dence graph (DPDG) GD of the sub-program Pi is a directed graph (ND, ED) where
each node n ∈ ND represents a statement in Pi. For x, y ∈ ND, (y,x) ∈ ED iff one of
the following holds:

– y is control dependent on x. Such an edge is called a control dependence edge.
– y is data dependent on x. Such an edge is called a data dependence edge.
– y is fork dependent on x. Such an edge is called a fork dependence edge.
– y is communication dependent on x. Such an edge is called a communication depen-

dence edge.

306 D.P. Mohapatra, R. Mall, and R. Kumar

{
 int a;
 message msg;

p1.2 cin>> b;
p1.3 while(a > 0) {
p1.4 b = b − a;
p1.5 a = a − 1;
 }
p1.6 if (fork()!=0) {
p1.7 b = 2;
p1.8 a = b + 1;
p1.9 msgrcv(1, msg); }

 else {

p1.10

p1.11 b = a − b;

p1.12 msgrcv(2, msg); }

p1.13 cout<<"a= "<< a;

}

Consumer ()
shared int b;

p1.14 cout<<"b= "<< b;

 a = 5;

p1.1 cin>> a;

4

 10

7

3

1

5

2

6

8

 13

11

14

9 12

c(12)
c(9)

Data Dependence Edge

Control Dependence Edge

Fork Dependence Edge

Comm. Dependence Edge

(a) Consumer Program (b) DPDG

Fig. 1. The Consumer Program and its DPDG

{
 int c;
 message msg;

p2.1 cin>> c;

p2.6 c = 1;
p2.7 b = b + c;
p2.8 msgsnd(1, msg); }

 else {

First_producer ()

p2.2 cout<<"b= "<< b;

p2.3 c = c + 1;

p2.9 b = 5;

p2.10 c = b + 1; }

p2.11 cout<<"c= "<< c;

p2.4 b = b − c;

p2.5 if (fork()!=0) {

shared int b;

second_producer ()

{
 int d;
 message msg;

p3.1 d = 0;

p3.2 cout<<"b= "<< b;

p3.3 d = d − 1;

p3.4 b = b + d;

p3.5 if (fork()!=0) {

p3.6 b = 0;

p3.7 d = d − b;

p3.8 cout<<"d="<<d; }

 else {

p3.10 msgsnd(2, msg) }

p3.11 cout<<"d= "<< d;

p3.12 cout<<"b= "<< b;

p3.9 b = d + 1;

shared int b;

}

p2.12 cout<<"b= "<< b;
}

(a) First_ Producer (b) Second_Producer

Fig. 2. The First Producer and Second Producer Programs

A Novel Approach for Dynamic Slicing of Distributed Object-Oriented Programs 307

For every receive node xin the sub-program Pi, a dummy node C(x) is taken, and a
dummy communication edge (x, C(x)) is added.

Let us consider the distributed C++ program in Figs. 1(a), 2(a) and 2(b) which
represent the Consumer, First Producer and Second Producer programs respectively.
The DPDG of the Consumer program is shown in Fig. 1(b). The DPDGs for the other
producer-programs can be constructed similarly.

3 EMDS Algorithm for Distributed Object-Oriented Programs

Before execution of a distributed OOP P = (P1, . . . , Pn), the DPDG of each of the
subprogram Pi is constructed statically. During execution of the sub-program Pi, we
mark an edge of the DPDG when its associated dependence exists, and unmark when its
associated dependence ceases to exist. Since in this case we need to consider processes
that cross machine boundaries, we have some additional tasks to perform. These tasks
include:

– The most recent information of shared variables is to be kept as a part of the dis-
tributed shared memory so that it is available to all the programs.

– The addition of C-nodes in the DPDG. They take care of any communication depen-
dency that might exist at run-time between communicating processes on different
machines.

During execution of the sub-program Pi, let Dynamic Slice (p, u, var) with respect
to the slicing criterion < p, u, var > denotes the dynamic slice with respect to the
most recent execution of node u in process p. Let (u, x1), . . . , (u, xk) be all the marked
outgoing dependence edges of u in the updated DPDG. Then, the dynamic slice with
respect to the present execution of node u, for the variable var is given by:

Dynamic Slice(p, u, var) ={p(u, x1), . . . , p(u, xk)}∪Dynamic Slice(p, x1, var)∪
. . . ∪ Dynamic Slice(p, xk, var).

Let var 1, var 2, . . . , var k be all the variables used or defined at statement u in
process p. Then, we define dynamic slice of the whole statement u as:

dyn slice(p, u) = Dynamic Slice(p, u, var 1) ∪ Dynamic Slice(p, u, var 2)
∪ . . . ∪ Dynamic Slice(p, u, var k).

Our slicing algorithm operates in three stages. In the first stage, the DPDG of each sub-
program Pi is constructed statically. The stage 2 of the algorithm executes at run-time and
is responsible for maintaining the DPDG as the execution proceeds. The maintenance of
the DPDG involves marking and unmarking the different dependencies, as they arise and
cease. Stage 3 is responsible for computing the dynamic slices. Once a slicing criterion
is specified, the dynamic slicing algorithm computes the dynamic slice with respect to
any given slicing criterion by looking up the corresponding Dynamic Slice computed
during run time.

308 D.P. Mohapatra, R. Mall, and R. Kumar

Working of the EMDS Algorithm: We illustrate the working of the algorithm with
the help of an example. We have shown in Fig. 4, how the above algorithm com-
putes the dynamic slices for a given slicing criterion. For a typical program execution,
let the process IDs be 9179 and 9184 respectively representing the if-part and else-part
for the Consumer program given in Fig. 1(a). Also, let the process IDs be 7639 and 7790
respectively representing the if-part and else-part for the First Producer program given
in Fig. 2(a) and that be 7890 and 7566 respectively representing the if-part and else-part
for the Second Producer program given in Fig. 2(b).

We are interested to compute the dynamic slice for slicing criterion < 9184, 14, b >
with input a = 1 and b = 1. We have marked all outgoing dependent edges at node
14 as shown in Fig. 3. Due to the use of shared variables the dependency of node
14 in process 9184 can be on nodes executed in other processes running on remote
machines. The updated DPDGs for processes 7639 and 7566 can be constructed similarly.
The computed dynamic slice is {(9184,P1.6), (7566,P3.1), (7566,P3.3), (7566,P3.5),
(7639,P2.4), (7639,P2.5), (7639,P2.6)}.

1

3

5

4

2

6

8

7

13

9

10

11 14

Data Dependence Edge

Control Dependence Edge

Fork Dependence Edge

Communication Dependence Edge

12

C(12)

C(9)

Marked Dependence Edge

Fig. 3. Updated DPDG showing marked edges at node 14 for process ID 9184

4 Comparison with Related Work

Zhao computed the static slice of a concurrent object-oriented program based on the
multi-threaded dependence graph (MDG) [10]. In his approach, slices are computed by
solving a node reachability problem in the graph. He has not addressed the dynamic
aspects and communication dependency among several machines.

A Novel Approach for Dynamic Slicing of Distributed Object-Oriented Programs 309

Chen and Xu developed a new algorithm to compute static slices of concurrent Java
programs [9]. To compute the slices, they have used concurrent control flow graph
(CCFG) and concurrent program dependence graph (CPDG) as the intermediate rep-
resentations. Since they have performed static analysis to compute the slices, so the
resulting slices are not precise. But, we have performed dynamic analysis to compute
the slices. So, the slices computed by our algorithm are precise.

5 Conclusions

In this paper, we have proposed a new algorithm for computing dynamic slices of dis-
tributed object-oriented programs.We have named this algorithm edge-marking dynamic
slicing (EMDS) algorithm. It is based on marking and unmarking the edges of the DPDG
as and when the dependences arise and cease at run-time. Our algorithm does not require
trace file to store the execution history which takes more space. In this work, we have
implemented and tested our proposed technique with a piece of C++ code, however, the
technique is generic enough. We are currently working to dynamically slice concurrent
Java programs running in a distributed environment.

References

1. Weiser, M.: Programmers use slices when debugging. Communications of the ACM 25
(1982) 446–452

2. B.Korel, J.Laski: Dynamic program slicing. Information Processing Letters 29 (1988) 155–
163

3. Zhao, J.: Dynamic slicing of object-oriented programs. Technical report, Information Pro-
cessing Society of Japan (1998)

4. Mall, R.: Fundamentals of Software Engineering. Prentice Hall, India (2nd Edition, 2003)
5. Goswami, D., Mall, R.: An efficient method for computing dynamic program slices. Infor-

mation Processing Letters 81 (2002) 111–117
6. Mund, G.B., Mall, R., Sarkar, S.: An efficient dynamic program slicing technique. Information

and Software Technology 44 (2002) 123–132
7. Larson, L.D., Harrold, M.J.: Slicing object-oriented software. In: Proceedings of the 18th

International Conference on Software Engineering, German (1996)
8. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs. ACM

Transactions on Programming Languages and Systems 12 (1990) 26–61
9. Chen, Z., Xu, B.: Slicing concurrent java programs. ACM SIGPLAN Notices 36 (2001)

41–47
10. Zhao, J.: Slicing concurrent java programs. In: Proceedings of the 7th IEEE International

Workshop on Program Comprehension. (1999)

Pattern Semantic Link:
A Reusable Pattern Representation

in MDA Context

Jianfei Yin, Heqing Guo, Xinyi Peng, and Manshan Lin

College of Computer Science and Engineering,
South China University of Technology, Guangzhou 510641, China

{yjfhome, ghqhome, pengxinyi, lmshill}@hotmail.com
http://www.scut.edu.cn

Abstract. Currently most of pattern-related specifications represent
design patterns limited at specific implementation forms on one abstract
level and restrict to reuse patterns across different abstract levels, such
as Platform-Independent Models (PIMs) and Platform-Specific Models
(PSMs). This paper proposes a novel pattern representation named Pat-
tern Semantic Link (PSL), which provides a centralized and abstract rep-
resentation for a pattern. Borrowing ideals from the Intentional Program-
ming (IP), the core PSL concepts are capturing the knowledge about
relationships between participants of a pattern by instances of the UML
Association derived classes, capturing key intentions of the pattern by
constraints in the Object Constraint Language (OCL) and rendering the
reference implementations for the pattern based on its PSL definition.
Through the meta-model inheritance and marking approach, transform-
ing a model with PSLs to its platform-specific counterpart and reusing
patterns across PIMs and PSMs can be achieved.

1 Introduction

Design patterns provide a way to reuse the experimental knowledge of expert
designers so that a community can benefit and not continually reinvent the
wheel. Currently there is considerable work done regarding pattern specifications
[1, 2, 3], pattern-based model refactorings [4] and tool supports [5, 6]. Most of
them represent patterns limited at specific implementation forms on one abstract
level, for instance, class and member structures for implementing a pattern on a
platform-independent level. It is hard to reuse these pattern representations in
platform-specific environments for the following reasons:

a) The implementation forms for patterns mainly capture specific instances of
pattern deployment, rather than the essential pattern itself, thus the spirit
of the pattern is often lost in the superfluous details of the specific instances
described [7].

b) There are always patterns of platform-specific versions, such as CORBA
patterns, J2EE patterns , etc.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 310–317, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Pattern Semantic Link: A Reusable Pattern Representation in MDA Context 311

c) Little consideration is taken to facilitate transforming those pattern repre-
sentations to platform-specific counterparts without loss of the semantics of
patterns.
In this paper, we propose a novel design pattern representation named Pat-

tern Semantic Link (PSL), which provides a centralized and abstract representa-
tion for a pattern. It can support transforming and reusing patterns across PIMs
and PSMs in the Model-Driven Architecture (MDA) context. Borrowing ideals
from the Intentional Programming (IP) [8], the core PSL concepts are capturing
the knowledge about relationships between participants of a pattern by instances
of the UML Association subclasses, capturing core intentions of the pattern by
constraints in the Object Constraint Language (OCL) and rendering the refer-
ence implementations for the pattern by using the UML Action Semantics on the
PSL definition. Based on the meta-model inheritance and marking approach, we
can transform a model with PSLs to its platform-specific counterpart and reuse
patterns in the platform-specific context.

Section 2 overviews the PSL concepts. Section 3 describes the definition of
PSLs for a pattern. Section 4 describes an algorithm for rendering a reference
implementation for a pattern. Section 5 describes transforming a model with
PSLs and reusing patterns. We conclude in Sect. 6.

2 PSL Concepts

In this paper, a Pattern Semantic Link (PSL) serves a pattern application and
captures the knowledge about the abstract relationships between model elements
participating in a pattern. A PSL is represented by an instance of a particular
meta-model element, which is called the PSL meta-class. We extend the UML
meta-model with PSL concepts (hereinafter, “the extended UML meta-model”)
and use the UML Association derived classes as PSL meta-classes based on
following reasons:
a) An instance of a UML Association derived class can capture the abstract

relationships between participants of a pattern. The abstract relationships
are independent of various implementation forms of a pattern.

b) The visual notations (e.g., lines or boxes) of the UML Association derived
classes provide concise and centralized representations for patterns. The cen-
tralized representations facilitate the patterns detection and navigation.

c) If we can use the information held by a UML association to derive uninter-
esting operations [9], why not use a PSL to derive the parts of a pattern
implementation such as attributes, methods, classes, etc.
Figure 1(a) shows an extended UML meta-model segment. For each pattern,

there is a PSL meta-class to capture the relationship semantics between partic-
ipants of the pattern. Figure 1(b) shows an example of generating an Iterator
pattern implementation by meta-programming on the Iterator meta-class (shown
in Fig. 1(a)).

In next section, we will further present the PSL concepts through an example
of defining PSLs for the Abstract Factory pattern.

312 J. Yin et al.

Classifier
(from Core)

AssociationEnd
(from Core)

Association
(from Core)

12..***

1 *

Class
(from Core)

PSL

(a)

(b)

eleName: String
Iterator AbstractFactory

afName: String
cfName: String

Proxy

pxName: String
pxMName: String

Visitor

avName: String
cvName: String

<<g_AbstractIterator>>
ChannelIterator

<<g_s1>> idx: Integer

<<g_b1>> firstChannel()
<<g_b2>> nextChannel()
<<g_b3>> hasNext()
<<g_b4>> currentChannel()
lastChannel()
previousChannel()
hasPrevious()

ConcChannelList

<<g_AggrIter>>
Iterator<<g_b1>> createChanIter()

<<g_AbstractAggregate>>
ChannelList

ConcChannelIterator

<<g_IteratorRealization>><<g_AggrIterCreateDep>>

IT

<<g_ListRealization>>

Channel

Fig. 1. (a) An extended UML meta-model segment. (b) An Iterator pattern implemen-
tation [1] generated by meta-programming on the Iterator meta-class. The generative
parts are marked with g xxx. The Iterator PSL is the line marked with IT

3 Definition of Abstract Factory PSLs

This section focuses on defining PSLs for the Abstract Factory pattern which
provides an interface for creating families of related or dependent objects without
specifying their concrete classes [10]. Figure 2(a) shows the paradigm of the
Abstract Factory pattern. The definition of Abstract Factory PSLs mainly covers
the use mode, data structure and static semantic aspects. Through the definition
process, we discover the pattern’s two key intentions, which are more detailed
than those in [10].

We design the use mode of Abstract Factory PSLs as follows: a modeler
does not need to draw the constructs inside the rounded rectangle (shown in
Fig. 2(a)), the input and output lines across the rounded rectangle and the
lines from the Client class to the AbstractProductA/B interfaces. The modeler
only needs to draw Abstract Factory PSLs from the Client class to the concrete
product classes and configure them (shown in Fig. 2(b)).

In Fig. 1(a), the AbstractFactory meta-class shows the most concise data
structure of Abstract Factory PSLs:

a) afName: String. It is the name of an abstract factory interface. Without it,
a Client object cannot access the services of the concrete factory objects.

b) cfName: String. It is the name of a concrete factory class. A concrete product
class must be managed by a concrete factory class. It captures an intention of

Pattern Semantic Link: A Reusable Pattern Representation in MDA Context 313

(a) (b)

AbstractProductA

ProductA2

AbstractProductB

AbstractFactory

creatProductA()
createProductB()

ConcreteFactory2

ConcreteFactory1

Client ClientAF

A
F

A
F

A
F

ProductA1

ProductB2 ProductB1

AbstractProductA

ProductA2

AbstractProductB

ProductA1

ProductB2 ProductB1

Fig. 2. (a) The paradigm of the Abstract Factory pattern [10]. (b)An abstract repre-
sentation of Fig. 2(a) by using Abstract Factory PSLs. The lines marked with AF are
visual notations of the PSLs

the pattern, which is named product family: a concrete factory class stands
for a product family.
According to above definition, an Abstract Factory PSL stores a 4-tuple

< clientRole, afName, cfName, productRole > based on which we can define
the static semantics of Abstract Factory PSLs by building OCL constraints cor-
responding to the intentions of the Abstract Factory pattern. For reasons of
space, we list only two key intentions as follows:

Constraint 1. All the concrete product classes managed by a concrete factory
class must implement different abstract product interfaces.

When there are two or more concrete product classes implementing the same
abstract product interface, the corresponding concrete factory object can’t de-
cide to create objects of which concrete product class. With Constraint 1, we can
avoid this problem. For the performance of the constraint execution, the eval-
uation policy of Constraint 1 is after drawing a PSL and setting its attributes
(afName and cfName). The OCL codes are given as follows:

context AbstractFactory inv eachProdHasDiffInt:
let sEnds: Set(AssociationEnd)=getNavigableEnds() in
sEnds->size=1 and let sEnd: AssociationEnd=
sEnds->any(true), sCls: Classifier=sEnd.participant in
sCls.isAbstract=false and allInstances->
select(cfName=self.cfName)->forAll(a| a<>self implies
let aEnds: Set(AssociationEnd)=a.getNavigableEnds() in
aEnds->size=1 and let aEnd: AssociationEnd=aEnds->any(true) in
aEnd<>sEnd and let aCls: Classifier=aEnd.participant in
aCls.isAbstract=false and not aCls.conformsTo(sCls)

Most of above codes can be understood without further explanations. The
getNavigableEnds method gets the AssociationEnd instances whose isNavigable
attribute values are true.

314 J. Yin et al.

Let K as a set of abstract product interfaces, we have:

Constraint 2. Given any two concrete factory classes both of which implement
the same abstract factory interface, the two Ks managed by them must be equal.

The satisfaction of Constraint 1 and Constraint 2 will ensure exchangeable
product families: any two product families (represented by two concrete factory
classes) can replace each other under the same abstract factory interface and
the same set of abstract product interfaces. Constraint 2 builds on top of Con-
straint1, so the evaluation policy of Constraint 2 is after executing Constraint
1. For reasons of space and comprehensibility, the OCL codes for Constraint 2
are not presented here and can be easily written by consulting [11].

By using the definition of PSLs for a pattern, we can render various op-
tional implementations for the pattern and let a modeler further configure the
PSLs. The next section describes a rendering algorithm for the Abstract Factory
pattern.

4 Rendering a Reference Implementation for Abstract
Factory Pattern

Based on a PSL definition, we can meta-program different reference implementa-
tions for the pattern to support selecting the most effective implementation form
in a particular context. Given Fig. 2(b), we can render a modeler with Fig. 2(a),
which is one of implementations for the pattern. For each Abstract Factory PSL
p, based on the 4-tuple < clientRole, afName, cfName, productRole > of p,
the rendering algorithm is given as follows:

1. Check the validity of p, for example, p.afName and p.cfName cannot be
empty. If it is ok, go next else go to 5.

2. Create an abstract factory interface af, abstract methods and an association
between the Client class and af. Mark each created model element with a
new stereotype whose name is “g ”+elementRoleName.

3. Create a concrete factory class cf, a generalization between cf and af, a
dependency between cf and a concrete product class, an association between
the Client class and an abstract product interface. Mark each created element
as those in 2.

4. Hide p from the modeler.
5. Go next p.

The complexity of the algorithm is O(N), N is the number of the Abstract
Factory PSLs. Note that above algorithm description does not cover all details,
for example, checks if an element to be created already exists. In 2, the ele-
mentRoleName denotes the role name of a participant in the pattern. Using a
surface language [12] for the UML Action Semantics, the main procedure for
above algorithm is given as follows:

Pattern Semantic Link: A Reusable Pattern Representation in MDA Context 315

AbstractFactory::standImpl
actions: AbstractFactory.allInstances->
select(afName<>’’ and cfName<>’’)->
forAll(a|a.createAF; a.createAFMethod;

a.createCF; a.createCFDep;
a.createClientProdIntAs; a.hide)

The action definition of each createXXX method is obvious and omitted from
here. More information about UML Action Semantics can be found in [13].
Working on the rendered implementations for patterns, a modeler can further
configure the PSLs in a PIM, and transform the PIM to a PSM through the
approaches introduced in next section.

5 Transforming and Reusing a Model with PSLs

For reusing patterns across PIMs and PSMs, we need to transform a model with
PSLs to its platform-specific counterpart by the vertical transformation [14] and
refine the platform-specific counterpart in the platform-specific context.

To facilitate above processes, we derive platform-specific meta-models from
the extended UML meta-model and add them with platform-specific informa-
tion, such as application protocols, deployments, etc. Because of using the meta-
model inheritance to derive platform-specific meta-models, the abstract syntaxes
and static semantics of the platform-independent meta-model are reserved, for
example, Constraint 1/2 in Sect.3 are still hold in any platform-specific sub-
class of the AbstractFactory meta-class. Figure 3 shows a sample of meta-model
inheritance.

Classifier
(from Core)

AssociationEnd
(from Core)

Association
(from Core)

12..***

1 *

Class
(from Core)

PSL

AbstractFactory

afName: String
cfName: String

Proxy

pxName: String
pxMName: String

Visitor

avName: String
cvName: String

Representer

persist: PersistEnum

EJB
beanKind: BeanKindNum
persistMan: PersistManEnum
containerId: Integer

JAbstractFactory

protocol: String
loc: String

JProxy

protocol: String
JVisitor

protocol: String
isSync: Boolean

<<jvis>><<jaf>> <<jpro>>

<<ejb>>

<<rep>>

PIM
Marks of J2EE

Marks of DotNet

Maping
PIM

Fig. 3. A simplified meta-model segment for J2EE platform and its transformation

316 J. Yin et al.

Based on the transformation using patterns and marks [15], we design the
transformation process as follows: (briefly shown in Fig. 3)

a) First, a set of marks (stereotypes) is extracted from the platform-specific
meta-model, and the compositions of the marks are well defined to ensure
the right configuration semantics for the platform;

b) Then, a modeler imports those marks into the modelling environment and
marks a PIM to guide the transformation engine to generate a PSM.

By combing the meta-model inheritance and marking approach, we simplify
the model transformation interface like this:
T(src: Meta-modelA, marks: Set(Stereotype), dst: Meta-modelB), which can be
effectively implemented by the transformation engines (e.g., GReAT [16]).

After transforming a PIM to a PSM, a modeler will need to refine the PSM
with platform-specific information based on which the platform-specific PSLs can
be used to store the implementation knowledge for the corresponding patterns.
A code generator can then use that knowledge to generate codes. For example,
we can define the following rule to configure the JAbstractFactory meta-object,
which is a platform-specific counterpart of an AbstractFactory meta-object:

If two EJB meta-objects e1 and e2 are connected by
a JAbstractFactory meta-object jaf and
e1.containerId=e2.containerId

Then Jaf.protocol=’local’ -- use the EJBLocalHome factory
interface to create EJB objects.

Else Jaf.protocol=’remote’ -- use the EJBHome factory
interface to create EJB objects.

6 Conclusions

The main goal of this research is to propose a novel pattern representation
named Pattern Semantic Link (PSL) for reusing design patterns across different
abstract levels and a process framework for its implementation in the Model-
Driven Architecture (MDA) context. By using the Abstract Factory pattern as
a throughout example, we demonstrate that a PSL can provide a centralized and
abstract representation for a pattern, capture key intentions of a pattern, sepa-
rate different aspects (such as rendering, implementation, transformation, etc.)
from the centralized representation and support transforming and reusing pat-
terns across Platform-Independent Models (PIMs) and Platform-Specific Models
(PSMs).

References

1. Dae-Kyoo Kim, Robert France, Sudipto Ghosh, et al.: A UML-Based Metamodel-
ing Language to Specify Design Patterns. In: Proc. Workshop on Software Model
Engineering (WiSME) with UML 2003. To be published. (2003)

Pattern Semantic Link: A Reusable Pattern Representation in MDA Context 317

2. D. Mapelsden, J. Hosking, J. Grundy: Design Pattern Modelling and Instantiation
using DPML. In: Proc. 14th. International Conference on Tools Pacific: Objects for
internet, mobile and embedded applications. Australian Computer Society, Dar-
linghurst, Australia, Australia (2002) 3–11

3. Aline Lúcia Baroni, Yann-Gaël Guéhéneuc, Hervé Albin-Amiot: Design Patterns
Formalization. Technical Report 03/03/INFO. Computer Science Department,
École des Mines de Nantes. (2003)

4. Robert France, Sudipto Ghosh, Eunjee Song, et al: A Metamodeling Approach to
Pattern-Based Model Refactoring. IEEE Software, Vol. 20, No. 5. IEEE Computer
Society Press, Los Alamitos, CA (2003) 52–58

5. G. Florijn, M. Meijers, P. van Winsen: Tool support for object-oriented patterns.
In: Proc. 11th. European conference on Object Oriented programming. Lecture
Notes in Computer Science, Vol. 1241. Springer-Verlag, Berlin Heidelberg New
York (1997) 472–495

6. M. Schütze, J. P. Riegel, G. Zimmermann: PSiGene - A Pattern-Based Compo-
nent Generator for Building Simulation. Theory and Practice of Object Systems
(TAPOS), Vol. 5, No. 2. Wiley Publishing, Indianapolis, Indiana (1999) 83–95

7. Anthony Lauder, Stuart Kent: Precise Visual Specification of Design Patterns.
In Proc. 12th. European Conference on Object Oriented Programming. Lecture
Notes in Computer Science, Vol. 1241. Springer-Verlag, Berlin Heidelberg New
York (1998) 114–134

8. C. Simonyi: The Death of Computer Languages, the Birth of Intentional Pro-
gramming. Technical Report MSR-TR-95-52. Microsoft Research, Redmond WA.
(1995)

9. DS Frankel: Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley Publishing, Indianapolis, Indiana (2003)

10. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, MA (1995)

11. Boldsoft, et al.: UML 2.0 OCL 2nd revised submission. OMG Document ad/2003-
01-07. (2003)

12. Gerson Sunye, Alain Le Guennec, Jean-Marc Jezequel: Using UML Action Seman-
tics for model execution and transformation. Information Systems, Vol. 27, No. 6.
Elsevier Science, Oxford, UK (2002) 445-457

13. The Action Semantics Consortium: Action semantics for the uml. OMG Document
ad/2001-03-01. (2001)

14. Jeff Gray, Jing Zhang, Yuehua Lin, et al.: Model-Driven Program Transformation
of a Large Avionics Framework. In: Proc. Generative Programming and Compo-
nent Engineering (GPCE 2004). Lecture Notes in Computer Science, Vol. 3286.
Springer-Verlag, Berlin Heidelberg New York (2004)

15. Joaquin Miller, Jishnu Mukerji: MDA Guide Version 1.0.1. OMG Document
omg/2003-06-01. (2003)

16. Agrawal A., Karsai G. and Ledeczi A.: An End-to-End Domain-Driven Software
Development Framework. In: Proc. 18th. Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
ACM Press, New York (2003) 8–15

 R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 318–328, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Compatibility Test and Adapter Generation for
Interfaces of Software Components

Johannes Maria Zaha, Marco Geisenberger, and Martin Groth

Chair of Business Informatics and Systems Engineering,
Business Faculty, University of Augsburg,

Universitätsstraße 16, 86159 Augsburg, Germany
johannes.maria.zaha@wiwi.uni-augsburg.de,

marcogeisenberger@web.de, martin.groth@t-online.de,

Abstract. Compositional reuse of software components requires standardized
specification techniques if applications are created by combining third party
components. Adequate techniques need to be used in order to specify not only
technical but also business related aspects of software components. The
different specification aspects of software components are summarized in a
multi-layer specification framework with formal specification techniques
defined for each level of abstraction. The use of formal specification techniques
is a prerequisite for compatibility tests on component specifications.
Compatibility tests are necessary for the identification of required components,
which are traded on component markets. The focus of this paper is to present an
algorithm for compatibility test on interface level, where Interface Definition
Language (IDL) has been used as formal specification language. In order to test
characteristics where e.g. the order of parameter values or the order of
consisting data types within a complex data type are not identical with the
specification, adapters are generated for mapping the component interfaces.

Keywords: Compatibility test, software reuse, adapter generation, IDL,
software component.

Business Components and Software Contracts

The idea of developing application systems from prefabricated software components
has been traced at least since the publication of McIllroy in 1968 [1]. Since then
different techniques for reusing software artefacts, like code and design scavenging
[2] or generative techniques [3], have been developed. Compositional reuse of
software instead is a technique to combine the advantages of both standard software
and individually programmed software by a plug-and-play-like reuse of black-box-
components which are traded on component markets. To achieve this goal, developers
and users must be enabled to express the characteristics of a software component in a
standardized way. Therefore a specification framework for business components,
which are components that offer a certain set of services of a given business domain,
has been proposed [4]. This specification framework (cp. Fig. 1) considers technical
aspects as well as business related aspects of software.

Compatibility Test and Adapter Generation for Interfaces of Software Components 319

Fig. 1. Software contract levels and facts to be specified (cp. [4])

In this framework standardized techniques for the specification of business
components of the different levels of abstraction have been chosen, like the Interface
Definition Language (IDL) [5] on Interface Level, the Object Constraint Language
(OCL) [6] on Behavioural Level or the Restructured Business Language [7] on Task
Level. With this specification framework it is possible to enter into a contract on a
piece of software in a standardized way. The concept of software contracts was
introduced by Meyer [8] with his programming language Eiffel. This idea of
programming by contract was later on extended to the concept design by contract [9].

The design phase should end with a detailed specification of the components and by
using standardized specification techniques. With this concept it is possible to decrease
the effort to build application systems by reusing existing components. In order to
automatically find required components, it is necessary to use algorithms for an
automated compatibility test on all of the layers of the specification framework mentioned
above. In this paper an algorithm for compatibility test on interface level, where IDL
has been chosen as formal specification language, is introduced and described.

Compatibility of Interfaces

To test compatibility of software components by deriving information of their
interfaces, Zaremski and Wing introduced a type system for functions and modules
[10]. This approach was extended for differing signatures [11] and pre- and post-
conditions [12]. Other work extends these approaches for protocols needed for
interaction between components [13] and introduces the generation of component
adapters [14]. Respecting all work done in this area none of the approaches mentioned
provides an algorithm for testing compatibility of specifications or for generating
respective adapters. In addition to the presentation of a compatibility algorithm an
adapter concept is provided, namely for those parts of the IDL, used in [4].

Compatibility of two components is defined as the equality of two software
components, whereas other requirements, like if two software components can work
together concerning the interfaces, can be tested by a few modifications of the
presented algorithm. Software components are compatible, if it is possible to

320 J.M. Zaha, M. Geisenberger, and M. Groth

exchange the components one by another with or without using a corresponding
adapter. An adapter defines the way of exchanging software components. It specifies
which service of a component matches which service of another component,
depending on the matching of according data types.

Two software components can either be incompatible or compatible. Compatibility
implies a certain type and a certain multiplicity of compatibility. Referring to [10]
three different kinds of compatibility exist:

• Exact compatible software components SC and SC’ offer the same services
depending on the underlying data types. Each service and data type of SC needs
an exact matching in SC’. Formalized: SC = SC’.

• If SC offers more services or more specialized services and data types than
SC’, SC is specialized compatible to SC’. They are also specialized compatible
if SC requires more services or more specialized services and data types than
SC’. Formalized: SC < SC’.

• Generalized compatibility is the opposite of specialized compatibility. SC is
generalized compatible to SC’, if SC’ is specialized compatible to SC.
Formalized: SC > SC’.

A software component specifies its services and data types by using parts of the
OMG IDL [4]. The required and provided interfaces are defined by the interface
declaration of IDL and are integrated in a module. To define the compatibility of
components it is necessary to define the compatibility of the OMG IDL declaration
used in order to specify a software component. The IDL-declarations used according
to [4] are modules, interfaces, operations, data types and exceptions. Thereby a
component is defined with the maximum of two interfaces, a provided interface which
is mandatory and a required interface which is optional, which are integrated in a
module. Two software components are exact compatible if the provided interfaces are
exact compatible and - if both need a required interface – the required interfaces are
exact compatible as well. A module is specialized compatible to another, if either both
interfaces are specialized compatible or if one is specialized compatible and the
required interface is exact compatible or not existent. In all other cases the software
components are incompatible. The adapter of two modules is represented by a
compatibility prefix followed by the adapter for the provided and required interface:

<module-adapter> ::=
“{“ <compatibility_prefix>",“ <interface_adapter> [“,“<interface_adapter >] “}“

Two interfaces are exact compatible if they have the same number of declarations
and if each declaration can be mapped exact compatible to a declaration of the other.
The different types of declarations used are type declarations, exception declarations
and operation declarations of IDL. If one interface has more declarations and all of
them can either be mapped exact or specialized compatible to a declaration of the
other interface, the first interface is specialized compatible to the second.

<interface adapter> ::=
“«“<compatibility_prefix>“,“ <operation_set_adapter>“,“ <exception_set_adapter> “,“
<data_type_set_adapter> “»“

Two sets of declarations which are of the same type are exact compatible, if they
have the same number of declarations and each declaration in one set can be mapped
exact compatible to an declaration in the other set. In case one set has more

Compatibility Test and Adapter Generation for Interfaces of Software Components 321

declarations and all declarations of the other set can be mapped to an exact or a
specialized compatible declaration of the first set, the first set is specialized
compatible to the other. If both have the same number of declarations and at least one
declaration mapping is specialized compatible and the rest of the mappings are either
specialized or exact compatible, the two sets are specialized compatible. The adapters
of the three different kinds of declaration are built in the following way.

<operation_set_adapter> ::=<operation_adapter>(“,“ <operation_adapter>)*

<exception_set_adapter> ::= “”
<data_type_set_adapter> ::= <datatype_adapter> (“,“ <datatype_adapter>)*

Two operations are exact compatible to each other, when their sets of parameters and
exceptions and their return types are exact compatible. Specialized compatibility can be
caused by specialized return types and compatible sets of parameters and exceptions.
The compatibility of these two sets is defined in the same way, as the compatibility of
sets of declarations. Each operation mapping is represented in the following way.

<operation_adapter> ::=
“[”<compatibility_prefix>”,” <operation_mapping> (“,“<parameter_mapping>)+“]”
<operation_mapping> ::= “(“ identifier, identifier ”)”
<parameter_mapping> ::= “(“ parameter_declaration, parameter_ declaration “)”

Type declarations can either be a type definition or a structure. The compatibility
of two type definitions corresponds to the compatibility of their type specification.
Two structures are exact compatible, if their number of members is the same and each
member of the first structure is exact compatible to a member of the second structure.
They are specialized compatible if the first structure has more members and these
members can be mapped either exact or specialized compatible to the members of the
second structure. Members of structures can either be other structures or simple types.
The compatibility of simple types is defined in a compatibility matrix as shown in table 1.

The mapping of two data types is represented by the following adapter:
<compatibility_prefix> ::= “=” | “<” | “>”
< data_type_mapping> ::= “(“ data_type_identifier, data_type_identifier “)”
<member_mapping> ::= “(“ declarator, declarator ”)”
<data_type_adapter> ::=
“[”<compatibility_prefix> “,“ < data_type_mapping> (“,”<member_mapping>)+ “]”

Table 1. Data type definition matrix

322 J.M. Zaha, M. Geisenberger, and M. Groth

The Compatibility Algorithm

As explained in the chapter before, the compatibility of software components can be
identified by a combination of tests which compare the number of declarations on the
different levels of the used parts of IDL declarations (module, interfaces, types,
operations, exceptions) and through an unequivocal mapping of these declarations. To
reduce complexity the compatibility algorithm is separated into subalgorithms, which
can be refined. To reduce the average runtime of the compatibility algorithm the
subalgorithms are combined in the following way. Subalgorithms with a short runtime
are executed as soon as possible in order to reduce runtime. In addition, all
subalgorithms are using the results of former executed subalgorithms.

Subalgorithms with a short runtime are number tests which test compatibility on
the number of declarations. These subalgorithms are called pretests in the following
and can lead to a global restriction or have effect on an existing one. If the postulated
restriction conflicts with an eventually existing global restriction, the compatibility
algorithm terminates and the two components are incompatible. The global restriction
makes it possible to reduce runtime of all following subalgorithms. More complex
subalgorithms are the mapping algorithms which also include pretests.

The compatibility algorithm can either be started with or without a global
restriction. A restriction, regardless if global or local, excludes specialized,
generalized or both compatibilities. As shown in figure 2 (representing like all other

compatibility algorithm

return value

mapping algorithms provided interfaces

pretests required interfaces

pretest interfaces

pretest typ declarations pretest exception declarations pretest operations declarations

mapping algorithms required interfaces

union of interface adapter lists
of provided and required

interface

operation mapping algorithm

pretests provided interfaces

pretest typ declarations pretest exception declarations pretest operations declarations

type declaration mapping algorithm

operation mapping algorithm type declaration mapping algorithm

global restriction

module adapter list empty module adapter list

[XOR]

[restriction conflict]

[XOR]

[restriction conflict]

[restriction conflict] [restriction conflict]

[no
restriction conflict]

[restriction
conflict]

[restriction
conflict]

[no restriction conflict]

[no required
interface]

[no required
interface]

[required interface]

[required interface]

[operation mapping impossible]

[operation mapping]

[operation mapping]

[type mapping impossible]

[type mapping]

[type mapping]

[no union possible]

[union possible] [XOR]

[XOR]

[no
restriction conflict]

[no
restriction conflict]

[no
restriction conflict]

[no restriction conflict]

[operation mapping impossible]

[type mapping impossible]

Fig. 2. Compatibility algorithm

Compatibility Test and Adapter Generation for Interfaces of Software Components 323

diagrams a UML activity diagram [6]), the compatibility algorithm begins with the
pretest interface. First, a pretest checks, if both modules include the required
interface. If both modules contain the required interface, the compatibility algorithm
includes the pretests and the mapping algorithm for the required interface. The
pretests of the interfaces are the pretest of the type declarations, the pretest of the
exception declarations and the pretest of the operation declarations. If the
compatibility algorithm passes the pretests the operation mapping algorithm starts. If
it is possible to map the operations, the type declaration mapping algorithm is
executed. This algorithm maps the data types which haven’t been matched by the
operation mapping algorithm. If it is additionally possible to map these type
declarations, an interface adapter list with at least one item is created. In case of no
conflicting compatibility prefixes between provided and required interface adapters,
the union of interface adapter list leads to a module adapter list and the compatibility
algorithm terminates. If any subalgorithm fails, the compatibility algorithm terminates
with an empty module adapter list.

In the following the operation mapping algorithm (cp. Fig. 3) and its
subalgorithms are described. This algorithm maps the operations of the two interfaces.
Due to this the operations have to be tested on compatibility by the operation
compatibility algorithm. The result of each test is saved in an operation adapter list in
the cells of the operation matrix (cp. Tab.2). The rows represent the operations of the
first interface and the columns the operations of the second. The compatibility of
operations depends on the compatibility of the types of the return values and the input
parameters. Due to the fact that an interface may contain self defined types such as
typedefs and structures, the compatibility of these types are saved in a data type
matrix (cp. Tab. 2) in a data type adapter. Analogue to the operation matrix, the rows
contain the type declarations of the first interface and the columns the type
declarations of the second interface. These two matrices, the global restriction and the
matrix defining the compatibility of the simple data types, are the base for the
following subalgorithms.

Table 2. Data type and operation matrix

data type
matrix

st
ru

ct

1' …

st
ru

ct

n'

 operation
matrix

op
 1

'

…

op
 m

'

struct 1 op 1

… …
struct n op m

First, operation matrix and data type matrix are initialized by the operation
mapping algorithm, shown in figure 3. After this setup phase the algorithm tries to get
a mapping for each operation of the two interfaces. Therefore, the operation
compatibility algorithm tries to get an operation adapter for two operations.

324 J.M. Zaha, M. Geisenberger, and M. Groth

Fig. 3. Operation mapping algorithm

After getting an operation adapter for all operations of the two interfaces, the
operations can be mapped to each other by the matrix mapping algorithm. According
to the mapping adapter list, the operations have to be integrated in an interface
adapter. For each mapping adapter, a separate interface adapter is generated.

The operation compatibility algorithm (cp. Fig. 4) – a subalgorithm of the
operation mapping algorithm – tests the compatibility of two operations. This
algorithm includes pretests which compare the number of exceptions and parameters
and may result in a local restriction, in case there is no global restriction. If there is no
conflict between the global and local restriction the algorithm continues. Otherwise
no mapping for these two operations is existent and the algorithm terminates with an
empty operation adapter list. After the pretests the two return types of the operations
are tested on compatibility by the data type compatibility test. If it is possible to find
an adapter for the return types of the operations, the input parameters of the
operations have to be mapped. In case, the return types are incompatible, the
algorithm terminates. The parameters of the two operations are likewise mapped by
the matrix mapping algorithm. The result of this algorithm is a mapping for the sets of
parameters of two operations. The matrix mapping algorithm may get more solutions
for a mapping. These mapping adapter lists have to be integrated into the operation
mapping adapter list. After that for each solution an adapter is saved in an operation
adapter list. This list, containing all possible mappings of the operations, is saved in
the operation matrix. The number of operation adapters equals the multiplicity of
compatibility of the two operations.

Compatibility Test and Adapter Generation for Interfaces of Software Components 325

Fig. 4. Operation compatibility algorithm

As mentioned above it is necessary to test data types on compatibility, e.g. the
return types and the parameter types of two operations and furthermore the types of
the members of structures. This test is performed by the data type compatibility test
(cp. Fig. 5). The input parameters of the test are two data types and - if necessary - a
compatibility restriction. The compatibility of two types depends on their type
definition. The types are either defined in the interface, e.g. type declaration
(structure) or already defined by the specification of OMG IDL. The compatibility of
types of OMG IDL is defined in the data type definition matrix for simple data types,
as shown in table 1.

Three cases of testing data types are possible: If the two types belong to the simple
types, the compatibility can be simply looked up in the data type definition matrix and
this compatibility is copied into an adapter list. If one type belongs to the group of
type declarations in one interface and the other to the group of the simple types, the
two types are incompatible. In this case, an empty adapter list will be returned. In case
both types are structures, the compatibility of the consisting types is looked up in the
data type definition matrix. If the compatibility of these two types already exists in the
data type definition matrix, the list will be returned. Otherwise, a pretest, which
compares the number of attributes, is performed. In case of conflicts between the
input restriction and the resulting restriction, the two types are incompatible.
Otherwise, the data type mapping algorithm is invoked with the two lists of data types
of the two structures and the according restriction. In case the data type mapping
algorithm returns solutions for the mapping, the solutions must be integrated into the
data type compatibility adapters and saved in the data type definition matrix. If the
mapping isn’t possible, an empty data type adapter list is saved.

326 J.M. Zaha, M. Geisenberger, and M. Groth

Fig. 5. Data type compatibility test

If the two data types are incompatible, an empty adapter list is returned, or, if the
two data types are compatible, a data type adapter list, including all adapters, will be
returned.

The input parameters of the data type mapping algorithm (cp. Fig 6) are two sets of
data types and a restriction. The two sets of data types are either the types of
parameters of two operations or the types of two structures. Like the operation matrix,
a temporary matrix is initialized to map the types of the two sets. The rows represent
the types of the first set while the columns represent the types of second set.
Afterwards, for each cell, the data type compatibility test with the corresponding
types is invoked, in order to get the compatibility of the two types. After that the types
have to be mapped unequivocally by the matrix mapping algorithm. If it is possible to
map the types, the mapping information of the rows and columns are returned in a
mapping adapter list.

Task of the matrix mapping algorithm is to map each row to a column. In case a
row-column-mapping was possible, the row and the column must be excluded from
the following search for mappings. The mapping must be conforming to the
restriction. If no restriction is given and a row-column-mapping is specialized
compatible the following mappings may not include a generalized compatibility.
Furthermore, it might be possible to map the rows and columns in different ways. To
find all possible mappings, a kind of backtracking is needed within the algorithm.
That’s the reason, why a multiplicity of compatibility is defined. The result of
possible row-column-mappings is returned within a mapping adapter list.

Compatibility Test and Adapter Generation for Interfaces of Software Components 327

Fig. 6. Data type mapping algorithm

After the operation mapping algorithm the type declaration mapping algorithm
maps the data types which haven’t been matched by the operation mapping
algorithm. This algorithm reduces the data type matrix to the types, which don’t occur
in the operations of the two interfaces. In each cell, a data type adapter is saved,
returned by the data type compatibility test. After all data type adapters are saved, the
matrix mapping algorithm maps these data types to each other. By the information of
the mapping adapter list of the matrix mapping algorithm, the data type adapters are
integrated into the interface adapter list.

Conclusion and Outlook

The depicted algorithm tests equivalence of interface specifications and generates
simple adapters. Thereby only those artefacts of the Interface Definition Language
IDL were considered, that are used in the Memorandum on Standardized
Specification of Business Components [4]. The algorithm has been implemented and
was integrated in a specification tool, which allows suppliers and buyers to describe
their demands. Therewith the users can search for software components that fit their
demands concerning the signatures of business components.

Currently an automated test on suitability of a certain component with the
according generation of adapters is only possible on Interface Level. The next tasks in
our research are to expand the automated testability by moving up the levels towards
the business related aspects. In doing so, the semantic aspects of software will come
to the force. However the long-term objective must be an integrated test on all
specification levels to achieve the goal of combining the advantages of individually
programmed software and standard software with Commercial of the shelf (COTS)-
software components.

Remarks. An example for the algorithm is available and can be retrieved by sending
an e-mail to johannes.maria.zaha@wiwi.uni-augsburg.de.

328 J.M. Zaha, M. Geisenberger, and M. Groth

References

1. McIlroy, M.D. Mass Produced Software Components. in Software Engineering: Report on
a Conference by the NATO Science Committee. 1986. Brussels: NATO Scientific Affairs
Devision.

2. Sametinger, J., Software engineering with reusable components. 1997; Berlin, New York:
Springer. xvi, 272 p

3. Czarnecki, K. and U. Eisenecker, Generative programming: methods, tools, and
applications. 2000, Boston: Addison Wesley. xxvi, 832 p.

4. Turowski, K., ed. Standardized Specification of Business Components. 2002, Gesellschaft
für Informatik, Working Group WI-kobAS (5.10.3) - Component Oriented Business
Application Systems: Augsburg.

5. OMG, ed. The Common Object Request Broker: Architecture and Specification: Version
2.5. 2001, Framingham.

6. OMG, ed. Unified Modeling Language Specification: Version 1.4. 2001, Needham.
7. Ortner, E. Methodenneutraler Fachentwurf: Zu den Grundlagen einer

anwendungsorientierten Informatik. 1997, Stuttgart.
8. Meyer, B., Object-Oriented Software Construction. 1988, Englewood Cliffs.
9. Meyer, B., Applying "Design by Contract". IEEE Computer, 1992. 25(10): p. 40-51.

10. Zaremski, A. M.; Wing, J. M., Signature Matching: A Key to Reuse. Proceedings of
SIGSOFT '93, 1993.

11. Zaremski, A. M.; Wing, J. M., Signature Matching: a Tool for using Software Libraries.
ACM Transactions on Software Engineering and Methodology (TOSEM), 1995

12. Zaremski, A. M.; Wing, J. M., Specification Matching of Software Components.
Proceedings of 3rd ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 1995.

13. Nierstrasz, O., Regular Types for Active Objects. Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and applications, 1993.

14. Yellin, D. M., Strom, R. E., Protocol Specifications and Component Adapters. ACM
Transactions on Programming Languages and Systems (TOPLAS), 1997.

A Modern Graphic Flowchart Layout Tool

Computer Science Dept, Louisiana State University
Baton Rouge, LA 70803, USA
kundu@bit.csc.lsu.edu

Abstract. We describe the design of a flowchart layout tool for C-programs,
which may contain break, continue, and return statements. We exploit the nest-
ing relationship among the blocks to determine the positions of blocks and sub-
blocks, which in turn determine the placement of connecting lines between the
blocks. A special labeling technique is used to avoid the crossing of lines.

A graphical display of a program’s flowchart is helpful in understanding the
program logic for beginning programmers. Flowcharts have many important uses,
including static analyses (definition-use relationship of variables [1] and unreachable
code segments [1, 2]), test-data generation and test-converge measures [2], computa-
tion of program slice [3, 4], and code optimization [1]. An important consideration
in a flowchart-display is the clarity of showing the program blocks and their nesting
structure. For large programs, it is also important to be able to form "summary dis-
play" by avoiding the details within selected blocks and to be able to expand those
blocks when needed. We accomplish these using the nesting-tree of program blocks
as the basis for creating the flowchart layout. The blocks with hidden details can be
selected on the basis of their nesting levels, size (number of nodes in the block), nest-
ing depth within the block, presence or absence of certain structures within them, etc.
We avoid crossing among the connecting lines between nodes of a flowchart by using
a special node-labeling scheme for the unstructured constructs involving break, con-
tinue, and return. Programs involving these constructs, but without goto’s, maybe
called semi-structured. The JAVAVIS tool [5] shows UML class diagrams (for object
oriented programs) but not the flowchart. Our layouts are superior in many ways to
those given by the commercial packages //www.fatesoft.com and //www.aisee.com.
Flowchart layout is a special case of more general problem of graph drawing [6].

Fig. 1(i) shows the layout of a semi-structured flowchart; its input data, which
is shown in Fig. 1(ii), is easily obtained by a simple preprocessing of the C-program
text. Nodes and blocks with a deeper nesting-level are indicated by a darker shading;
one can turn off the shading, if desired. The label 10/11 for the break-node 10 of the
while-do loop shows that the original control (going to node 9 and indicated by a
dotted line) is now modified going to node 11. In our flowchart layout tool, we first
create an output file which describes the display in the "pic" language in UNIX. The
actual display is then created by processing this file by the pic-utility in UNIX.

For our purpose , a block is a segment of a code which has single input point
and a single output point when we disregard the unstructured control flows due to the

,

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 329–335, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Sukhamay Kundu

1 Introduction

2 Construction of Layout

0

1

2

3

4

6

7

8 10/11

9

11

5

(i) The flowchart of a semi-
structured program

12 //numNodes
0 start 1
1 decision 2 6
2 action 3
3 action 4
4 decision 3 5
5 end -1
6 decision 7 11
7 decision 8 10
8 action 9
9 action 6

10 break 9
11 action 5

(ii) The input data for the display
in (i); each line after the fi rst shows a

node, its type, and its successor nodes.
The nodes are numbered consecutively
starting with 0 but otherwise arbitrarily

and they may be listed in any order

An example layout

break, continue, and intermediate returns (other than that at the end of a function).
The four basic block types are if-then-else (if-then being a special case), while-do
loop (for-loop being a special case), do-while loop, and sequence.

We view the layout as a hierarchy of boxes with horizontal and vertical sides.
Each box has an entry point on its top side and an exit point on its bottom side; the
box is connected to the outside world by a vertical line to and from there points,
respectively. The box B(x) associated with a node x in the flowchart contains x and
extends just far enough on all sides to contain all its subboxes, including the connect-
ing lines among them so that for each node y ∈ B(x), y is reachable from x within
B(x) itself and B(y) ⊆ B(x). The box corresponding to the end-node consists of only
itself. B(x) but does not contain nodes outside the innermost loop-body containing
x, if any. The notion of a box should not be confused with a single entry and single
exit block; a block is either contained in a box or disjoint from a box. We build the
boxes in a bottom-up and inside-out fashion starting from the end-node.

Fig. 2(i) shows the box for an action node x, which includes x and the box B2
corresponding to the unique next node of x. Fig. 2(ii) shows the box for a white-do
loop-test node, where B1 is the box for the loop-body and B2 is the box for the desti-
nation node of the false-branch at the loop-test node. There are few exceptions
where B2 is not present (or equivalently, it is an empty box); for example, the while-
do loop is the else-part of an if-then-else statement or it is the last block of another
loop-body. Note that if the height of B2 is larger than the height of B1 plus the verti-
cal separation between a box and an horizontal line, then exit-point(B2) = exit-
point(B) and the vertical line (without the arrowhead) joining exit-point(B2) to exit-
point(B) is not present. The box for a do-while loop-test node is similar to that of a
while-do loop-test node. Fig. 2(iii) shows the box for an if-then-else test node,

Fig. 1.

2.1 Notion of Box

330 S. Kund u

where B1 is the box for the then-part, B2 is the box for the else-part, and B3 is the
box for the node that follows both then and else parts. B3 is empty when the if-then-
else statement is the last block in a loop-body; B2 is empty for an if-then statement.
We do not use rectilinear-shape boxes to optimize the layout space by packing the
boxes horizontally or vertically as indicated in Fig. 2(iv) to avoid loss of visibility of
the program blocks in a complex situation. A similar remark applies to Fig. 2(ii).

The vertical line segment to B2 in Fig . 2(i) do not always have the arrow-head;
this would be the case, for example, if B2 is the box for an while-do loop because
that would create two arrowheads on the line from B1 to the loop-test node in B2.
Similar remark holds for the vertical lines to subboxes in Figs. 2(ii)-(iii). For each
box B, we maintain the following parameters.

(P1) width(B) and height(B),
(P2) topDist(B) = the horizontal distance of the entry-point of B from its

west-side and bottomDist(B) = the horizontal distance of the exit-point
of B from its west-side, and

(P3) needArrow(B) = yes, if the vertical entry line to B needs an arrowhead.

B2

B

(i) A basic action-node and its
following block B1, if present.

entry point

exit point

B1 B2

entry point
B

exit point

(ii) The box for an while-do block.

entry point

B1 B2

B3

exit point

B

(iii) The box for an if-then-else, which
includes the following block B3, if any.

B1 B2

B3

(iv) The use of general rectilinear shapes is
avoided to maintain the visibility of blocks.

The box-structure for sequence, while-do loop, and if-then-else

For each case in Figs . 2(i)-(iii) and the do-while loop which is not shown there,
we can compute the parameters (P1)-(P3) for a box B in terms of those for its com-
ponent boxes; we can also determine the relative positions of the components within
B. We show below the formulas for computing width(B), topDist(B), and bot-
tomDist(B) for Fig. 2(iii), where we let topDist(B3) = bottomDist(B3) = width(B3) =

Fig. 2.

2.2 Computation of Box-Parameters

A Modern Graphic Flowchart Layo ut Tool 331

0 if B3 is not present. Let δ = bottomDist(B1) − topDist(B3) and HS = the unit verti-
cal separation between two boxes.

(4.1) width(B) = max {width(B1) + HS + width(B2), δ + width(B3)}, if δ ≥ 0
= max {−δ + width(B1) + HS + width(B2), width(B3)}, otherwise.

(4.2) topDist(B) = topDist(B1), if δ ≥ 0 and
= −δ + topDist(B1), otherwise.

(4.8) bottomDist(B) = δ + bottomDist(B3), if δ ≥ 0 and
= bottomDist(B3), otherwise.

We determine the blocks from the depth-fi rst tree [7] of the flowchart digraph,
together with its back-arcs and cross-arcs, given in the form shown in Fig. 1(ii) and
regarding the break, continue, and return statements as ordinary actions. Fig. 3(i)
shows the depth-fi rst tree for the input in Fig. 1(ii). A decision node N j is a while-do
loop-test node if there is a back-arc to N j itself but to an ancestor of N j prior to tak-
ing false-branch(N j). The while-do loop-body consists of the nodes in the subtree of
the depth-fi rst tree at the child Nk of N j , where true-branch(N j) = (N j , Nk). A deci-
sion node N j is a do-while loop-test node if true-branch(N j) is a back-arc to an
ancestor node Ni of N j ; the loop-body then consists of all nodes in the subtree at Ni

of the depth-fi rst tree minus the nodes in the subtree at the end of the
false-branch(N j). In particular, the do-while loop-body may not be known when we
backtrack from N j (for example, if the loop-body contains if-then-else statements),
but it will be known by the time we backtrack from Ni .

All other decision nodes N j are if-then or if-then-else nodes. Suppose true-
branch(N j) = (N j , Nk) and false-branch(N j) = (N j , Nn). N j has no else-part if and
only if false-branch(N j) is a forward arc to a node Nm in the subtree of the depth-
fi rst tree at Nk . Otherwise, the subtree at Nk has a unique node Nm which is the head
of all cross-arcs (≥ 1) leaving the nodes in the subtree at Nn. The subtree at Nm

gives the nodes in B3 in Fig. 2(iii), the subtree at Nk minus the subtree at Nm gives
the nodes in B1, and the subtree at Nn gives the nodes in B2. For N j = 1 in Fig. 3(i),
we have Nk = 2, Nn = 6, and Nm = 5; this gives B1 = {2, 3, 4}, B2 = {6, 7, 8, 9, 10,
11}, and B3 = {5}. Likewise, for N j = 7, Nk = 8, Nn = 10, and Nm = 9; this gives
B1 = {8} and B2 = {10}, and B3 = {9}.

The nesting-tree, which is an ordered tree, shows the nesting structure of the
blocks by regarding the break, continue, and return statements as ordinary actions.
Fig. 3(ii) shows the nesting-tree for the flowchart in Fig. 1(i). It has two types of
nodes: the fi rst type of nodes are the action nodes, it-test nodes (shown as circles
with an inscribed diamond shape), while-do loop-test nodes (shown as double cir-
cles), and do-while loop-test nodes (shown as bold circles); the second type of nodes
are the place holder nodes for then- and else-parts of an if-test and the root node;
they are shown as shaded nodes without labels. For an if-then statement, the second
child of the if-test node has no children; the do-while loop-test node also has no

2.3 Computation of Blocks

2.4 Nesting-Tree

332 S. Kund u

95

84 10

3 7 11

2 6

1

0

(i) The depth-fi rst tree for
the flowchart in Fig. 1(i).

tree-arc cross-arc back-arc

while-do test node

do-while test node

if-test node

other node

37

00 1

13

22 33 4

25

6

7

19

88

31

1010

99

1111

55

(ii) The nesting-tree for
the flowchart in Fig. 1(i).

The depth-first tree and nesting-tree for the flowcharts in Fig. 1(i)

children. The while-do loop-test node may have an arbitrary number (≥ 1) of chil-
dren, which correspond to the blocks in the loop-body. The children of a node corre-
spond to a sequence of single input single output blocks, with one exception. The
blocks in a do-while loop-body appear as left brothers preceding the loop-test node;
the starting block of the body is given by the node which is head of the back-arc (in
the depth-fi rst tree) from the loop-test node. See Fig. 3(ii). (We do not make these
brother nodes the children of the do-while loop-test node to allow the construction of
the nesting-tree with a minimal change to the depth-fi rst tree of the flowchart as we
traverse the latter, although this could be done; recall that the do-while loop body
may not be completely known if it contains if-then-else nodes at the time we process
the back-arc.) The children of the root show the sequential blocks in the program.

Construction of the nesting-tree is straightforward from the results of the
depth-first processing. Since the number of links in the flowchart digraph ≤ twice the
number of nodes, we get the following theorem.

Theorem 1. The generation of nesting-tree takes O(N) time where N = #(nodes
 in the flowchart).

Note that the layout in Fig. 1(i) cannot be obtained in a depth-first fashion
from the flowchart digraph in Fig. 3(i). For example, the vertical spacing between
nodes 4 and 5 cannot be determined until the whole digraph is processed. Likewise,
the horizontal space between nodes 2 and 6 cannot be determined at the time of visit-
ing node 6, but only after we know the body of the while-do loop. The creation of a
summary display to hide the details within a block means for the most part ignoring
the subtree of a node corresponding to that block, with a slightly different processing
for do-while loops because of the particular way it is represented in nesting-tree.

Fig. 3.

A Modern Graphic Flowchart Layo ut Tool 333

Figs. 4(i)-(ii) show a simple flowchart layout and its pic-code generated by our
tool. For each node k in the flowchart, there are two objects Nk and Bk in the pic-
code, where Nk is a small circle or square or diamond (depending on the type of

2.5 Generation of Pic-code for Layout

0

1

2

3

4

5

6 B6

B5

B4

B1

B0

B3

B2

(i) A simple flowchart; the boxes are
identifi ed in the order B6, B5, B3, B2, B4, B1, and B0.

hu=0.10; vu=0.10; bw=2*hu; bh=2*vu; hs=4*hu; vs=3*vu; f=0.1 #fill-factor
boxwid=bw; boxht=bh; ellipsewid=bw; ellipseht=bh
arrowht=vu/2; arrowwid=arrowht/2
w=5; h=18
B0: box wid w*hu ht h*vu at (0,0) invis filled f*0
N0: ellipse "0" with .n at B0.nw+(1*hu,0)
w = 1+4; h=15
B1: box wid w*hu ht h*vu with .nw at N0.n-(1*hu,vs) invis filled f*(0+0)
N1: box "1" with .n at B1.nw+(1*hu,0) invis
line from N1.n to N1.e to N1.s to N1.w to N1.n
w=1+1; h=5
B2: box wid w*hu ht h*vu with .nw at N1.n-(1*hu,vs) invis filled f*(1+0)
N2: box "2" with .n at B2.nw+(1*hu,0)
w = 1+1; h=2
B3: box wid w*hu ht h*vu with .nw at N2.n-(1*hu,vs) invis filled f*(1+0)
N3: box "3" with .n at B3.nw+(1*hu,0)
line -> from N2.s to B3.nw+(1*hu,0)
line -> from N1.s to B2.nw+(1*hu,0)
w=1+1; h=2
B4: box wid w*hu ht h*vu with .nw at B2.ne+(hu,0) invis filled f*(1+0)
N4: box "4" with .n at B4.nw+(1*hu,0)
line -> from N1.e to (N4.x,N1.e.y) to N4.n
x=B2.sw.x+1*hu; y=B2.sw.y; y2=y-vu
L: line from (x,y) to (x,y2)
line -> from B4.sw+(1*hu,0) to (B4.sw.x+1*hu,y2) to (x,y2)
w=1+1; h=5
B5: box wid w*hu ht h*vu with .nw at L.s-(1*hu,vu) invis filled f*(0+0)
line -> from L.s to L.s-(0,vu)
N5: box "5" with .n at B5.nw+(1*hu,0)
w = 1+1; h=2
B6: box wid w*hu ht h*vu with .nw at N5.n-(1*hu,vs) invis filled f*(0+0)
N6: ellipse "6" with .n at B6.nw+(1*hu,0)
line -> from N5.s to B6.nw+(1*hu,0)
line -> from N0.s to B1.nw+(1*hu,0)

(ii) The groupings of pic-code for the various boxes in (i).

Illustration of the pic-code generated by our toolFig. 4.

334 S. Kund u

node k) for the display of node k itself and Bk is an auxiliary box associated with
node k (as described in Section 2.1) for controlling the positioning of the nodes
within that box. As we process node k in the nesting-tree in the bottom-up fashion,
the block of lines of pic-code indicated in Fig. 4(ii) on the leftside margin starting
with the line "Nk: box ..." is created by piecing together the pic-code segments
generated previously for subtrees at node k. Although the specifi cation of Nk itself
refers to Bk, the pic-code "Bk: box wid ..." is generated only when we create
the block of pic-code for the parent box of Bk. The first three lines in Fig. 4(ii) is the
same for all flowcharts; here, hu = horizontal spacing unit and vu = vertical spacing
units. These lines of pic-code are created last along with the next two lines; in par-
ticular, B0 is always placed at position (0,0). The pic-code for N6 is determined here
first. Our layout-tool generates the pic-code that is simple and directly related to the
structure of the display, and is not optimized as such. This is done to simplify the
debugging of our tool and to allow easy manual modification for changing the dis-
play if such a need should arise. An extreme example of non-optimization of the pic-
code can be seen in parts like "f*(0+0)", which could be simplified to "0". Other
examples are the computations of box-width (w) and box-height (h), based on formu-
las in Section 2.2, before the pic-code line for each Bk.

We hav e described a simple and efficient technique for producing an elegant
layout of the flowchart of a semi-structured C-programs, including the choice of hid-
ing the detials within selected blocks. We assume there are no goto’s in the C-pro-
gram because of the diffi culties in defining a suitable notion of a block which is
meaningful in terms of program logic (block hierarchy) and hence the layout. Our
approach applies equally well to programs in other block-structured languages.

Aho, A. and Ullman, J.D., Principles of Compiler Design,
Publ. Co., Mass., 1977.

2. Beizer, B . Softwar etesting techniques, Van Nostrand Reinhold Comp., 1983.

3. IEEE Trans. Soft. Engg, 10(1984), pp. 352-357.
4. S., Reps, T., and Binkley, D ., Interprocedural slicing using depen-

dence graphs, "ACM Transactions on Programming Languages and Systems
12(1990), pp. 26-60.

5. Rainer , O . and Thomas, S., JAVAVIS: automatic program visualization with
object and sequence diagrams using the Java Debug Interface (S. Diehl, ed.) in
Software Visualization, LNCS #2269, pp. 176-190, 2002.

6. Battista, G.Di., Eades, P. , Tamassia, R., and Tollis, I.G. , Graph drawing , Prec-
ntice Halls, 1999.

3 Conclusion

References

Coreman, T. H ., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to
algorithms, The MIT Press, 2001.

 7.

 1. Addison - Wesley

Weiser , M ., Program slicing,
Horwitz,

A Modern Graphic Flowchart Layo ut Tool 335

A Flexible Authorization Framework for
E-Commerce�

Sushil Jajodia and Duminda Wijesekera

Center for Secure Information Systems, George Mason University,
Fairfax, VA 22030-4444, USA

{jajodia, dwijesek}@gmu.edu

Abstract. Past generations of access control models fail to meet the
needs of many applications such as business-to-business (B2B) applica-
tions and auctions. This paper describes several access control models
that have been recently proposed to address these emerging needs in-
cluding models that are policy-neutral and flexible in that they permit
enforcement of multiple policies on the same server, and models that
incorporate richer semantics for access control, such as provisions and
obligations.

1 Introduction

Traditionally, access control plays an integral part in overall system security.
Over the years, many different access control models, such as discretionary,
mandatory, and role based access control models have been proposed. Discre-
tionary access control is based on having subjects, objects, and operations as
primitives and policies that specify which subject get to execute what opera-
tions on desired objects. Mandatory access control is based on having clearance
levels for subjects and classification labels for objects as primitives and poli-
cies that grant accesses to subjects whose clearance levels dominate those of
the objects. Role based access control has not only subjects and objects but an
additional concept, called role, that is assigned a set of permissions. Subjects
obtain these permissions indirectly by playing appropriate roles. These models
have been used in the commercial and military domains, and implemented in
operating systems, database management systems, and object systems.

Advances in application areas bring new dimensions to access control mod-
els. The needs to support multiple access control policies in one security domain,
Internet-based transactions, and cooperating coalitions, have brought new chal-
lenges to access control. This paper gives an overview of some of the new access
control models that have been proposed in response.

We begin in section 2 by describing the motivation for access control mod-
els that are policy-neutral and flexible, followed by the Flexible Authorization

� This work was partially supported by the National Science Foundation under grants
CCR-0113515 and IIS-0242237.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 336–345, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Flexible Authorization Framework for E-Commerce 337

Framework (FAF) of Jajodia et al. [JSSS01]. Section 3 discusses the concept of
provisional authorizations that was introduced to meet the needs of providing
conditional authorizations in the area of Internet commerce. Section 4 addresses
another problem faced in applications such as the electronic banking area where
an access permission in return requires the grantee to fulfill some external obli-
gations, for example promise to pay back loans. Finally, Section 5 concludes the
paper.

2 Need for Flexible Access Control Models

Many access control models proposed over the years [DM89] have been developed
with a number of pre-defined policies in mind, and thereby have introduced a
sense of inflexibility. Two alternatives accommodate more than one access control
model simultaneously. The first is to have more than one access control mecha-
nism running at the same time, one for each policy. The second is to make access
control an application responsibility. The first alternative calls for every appli-
cation to be closely bound to its access control module, which decreases their
portability. The second alternative requires all applications to enforce a consis-
tent access control. Additionally, the responsibility of enforcing access control
is vested in applications that may not impose the same rigorous standards of
verification and testing imposed on system code.

Consequently, both alternatives are undesirable. This can be seen by con-
sidering a number of access control policies that have been in use over the
years [CFS94]. A popular policy is the closed world policy, where accesses that
cannot be derived from those explicitly authorized are prohibited. A rarely used
alternative is the open world policy, where accesses that are not explicitly denied
are permitted. Some policies include explicit prohibitions in terms of negative au-
thorizations. This, coupled with generalizations, specializations of these policies
to structures such as subject and object hierarchies [Bru92] yield numerous com-
binations. Hence, custom creation of policy enforcement mechanisms or passing
of these complications to applications is practically infeasible.

One of the solutions for this problem has been to develop flexible authoriza-
tion models [JSS97, JSSS01], where the flexibility comes from having an access
control model that does not depend on any policies or meta policies, but is
capable of imposing any of them specifiable in their syntax. One of the main
advantages of this approach is that access control can now reside within the
system, yet it is able to impose application specific policies. Given that there is
a need for flexible access control models, the following requirements would be
desirable:

Expressibility: It must be possible to model existing policies, such as denials
take precedence, and be able to model policies of emerging applications, such as
provisions and obligations (to be discussed shortly).

338 S. Jajodia and D. Wijesekera

Propagation
Module

policies, structure

Conflict Resolution

policies, rules

& Decision Module
Integrity Enforcement
Module

policies, rules

Granted/denied(o,s,+a) ?

Authorization Table History Table

object, subject, action object, subj., action, time

Fig. 1. FAF System Architecture

Decoupling Policies from Mechanisms: The primary need for flexibility
is to obtain policy-independent frameworks. Hence, policies expressible in such
frameworks must be enforceable using generic enforcement mechanisms.

Conflict Resolution: Having a flexible framework may lead to conflicting poli-
cies and, consequently, the framework must be able to facilitate their resolution.

Efficiency: Due to the high frequency of requests coming to access control
systems, their processing must be fast. Thus, efficient and simple mechanisms
to allow or deny access requests are crucial.

Next we describe one such flexible framework for access control and show
how it meets these requirements.

2.1 FAF - A Flexible Authorization Framework

The Flexible Authorization Framework (FAF) [JSSS01] is a logic-based frame-
work to specify authorizations as rules in a stratified rule base. The FAF archi-
tecture has four modules as shown in Figure 1.

The propagation module contains basic structures such as authorization sub-
jects and object hierarchies (for example, directory structures), and a finite set
of rules is used to derive authorizations stemming from structural properties,
referred to as propagation policies. Propagation policies specify how access per-
missions are to be propagated through subject and object hierarchies, and FAF
allows the system security officer (SSO) to write them. This freedom may result
in over specification, implying that the system may allow and deny the same
access request simultaneously. Therefore, the conflict resolution module imple-
ments conflict resolution policies to eliminate such inconsistencies, and these
policies are specifiable by the SSO. By applying decision policies, which is again
a set of rules written by the SSO, a decision will be made either to grant or
deny every authorization request. This stage has a meta-policy denying all per-
missions that cannot be specifically derived using the given set of rules. The
last stage consists of checking for integrity constraints, where all authorizations

A Flexible Authorization Framework for E-Commerce 339

that violate integrity constraints will be denied. This component lives outside
the scope of the rule base and is an external module used by FAF. FAF rules are
written using a number of predicates, such as cando, do, and dercando. Their
semantics are as follows:

1. A ternary predicate cando(o,s,a), representing grantable or deniable re-
quests (depending on the sign associated with the action), where o, s, and a
are object, subject, and a signed action term, respectively.

2. A ternary predicate dercando(o,s,a), with the same arguments as cando.
The predicate dercando represents authorizations derived by the system
using logical rules of inference (modus ponens plus rules for stratified nega-
tion [ABW88]).

3. A ternary predicate do, with the same arguments as cando, representing the
access control decisions made by FAF.

4. A 5-ary predicate done(o, s, r, a, t), meaning subject s with role r active has
executed action a on object o at time t.

5. Two 4-ary predicate symbols overAO and overAS. overAO takes as arguments
two object terms, a subject term and a signed action term. overAS takes as
arguments a subject term, an object term, another subject term, and a signed
action term. They are needed in the definition of some of the overriding
policies.

6. A propositional symbol error indicating violation of an integrity constraint.
It is a rule with an error head that must not have a body that is satisfiable.

An example policy governing the electronic trading is given by the following
FAF rules:

cando(item, s,+buy) ← in(item, Goods, ASH),
in(s, Buyers, ASH).

cando(item, s,+sell) ← in(item, Goods, ASH),
in(s, Sellers, ASH).

dercando(item, s,+a) ← cando(item, s,+a).
do(item, s,+a) ← dercando(item, s,+a)
do(item, s, −a) ← ¬do(item, s,+a).

error ← do(item, s,+buy), do(item, s,+sell).

The predicate in(x,y,“hierarchy name”) is used to specify properties of sub-
ject and object hierarchies AOH and ASH, respectively. In this example, ASH
consist of two directories, Buyers and Sellers. The object hierarchy AOH has
one class, Goods. Rules whose heads are dercando(o, s, a) literals are derivations
of authorizations. Thus, the first two rules state that a subject s is allowed to
buy or sell if it is in the appropriate directory. The next rule is a derivation.
The third rule resolves any potential conflicts and the fourth rule ensures the
completeness of access control decisions. The latter two have do(o, s, a) heads.
Therefore, in this short example, all derived positive permissions are allowed,
and all actions for which positive permissions cannot be derived are denied. The

340 S. Jajodia and D. Wijesekera

last rule state the integrity requirement that no subject is allowed to buy and
sell the same item.

Logically, FAF policies are stratified logic programs. They can express many
policies such as the closed, open, denials-take-precedence, and Chinese Wall pol-
icy [JSSS01]. In addition, to capture the evolving nature of policies and, con-
sequently, their impact on access control, FAF has been enhanced to add and
remove rules [JSSS01], and to revoke already granted accesses [WJPPH03]. It has
been further expanded to find ways in which constraints specified by important
classes of application-level policies such those used in role-based policies [AS00]
can be resolved inside the FAF rule enforcement engine [WJ03].

3 Adding Provisions to FAF

Traditional access control uses the model that a user makes an access request of
a system in some context, and the system either authorizes the access request or
denies it. However, today’s rapidly expanding environments, such as electronic
commerce, make such models that authorize or deny a request overly simplistic
and not accommodating. In practice, it is not unusual that decisions regarding
accesses depend on specific actions to be performed before the decision is taken
and on the guarantee that certain other actions will be taken after the access.
Because the two sets of actions are conceptually different and require different
management techniques, we distinguish the first and second sets of actions as
provisions and obligations, respectively.

As an example of provisional authorizations, consider purchase of goods for
credit over the Internet. A customer can purchase an item online subject to the
provision that she enters her credit card, is credit worthy, and agrees to pay the
lending institution back. Here, the access decision is based on three provisions:

Authentication
Processor

Role Checker

Access
Request

Authorization
Request

Provision-based
Authorization ProgramG

U
I

Object
Subject
Role

Action

Authorization
Information

Authorization
Processor

PEM OSM PVM

Client
Response

SSO

Fig. 2. Provision-Based Authorization Architecture

A Flexible Authorization Framework for E-Commerce 341

entering the credit card, finding the purchaser to be credit worthy, and signing
the purchase agreement. To capture such applications, provisional authorization
models have been proposed [JKS01, KH00].

Figure 2 shows the architecture of the provisional authorization system pro-
posed in [JKS01]. When users submit an authorization request, the system in-
vokes its authentication and role-checking modules that verify if the user is who
she claims to be and whether she is allowed to assume requested roles. Then, the
access request is passed on to the provision evaluation module to find the weakest
conditions under which the requested access can be honored. Then, the weakest
condition under which the access may be granted is passed to an order specifi-
cation module that yields a set of ordering constraints on the actions involved.
For instance, the ordering constraints may require that the name and address
be filled in before the social security number. Then, the ordering constraints are
handed off to a provision verification module to check if any conditions were pre-
viously fulfilled by the requester and, if so, simplifies the condition (and ordering
constraints) and waits for reduced conditions to be fulfilled by the requester be-
fore final authorization. Formally referred to as pASLL, the syntax is enhanced
to be of the following form (where Head ← Body is a FAF rule and φ is a
predicate external to FAF):

φ : Head ← Body.

The following set of rules models a pASLL specification for provisional ac-
cesses for an online store:

register(s,customer): cando(item,s,+buy) ←
in(contract, Contracts).

upGrade(s,prefCust): dercando(item,s,+buy) ←
cando(item, s, +buy).

payFees(s,$100): do(item,s,+buy) ←
cando(item, s, +buy).

payFees(s,$80): do(item,s,+buy) ←
dercando(item,s,+buy).

The first two rules allow a customer to purchase by registering and further
allows the customer to upgrade her registration to a preferred customer. Next
two rules state that the purchase price of an item is $100 for a non-preferred
cutomer and $80 for a preferred customer. Thus, a customer has the choice of
remaining in the non-preferred category and paying $100 or registering as a
preferred customer and paying $80 per item. Further, suppose there is a one-
time cost of $10 to register as a non-preferred customer and to pay a $20 fee for
upgrading. Then it is preferable to buy as a non-preferred customer for a one-
time-only purchase, but to become a preferred customer for multiple purchases.
This is so because the cost of the one-time purchase is $80 after paying a one-
time fee of $30, as opposed to paying $100 after paying a registration fee of $10.
pASLL provides this computation for its customers. Provisional authorizations
have been used in XML documents by Kudo et al. [KH00].

342 S. Jajodia and D. Wijesekera

4 Adding Obligations to FAF

As mentioned earlier, provisions alone are insufficient for current e-commerce
applications. As an example, consider a loan application and management (pay-
ment collection etc.) system. It allows users to initiate a loan application process
if they are already registered in the system. If they are not already registered,
they are given an opportunity to register with the system by supplying the nec-
essary information and, if this step is successful, they are given permission to
proceed with the loan application process. This kind of access can be modeled
by having provisions.

Continuing with the example, if a loan application is approved and the appli-
cant accesses funds, then it is the applicant is required to pay back the loan on a
regular basis. Thus the access to funds is approved conditional to the customer
bearing some obligations. To be able to ensure that the customer pays back the
loan as agreed, the system needs to be able to monitor such obligations and
take appropriate actions if the obligations are not met. In this work, we model
obligations as actions that must be fulfilled after the access control decision is
made[BJWW02b, BJWW02a]. Furthermore, if obligations are not fulfilled, the
system must be able to take compensatory actions. For these purposes, we in-
troduce compensatory actions.

Extending FAF to incorporate provisions and obligations require another
syntactic extension. We represent po by two disjoint sets of predicate symbols
P and O that are also disjoint from the set of predicate symbols Q allowed in
the policy rule specification language. The sets of variable and constant symbols
V and C admitted in the predicates are the same used in the policy rules. The
predicate symbols in P and O may be of any nonnegative arity.

An atom is either one of the symbols �, ⊥, or a predicate Pi(t1, . . . , tk)
with Pi ∈ P or Oi(t1, . . . , tk) with Oi ∈ O and each ti is either a constant
from C or a variable from V. When not clear from the context we distinguish
these atoms from those in the policy, by calling them PO-atoms. Then, a PO-
formula is either a PO-atom, a disjunction of PO-formulas, or a conjunction of
PO-formulas. A PO-atom is ground if it is variable-free, and a PO-formula is
ground if each of the atoms in the formula is ground. An interpretation I of a
PO-formula is a mapping from each ground atom to the constant True or False,
with the atoms � and ⊥ mapping to the constants True and False, respectively.
The satisfaction of a PO-formula is defined inductively on the structure of the
formula, as usual, considering ground atoms as a basis, and the conjunction and
disjunction operators that appear in the formula. Later we give a detailed syntax
for specification of obligations, here simply given as a predicate.

For each policy rule Ri in R there is an associated PO-formula, denoted by
φRi

, representing the po for that rule. We also impose the intuitive constraint
that each variable appearing in φRi must appear in the body of Ri. Note that
since these predicates are not part of the policy rule specification (the datalog
program), they do not appear in its model MR. An abstract FAF specification
with provisions and obligations are shown in Figure 3.

A Flexible Authorization Framework for E-Commerce 343

Rule PO-formula
(R1) Q1(x) ← Q2(x, y), Q3(y) O1(s, x, y)
(R2) Q2(a, b) ← P1(b)
(R3) Q3(b) ← �
(R4) Q1(y) ← Q4(z, y, c) P2(y, a) ∧ P3(a) ∧ O2(y, c)
(R5) Q4(c, a, c) ← �

Fig. 3. A set of rules with po

Continuing with the loan example, compensating actions could range from
decreasing the trustworthiness of the user, replacing unfulfilled obligations with
(perhaps more costly) alternatives, and/or taking punitive actions such as in-
forming relevant authorities of the default or terminating the policy in-force.
In order to replace obligations with more stringent ones, the user needs to be
informed of changes in contractual obligations. Similarly, for obligations fulfilled
as promised, it may be appropriate that a (positive) compensating action such as
acknowledging payment of monthly payment, and perhaps rewarding the user’s
good deeds by upgrading her trustworthiness. Before explaining how we can
associate these actions with obligations, we introduce minor extensions to the
syntax of obligation expressions.

As syntactic sugar, we allow [for x = 1 to n O(x)] to be an obligation when
O(x) is an obligation definition with a free integer variable x and n is an integer.
In addition, we specify [If p then O] to be a conditional obligation provided
that p is a predicate formed by Boolean combinations of predicates, and O is
an obligation. The semantics of [If p then O] is given by the evaluation of the
condition p: if it evaluates to true, then obligation O must be fulfilled, otherwise
not. The truth of p is evaluated using classical truth tables.

In order to specify the actions associated with fulfillment and defaulting
we attach to an obligation expression a fulfillment action specification and a
defaulting action specification, respectively. The reason for attaching the action
specification to a possibly complex obligation expression rather than to each
atomic obligation is easily explained by an example. Suppose a policy decision
was taken upon satisfaction of a VPOS containing a set of provisions and two
obligations, the first requiring a payment by January 1, 2003 and the second
a payment by February 1, 2003. Defaulting, and in particular, fulfilling actions
will most likely be different for the single obligations and for the global one
(the conjunction of them). For example, a reward may be given to the user if all
the obligations were honored, while none is given for each single one. We propose
the following syntax to associate fulfillment and defaulting clauses to obligations:

OBL ::= [OBL Name
Definition: obligationExpression
FUL: ActionList
DEF: 〈obligationExpression, ActionList〉
]

ActionList ::= [Action List: {A1, . . . , An}]

344 S. Jajodia and D. Wijesekera

In order to specify consequences of accepting an obligation and consequently
monitoring its fulfillment by the system, we introduce the notion of action. Ac-
tions are activities performed by the system in order to manage policy rules and
to monitor obligations. Common actions are those involving sending information
to users or to other system components.

We represent actions by special predicates having any number of parame-
ters. Sending actions are specified by the predicate send with at least three, but
possibly more parameters. The first parameter is the action name, the second
parameter is the recipient’s identity and the third is the time at which the ac-
tion is to be executed. Obligations and action terms may contain both variables
and constants (of the appropriate type) as parameters. An example of sending
action is send(loanCancelNotice, system, Jim Lee, 2003-Jan-14:07:30,
loan451), specifying that the system should send a message loanCancelNotice
at 7:30 on 2003-Jan-14 to the customer Jim Lee to inform that his loan iden-
tified by loan451 was cancelled. The receive predicate becomes true as the ef-
fect of action send. Hence, in the example, the action send(loanCancelNotice,
system, Jim Lee, 2003-Jan-14:07:30, loan451) will make true the predicate
receive(loanCancelNotice, system, Jim Lee, 2003-Jan-14:07:30, loan451).
This semantic interpretation implies that actions take effect immediately - i.e.,
action propagation takes no time. We refer the reader to [BJWW02b, BJWW02a]
for detailed examples.

5 Conclusion

In recent years, researchers and developers have devoted a great deal of energy on
topics such as firewalls, incorporation of encryption on communication protocols,
and intrusion detection systems. However, there is a growing realization that
while these are critical to building secure systems, they do not provide all the
answers and, consequently, the focus is shifting toward host and application
security. We need to accelerate our research and work with vendors to develop
the practical uses of our solutions.

References

[ABW88] K.R. Apt, H. Blair, and A. Walker. Towards a theory of declarative
knowledge. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann, San Mateo, 1988.

[AS00] G.-J. Ahn and R. Sandhu. Role-based authorization constraints specifica-
tion. ACM Transactions on Information and Systems Security, 3(4):207–
226, November 2000.

[BJWW02a] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Obligation mon-
itoring in policy management. In Proc. 3rd International Workshop on
Policies for Distributed Systems and Networks (POLICY 2002), pages
2–12, June 2002.

A Flexible Authorization Framework for E-Commerce 345

[BJWW02b] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and
obligations in policy rule management and security applications. In Proc.
28th International Conference on Very Large Data Bases, pages 502–513,
August 2002.

[Bru92] H. Bruggemann. Rights in an object-oriented environment. In
C. Landwehr and S. Jajodia, editors, Database Security V: Status and
Prospects, pages 99–115. North-Holland, Amsterdam, 1992.

[CFS94] S. Castano, M. Fugini, and P. Samarati. Database Security. Addison-
Wesley, Wokingham, 1994.

[DM89] J. Dobson and J McDermid. A framework for expressing models of secu-
rity policy. In Proceedings of IEEE Symposium on Security and Privacy,
pages 229–239, May 1989.

[JKS01] S. Jajodia, M. Kudo, and V. S. Subrahmanian. Provisional authoriza-
tions. In Anup Ghosh, editor, E-Commerce Security and Privacy, pages
133–159. Kluwer Academic Press, Boston, 2001.

[JSS97] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A logical language for
expressing authorizations. In Proceedings of IEEE Symposium on Security
and Privacy, pages 31–42, Oakland, CA, May 1997.

[JSSS01] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flex-
ible support for multiple access control policies. ACM Transactions on
Database Systems, 26(2):214–260, December 2001.

[KH00] M. Kudo and S. Hada. Xml document security based on provisional
authorizations. In Proceedings of the 7th ACM Conference on Computer
and Communications Security, pages 87–96, November 2000.

[WJ03] D. Wijesekera and S. Jajodia. Obtaining constraint-compliant autho-
rization lists within the flexible authorization framework. Submitted for
publication, February 2003.

[WJPPH03] D. Wijesekera, S. Jajodia, F. Parisi-Presicce, and A. Hagstrom. Removing
permissions in the flexible authorization framework. ACM Transactions
on Database Systems, 2003.

Efficient Algorithms for Intrusion Detection

Niranjan K. Boora1, Chiranjib Bhattacharyya2, and K. Gopinath2

1 Dept. of Electrical Engineering,
2 Dept. of Computer Science & Automation,
Indian Institute of Science, Bangalore, India

Abstract. Detecting user to root attacks is an important intrusion de-
tection task. This paper uses a mix of spectrum kernels and probabilistic
suffix trees as a possible solution for detecting such intrusions efficiently.
Experimental results on two real world datasets show that the proposed
approach outperforms the state of the art Fisher kernel based methods
in terms of speed with no loss of accuracy.

1 Introduction

Intrusion[1] can be defined as an attempt to either (i) access unauthorized in-
formation, or (ii) manipulate information, or (iii) render a system unreliable
or unusable. Such intrusions can be further categorized into Denial of Service,
User to Root Attacks, Remote to User Attacks, and Probing[2]. In this paper,
we address the problem of detecting User to Root attacks. This attack happens
when an unauthorized user gets root privileges. To detect such attacks, it maybe
useful to study system audit data. System audit data can be, for example, an
ordered sequence of system calls, also known as system call traces, made by a
privileged program accessible only by the root. The underlying assumption in
studying audit data to detect user to root attacks is that privileged programs
would behave differently when the system is compromised. The intrusion detec-
tion problem can be posed as that of deciding whether a given system call trace
is due to normal mode of operation or that of a compromised system.

Given historical data, one can use various pattern recognition techniques to
design classifiers to solve such problems. In the context of this paper, such classi-
fiers will be called Intrusion detection systems (IDS) ([3, 4]). Designing such IDS
for system audit data can be posed as the problem of classifying sequences, which
has a rich literature. Most methods for sequence classification are based on fitting
probabilistic models, like Markov Chains, Hidden Markov models (HMMs) etc,
to model the class-conditional densities, and then the likelihood is used to com-
pute the class label of a given system trace. However such methods do not yield
good discriminators for intrusion detection datasets. Recently [5] (see references
therein for other approaches) proposed to use support vector machines(SVMs)
along with HMMs to classify system call traces. This proposal uses a scheme
suggested by [6] for classifying protein sequences. This method is accurate but
extremely slow in deciding the class of a given system trace.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 346–352, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Algorithms for Intrusion Detection 347

The main contribution of the paper is to examine two methods, namely Spec-
trum Kernels with SVMs [7] and Probabilistic Suffix Trees (PSTs)[8] proposed
in the context of computational biology. These schemes do not attempt to model
the class conditional densities very accurately yet they have good discriminative
power; they are also fast. Our experiments on two real world datasets show that
a hybrid of these two approaches is faster and more accurate.

The paper is organized as follows. In the next section, we discuss Fisher
kernels. In Section 3, we discuss Spectrum kernels. In Section 4, PSTs and the
hybrid method is outlined. In Section 5, we discuss experimental results.

2 Fisher Kernels

2.1 Hidden Markov Models

Hidden Markov Model (HMM) ([9, 10, 11]) is a generative model to handle vari-
able length strings, i.e., the traces of system calls. HMM is characterized by the
transition, emission, and initial probabilities. Let V = {v1, v2, . . . , vM} be the set
of distinct system calls and S = {s1, s2, . . . , sN} be the set of states. The Hidden
Markov Model is represented as λ = {A, B, π}, where A = {aij}, B = {bj(k)},
and π = {πi}. Let a trace be represented as O = {O1, . . . , OT }.

P (X(t + 1) = sj |X(t) = si) = aij

P (O(t) = vk|X(t) = sj) = bj(k)
P (X(1) = si) = πi

where X(t) = si represents that the model is in state si at time t and O(t) = vl

represents, at time t the system call observed is vl. HMM is a powerful prob-
abilistic model and is well suited to fit the variable length system call traces.
Using Baum-Welch algorithm, one can efficiently learn HMMs from a given set
of sequences.

2.2 Support Vector Machines

The data for 2 class classification problem is often specified by a dataset D =
{(xi, yi)|xi ∈ Rn, yi ∈ {1, −1} i = {1, 2, . . . , l}} which consist of observation
vectors xi, and their class labels yi. Given D, the learning problem is to find a
decision function which will predict y given a novel observation x.

Support Vector Machines (SVMs) ([12]) solves the learning problem by posing
it as the following convex quadratic optimization problem:

maxµi

∑l
i=1 µi − 1

2

∑l
i,j=1 µiµjyiyjK(xi, xj)

subject to 0 ≤ µi ≤ C, ∀i∑l
i=1 µiyi = 0 (1)

The function K : Rn × Rn → R is called the kernel function and should be posi-
tive definite[12]. Let {µ∗

i } be the optimal values for the problem (1). The decision
function is constructed from {µ∗

i } as follows f(x) = sign(
∑

xi∈S µ∗
i yiK(xi, x) +

348 N.K. Boora, C. Bhattacharyya, and K. Gopinath

b∗) where S = {xi : 0 < µ∗
i < C} is the set of support vectors. This powerful

classification tool is applicable only to real valued data. However this method-
ology can still be used if a kernel function can be defined over any two pair of
sequences. Recently some progress in this direction has been made in the area
of computational biology [13, 7, 14] which can be applied for designing IDS.

2.3 Fisher Score

The Fisher score is a vector of parameter derivatives of log-likelihood of a prob-
abilistic model. The Fisher score is given by

UX = ∇Θ log P (X|λ) (2)

If we consider the probabilistic model to be HMM (λ), the parameters or
sufficient statistics Θ becomes the set of transition and emission probabilities
and each component of UO is a derivative of the log-likelihood probability of
the sequence O, given the parameters of the HMM. The vector U can be used
to represent each sequence O by a vector. Using this vectorial representation,
various kernels can be defined, e.g. K(Oi, Oj) = U(Oi)T U(Oj).

The components of this vector associated with the emission probabilities can
be computed as [13] Ukj = Ej(k)

bj(k) − ∑M
m=1 Ej(m), where Ej(k) is the number of

times symbol k is observed in state j. Likewise, for transition probabilities, the
components are calculated as Vij = Tij

aij
− ∑N

k=1 Tik where Tij is the number of
times transition to state j is taken from state i.

3 Spectrum Kernel

Spectrum kernel is a kernel function [7] defined on the input space O of all finite
length sequences of characters from an alphabet A of size |A|. Given a number
k ≥ 1, the k-spectrum of a sequence is the set of all k-length (contiguous) sub-
sequences that it contains. The k-spectrum kernel is given as Kk(Oi, Oj) =
Φk(Oi)T Φk(Oj) The feature map is defined from O to R|A|k as Φk(Oi) =
(Φa(Oi))a∈Ak where Φa(Oi)=number of times a occurs in Oi and Ak is the
set of all possible sequences of length k of an alphabet of size |A|. In this paper,
the normalized kernel Kk is used

KNorm
k (Oi, Oj) =

Kk(Oi, Oj)√
Kk(Oi, Oi)

√
Kk(Oj , Oj)

. (3)

For computing the kernel values, one needs to build a suffix tree for the collec-
tion of k-length subsequences of Oi and Oj , obtained by moving a k-length sliding
window across each of Oi and Oj . At each depth-k leaf node of the suffix tree,
store two counts, one representing the number of times k-length subsequence of
Oi end at the leaf and the other count represents k-length subsequence of Oj

end at the same leaf. Once the suffix tree is constructed, the kernel values are
obtained by traversing the suffix tree and computing the sum of the products of
the counts stored at the depth-k leaf nodes.

Efficient Algorithms for Intrusion Detection 349

4 Probabilistic Suffix Trees

A PST is an n-ary tree whose root node gives the probability of each symbol
of the alphabet while the nodes at subsequent levels give next-symbol proba-
bilities conditioned on a combination of one or more symbols having been seen
earlier. The probabilities are estimated by relative frequency-counts of symbol
occurrences in the training sequences. The tree depth is kept to a minimum by
excluding nodes that do not provide stochastic information not already given by
existing nodes. Each edge in the tree is represented by a symbol of the alphabet.
No two edges emanate from any node having the same symbol, which bounds
the degree by the alphabet size. Each node is assigned a string which can be
generated by traversing up the tree from that node to the root. Thus PSTs are
characterized by the parameter L, the maximal length of a possible string in the
PST; in other words, the memory length of the PST. For a more detailed review
on PSTs see [14].

4.1 SVM with Spectrum Kernel and PST

We propose a hybrid method which is faster than both Spectrum kernel and
PSTs. As a first step, we train SVM with Spectrum Kernel to obtain the support
vectors. To test a new trace O (to check whether it is normal or abnormal), n
kernel values are to be computed, if there are n support vectors. The computation
of each kernel value, K(O, Oi), where Oi is the ith support vector, proceeds by
first constructing a suffix tree, then traversing the tree to evaluate the kernel
value. The time required in building the suffix tree dominates the prediction time
for each sequence. It would be thus interesting to explore the idea of building
2 PSTs rather than n suffix trees and use these 2 PSTs to make predictions.
The underlying intuition is that the support vectors have enough discriminatory
information which could be efficiently represented by suffix trees. Two PSTs are
trained on the support vectors. A normal PST model is trained using support
vectors that are from normal class and an abnormal PST model is trained using
support vectors that are from the other class. The classification of test traces is
carried out by calculating the log-likelihood with respect to the two models and
deciding accordingly.

5 Experimental Results

A good IDS should be able to classify all intrusions correctly. This is charac-
terized by Hit Rate (HR) defined as probability of IDS correctly classifying a
trace that belongs to the abnormal class. It can be measured on a test set by
ca/la where la is the number of abnormal traces in the test set and ca is the
number of such traces correctly classified. Having a high HR means having a low
false negative error. Another requirement of a IDS is it should have a low False
Alarm (FA) rate, defined as the probability of misclassifying a normal trace. It is
measured on a test data by mn/ln where ln is the total number of normal traces

350 N.K. Boora, C. Bhattacharyya, and K. Gopinath

Table 1. SVM with Spectrum kernel and PST results as spectrum kernel length SKL

is varied from 5 to 30 in steps of 5

MIT UNM
HR 1 SKL={10,15,20,25} All values of SKLs
FA 0 All values of SKLs All values of SKLs

t 0.5 -1 milliseconds 0.3 - 1 milliseconds

Table 2. Anomaly detection using HMM + Fisher score + SVM. The testing times
are reported for all values of hidden states (HS) from 5 to 30 in steps of 5. The row
corresponding to FA, under MIT or UNM column with the pattern x: y means FA
achieved for HS equal to x. HS varies from 5 to 35 in steps of 5

MIT UNM
HR 1 {5,10,15,20,25,35} {10,15,20,25,30,35}

HR 0.998004 30 5
FA 0 {10,20,25,30} -
FA 5: 0.003698, 15: 0.009615 {5,10,15,20,30}: 0.000465

35: 0.002219 {25,30}: 0.002327
t 8 -140 milliseconds 9 -135 milliseconds to

Table 3. PST results as L varied from 5 to 30 in steps of 5

MIT UNM
HR 0.998004 {5,10,15} All values of L

HR 1 {20,25,30} -
FA For all L, 0.002959 For all L, 0.002792
t 0.5 − 2 milliseconds 0.3 − 3 milliseconds

while mn is the total number of such traces which are misclassified. A good IDS
should be able to quickly decide the class of a trace. We propose to measure this
by the average time t taken to classify a trace over all the traces in a test set.

For our experiments, we have chosen two system call datasets, namely the
MIT Live lpr and the UNM Live lpr that are publicly available [15]. In the exper-
iments, 0.5 fraction of dataset (0.5 fraction of normal traces and 0.5 fraction of
abnormal traces) was randomly selected for training and the remaining fraction
was used as a test set.

The experimental results for SVM with spectrum kernel and PST in terms
of the three parameters HR, FA, t are presented in Table 1. For comparison,
experimental results are also given for HMM + Fisher score + SVM in Table 2
and PSTs in Table 3. The parameter C (see equation 1) in SVMlight software
is set to 100 throughout this work. All the experiments have been done on a
computer system powered by a Intel 2.4GHz processor with 1GB RAM. The
code for Spectrum kernel and PST have been written in C language. SVMlight

Efficient Algorithms for Intrusion Detection 351

software [16] has been used for support vector machines and GHMM software
[17] for HMM modeling.

The parameter L associated with PST was varied from 5 to 30 in steps of 5.
The best choice was L = 10 and SKL= 10. In this case, HR = 1, FA = 0. As
the tables show, one can obtain the same accuracy for other methods, but the
hybrid of Spectrum kernel and PST has far smaller value of t. This demonstrates
that the proposed method is quicker than the other state of the art methods.

6 Conclusions

A hybrid of spectrum kernel and probabilistic suffix trees outperforms state of
the art Fisher kernel methods. The accuracy of the proposed classifier is same as
that of the Fisher kernel. The utility of probabilistic suffix trees and spectrum
kernels as possible solutions to intrusion detection tasks is also demonstrated.

References

1. J. P. Anderson, “Computer security threat monitoring and surveillance,” tech. rep.,
James P Anderson Co., Fort Washington, Pennsylvania, April 1980.

2. K. Kendall, “A database of computer attacks for the evalutation of intrusion de-
tection,” Master’s thesis, MIT, June 1999.

3. S. Axelsson, “Intrusion detection systems: A survey and taxonomy,” tech. rep.,
Department of Computer Engineering, Chalmers University of Technology, 2000.

4. A. Sundaram, “An introduction to intrusion detection,” ACM Crossroads Student
Magazine, 1996.

5. J. Baras and M. Rabi, “Intrusion detection with support vector machines and gen-
erative models,” tech. rep., Institute for Systems Research, University of Maryland,
2002.

6. T. Jaakkola and D. Haussler, “Using the Fisher kernel methods to detect remote
protein homologies,” in Proceedings of the Seventh International Conference on
Intelligent Systems for Molecular Biology, pp. 149–58, 1999.

7. C. Leslie, E. Eskin, and W. Stafford, “The spectrum kernel: A string kernel for SVM
protein classification,” in Proceedings of the Pacific Symposium on Biocomputing,
pp. 564–575, Jan 2002.

8. D. Ron, Y. Singer, and N. Tishby, “The power of amnesia: learning probabilistic
automata with variable memory length,” Machine Learning, vol. 25(2-3), pp. 117–
149, 1996.

9. L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in
speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

10. L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models,” IEEE
ASSP Magazine, pp. 4–15, January 1986.

11. R. Duggad and U. B. Desai, “A tutorial on hidden Markov models,” tech. rep.,
Electrical Department, Indian Institute of Technology, Bombay, 1996.

12. C. J. C. Burges, “A tutorial on support vector machine for pattern recognition,”
in Data Mining and Knowledge Discovery, vol. 2, pp. 121–167, 1998.

13. P. Pavlidis, T. S. Furey, M. Liberto, D. Haussler, and W. N. Grundy, “Promoter
region-based classification of genes,” in Proceedings of the Pacific Symposium on
Biocomputing, pp. 151–163, January 2001.

352 N.K. Boora, C. Bhattacharyya, and K. Gopinath

14. G. Bejerano and G. Yona, “Variations on probabilistic suffix trees: statistical mod-
eling and prediction of protein families,” Bioinformatics, vol. 17, no. 1, pp. 23–43,
2001.

15. UNM, Department of Computer Science, “Computer immune systems homepage,”
http://www.cs.unm.edu/immsec/systemcalls.htm.

16. T. Joachims, “Making large-scale SVM learning practical,” Advances in Kernel
Methods - Support Vector Learning, B. Sch+lkopf and C. Burges and A. Smola
(ed.), 1999.

17. M. P. I. f. M. G. Algorithmics group, “General hidden Markov model library
(ghmm),” http://sourceforge.net/projects/ghmm/.

Proxi-Annotated Control Flow Graphs:
Deterministic Context-Sensitive Monitoring for

Intrusion Detection

Samik Basu1 and Prem Uppuluri2

1 Dept. of Computer Science,
Iowa State University Ames IA 50011-1040

sbasu@cs.iastate.edu
2 Dept. of Computer Science and Electrical Engineering,

University of Missouri Kansas City MO 64110
uppulurip@umkc.edu

Abstract. Model or specification based intrusion detection systems have been ef-
fective in detecting known and unknown host based attacks with few false alarms
[12, 15]. In this approach, a model of program behavior is developed either man-
ually, by using a high level specification language, or automatically, by static or
dynamic analysis of the program. The actual program execution is then monitored
using the modeled behavior; deviations from the modeled behavior are flagged as
attacks. In this paper we discuss a novel model generated using static analysis of
executables (binary code). Our key contribution is a model which is precise and
runtime efficient. Specifically, we extend the efficient control flow graph (CFG)
based program behavioral model, with context sensitive information, thus, pro-
viding the precision afforded by the more expensive push down systems (PDS).
Executables are instrumented with operations on auxiliary variables, referred to
as proxi variables. These annotated variables allow the resulting context sensitive
control flow graphs obtained by statically analyzing the executables to be de-
terministic at runtime. We prove that the resultant model, called proxi-annotated
control flow graph, is as precise as previous approaches which use context sensitive
push-down models and in-fact, enhances the runtime efficiency of such models.
We show the flexibility of our technique to handle different variations of recursion
in a program efficiently. This results in better treatment of monitoring programs
where the recursion depth is not pre-determined.

1 Introduction

Intrusion detection systems (IDS) have shown promise in detecting a large number of
host based attacks [4, 12, 15]. They can be categorized into (a) misuse based systems
[4, 13], which detect previously known attacks by monitoring the system behavior, (b)
anomaly based systems [9, 2, 11] in which machine learning or expert systems learn
a system’s behavior and attacks are detected as deviations of actual program behavior
from learnt behavior, and, (c) specification/model based systems [7, 12] in which the
intended program behavior is modeled and attacks are detected as deviations from this
behavior. Out of these approaches, misuse based approaches cannot detect unknown

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 353–362, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

354 S. Basu and P. Uppuluri

attacks as they depend on a rule base of known attacks. On the other hand, while, anomaly
based approaches can detect unknown attacks, they may result in large number of false
alarms, since legitimate but previously not-learnt behavior can be flagged as an attack.
Specification based approaches seek to combine the advantages of both by modeling
program behavior. However, traditional specification based approaches [14, 12], in which
a domain expert specifies legitimate program behavior using a high level specification
language, are not scalable: manual specifications are tedious to write for large programs
[8]. Moreover, just as any manually written software can have semantic errors, so can
specifications. To counter the problems due to manually written specifications, recent
research efforts [16, 8] have focused on automatically developing program behavioral
models (PBMs) through static analysis of programs.

From a practical perspective, since the source codes of programs are not always
available, such research efforts have focused on developing PBMs by analyzing the ex-
ecutables. These models are typically represented in terms of the system calls executed
by the programs [8, 16]. The key requirements of such models are precision and runtime
efficiency. The former requires that the models capture as much context information
about the programs as possible in order to prevent false alarms. Moreover, without con-
text information, models represent a superset of the corresponding programs’ behavior.
Consequently, attacks which exploit the gap between the modeled superset and the ac-
tual program behavior (called impossible path attacks) escape detection. In addition, the
model should be efficient at runtime to be able to detect attacks before they can cause
damage to the system. In this paper, we present such a program behavioral model.

Driving Problem. PBMs can be classified based on their precision in capturing program
behavior. Control flow graphs (CFG) or finite state machines (FSM) represent the sim-
plest form of such models. While being efficient [1], they are imprecise: CFG/FSM’s
accept strings in regular languages while programs with procedure calls/returns fall in
the class of context-free languages. Hence, they allow the impossible path attacks [16].

To increase precision, push-down system (PDS) have been considered. In such a
model, the context information of each call, i.e., the return location is recorded explicitly
in a pre-defined stack. However here, the precision comes at the cost of poor runtime
efficiency [16, 8]. Inefficiency is due to the presence of conditional control paths in the
programs; it is not possible to judge statically which of the many paths a program will
take and as such the conditional controls in a program are treated as non-deterministic
branch points in the program.

To get both precision and efficiency, [8] proposed the Dyke model which removes
non-determinism in PDSs. Specifically, [8] instruments the executables by flanking each
call site with two distinct null system calls. Program behavior is then modeled as a CFG
in terms of the system/procedure calls made by the program – the CFGs now include the
null system calls. At runtime, execution of a null call precisely identifies the call site,
thus determinizing the monitoring mechanism. Intuitively, a Dyke model can be viewed
as a PDS with additional calls at each call site.

While the Dyke model is precise, in the worst case if the program path is of size
h (size measured in terms of number of system calls made), it requires execution of
an additional 2 ∗ h number of system calls. Since, interception of system calls in the
kernel (the best case) causes about 20% [7] overhead over the actual execution time

Proxi-Annotated Control Flow Graphs: Deterministic Context-Sensitive Monitoring 355

of the system call, increasing their number in a program will increase this overhead.
Moreover, being a variation of the PDS model, Dyke model requires pre-defining the
size of a stack to record null call information. In the event of recursion, the stack may
overflow resulting in the loss of context information leading to imprecise monitoring.

Our Solution. In this paper, we present a novel model for capturing program behavior
in terms of system and procedure calls. The central theme of our approach is to add
precision to simplicity. Specifically, we use CFGs to represent programs. To add context
to CFGs as well as determinism (and hence efficiency), we instrument the executables
with updates to a set of variables called proxi variables. We call such a model, proxi-
annotated control flow graph (PCFG). We prove that a PCFG is as precise as a PDS
model and is equivalent to a Dyke model. We claim that, PCFGs make more efficient
use of stacks (runtime memory usage) than PDS/Dyke models by using an array of proxi
variables. In particular, except for certain types of recursion, these arrays degenerate to
simple variables.

Organization. In Section 2, we present a detailed study of existing modeling mecha-
nisms: CFG (Section 2.1), PDS (Section 2.2) and Dyke (Section 2.3). PCFG model is
introduced in Section 3 followed by its comparative study with Dyke model (Section 4),
with specific emphasis on stack usage by the two models.

2 Background and Related Work

2.1 Control-Flow Graphs

A control flow graph captures the behavior of a procedure. In the context of host-based
intrusion detection systems, a control flow graph is typically represented by a set of states,
and transition relations between pairs of states labeled by system calls and procedure
calls [16]. It has a start state corresponding to the the entry point of the procedure. It
can have multiple exit states due to the presence of multiple return statements in the
procedure.

Definition 1. A control flow graph (CFG) for a procedure p is a tuple
CFGp = (S, s0, SE , −→, L) where S is the set of states, s0 ∈ S is the start state of p,
SE ⊆ S is the set of its exit states, −→ is the set of labeled transitions ⊆ S ×L∪{ε}×S
and L ranges over set of system calls and procedure invocations. �

Figure 1(a) shows CFGs for a program with a main, line and end procedures. The
procedure line can be invoked from two different call sites, one each in main and end.
Note that the CFGs for individual procedures do not represent the inter-procedural control
flow of the program; the reason being transitions from caller to the callee and vice versa
are not explicitly present in the CFGs. A naive approach to overcome this problem
is to in-line all the called procedures; a call transition is replaced by the CFG of the
corresponding called procedure. Typically, such in-lining mechanism results in large
global CFG leading to significant increase in space usage. Further, in-lined CFG fails to
represent behaviors of recursive programs.

Another technique, which is employed often, is to connect the local CFGs by intro-
ducing new transitions (a) from the caller state (with outgoing call transition) to the start

356 S. Basu and P. Uppuluri

end

line

close

write

end

write

write

line

close

main

line

closeclose

write
write

write

line

main

line

end

ε

ε
ε

ε

ε

ε

pop A
close

write
write

write

line

main

line

end

closeA

B

C

push A

push Apush B

push C

pop C

pop B

(a) (b) (c)

Fig. 1. (a) Local CFG, (b) global CFG with inter procedural transitions and (c) push and pop
operations for PDS model [10]

state of the called procedure and (b) from the exit states of a procedure to all the states
which has a incoming transition labeled by call to the procedure under consideration.
This technique overcomes the problem of in-lining; size of the global CFG is on the
order of the sum of sizes of local CFGs. Figure 1(b) presents global CFG constructed by
introducing inter-procedural ε-transitions and discarding call-transitions from the call
site to the return locations in the local CFGs in Figure 1(a).

Context Insensitivity in CFG. In a global CFG model, impossible paths can occur since
it does not keep track of the location to which a program control should return once
a procedure exits, i.e., context information of a call is lost. Such context insensitivity
incorrectly classifies paths with unmatched calls and returns as valid execution sequence
in the program. An example of such an impossible path in the global CFG is illustrated
using dotted lines in Figure 1(b). Call from main to line is followed eventually by a return
from line to end without any intermediate returns to main and calls to end. CFG model
fails to classify the transition from exit state of line to return location at end as incorrect
and hence erroneous program behavior goes un-noticed. Observe that, an impossible
path results from one/more bad edges from the callees exit state to the return location
of one of its potential callers.

A malicious user, manipulating the executing program, can use impossible paths in
the model as an exploit which cannot be detected by the model [10].

2.2 Context Sensitive Model: Push-Down Systems

Push-down systems [3, 5, 6] (PDS) are deployed to detect impossible paths in a program
model. A PDS captures, in addition to the intra-procedural control structure, the correct
call-return pattern (context) of the program under normal circumstances. This is achieved
by explicitly keeping track of the execution stack of the program whose behavior is being
modeled by the PDS. Unlike CFG transition, which is between a pair of states, a PDS
transition represents the change in the execution stack of the program. Specifically, given
a top-of-stack, a PDS transition relation shows the possible ways the stack changes once
the statement at the current top-of-stack is executed.

Proxi-Annotated Control Flow Graphs: Deterministic Context-Sensitive Monitoring 357

Definition 2. A push-down system for a procedurep is a tuple PDSp = (S, s0, SE , ↪→, L)
where S is the set of states in p (also referred to as stack symbol set), s0 ∈ S is the start
state, SE ⊆ S is the set of exit states, ↪→ is the labeled push-down transition relation
⊆ S × L ∪ {ε} × S∗ and L is the set of system calls and procedure calls. �

A PDS transition can be classified as follows (s is the current top-of-stack):

– s
ε

↪→ {}: s ∈ SE is the exit state of a procedure (pop-transition).

– s
callp
↪→ {t, r}: s ∈ S ∧ SE is call site of a procedure p. The top-of-stack, s, is

replaced by start state t of p and the return location r in the caller (push-transition).
– s

a
↪→ {t}: s ∈ S ∧ SE is the top-of-stackand t is the new top-of-stack.

[10] proposed a technique for run-time monitoring using PDS. Whenever the moni-
tored program makes a jump from one procedure to another via a call, the return location
in the caller is pushed in a stack (we will refer to this as monitor-stack). On the other
hand, if the monitored program exits a procedure and goes to a state in another proce-
dure, the execution is deemed correct only when the destination state is present in the top
of the monitor-stack. In the event the transition is allowed, the top of monitor-stack is
popped out. Going back to the example in Figure 1(c), every inter-procedural transition
is labeled by the operation on the monitor stack (push(A), pop(A) etc).

Non-determinism in PDS Monitoring. PDS representation of static models suffers
from the major drawback of space and time complexity, specifically, owing to the pres-
ence of non-determinism. It can be shown [16] that for a given input string of system
calls, both the time and space complexity for monitoring via PDS representation tech-
nique is cubic to its size. As an illustration, see the example program in Figure 2(a) (do
not consider the statements at Lines 4a, 5a, 8a and 9a). The system/function calls that
are monitored are shown in bold fonts. The corresponding PDS representation is pre-
sented in Figure 2(b-I). Observe that as the valuation of conditional expression at Line 4
is not evaluated in static models, the PDS representation includes a non-deterministic
inter-procedural transition: pushA/pushB due to the presence of function invocations at
Lines 5 and 9.

2.3 Dyke Model and Stack-Determinism

Recently, [8] proposed Dyke model representation based on code instrumentation to
counter the problem of non-deterministic stack operations in monitoring. The central
theme of this technique is to instrument the code with null system calls at appropriate
call sites in order to determinize the stack operations in the PDS. These null calls are
executed at runtime. Whenever a call is made in the program, the appropriate null call
determinizes the call transitions in the model. The resultant model is equivalent to Stack-
Deterministic PDS (sDPDS). The distinguishing feature of sDPDS is that, unlike PDS,
there exists exactly one transition in the model corresponding to a call to a procedure in
the monitored sequence. The instrumentation of code, proposed by [8], to achieve this
is shown in Figure 2(a) at Lines 4a, 5a, 8a and 9a. Each call is flanked by distinct “pre”
and “post” calls to identify which branch of the conditional block is being executed
by the monitored program. In this model, a Dyke stack is maintained which records the

358 S. Basu and P. Uppuluri

0:char* fname; pid t[2] pid;
1:void action () {
2: uid t uid = getuid();
3: int handle;
4: if (uid != 0) {
4a: precall(A);
5: handle = prepare(1);
5a: postcall(A);
6: read(handle, ...);
7: }
8: else {
8a: precall(B);
9: handle = prepare(0);
9a: postcall(B);
10: write(handle, ...);
11: }
12: close(handle);
13:}
14:int prepare(int index) {
15: char buf[20];
16: pid[index] = getpid();
17: strcpy(buf, fname);
18: return open(buf, O RDWR);
19:}

(I)

action

getuid

read write

close

A B

pushA / pushB

popA

popB
open

getpid

prepare

(II)

postcall(A)

getuid

read write

close

precall(A)

open

getpid

prepareaction

precall(B)

postcall(B)

(a) (b)

Fig. 2. (a) Source-code (b-I) Non-deterministic PDS (b-II) Dyke Model [8]

pre-calls that are invoked with the last pre-call being at the top-of-stack. Valid or feasible
inter-procedural paths are the ones that have matching pre and post null calls. The Dyke
model is shown in Figure 2(b-II).

Disadvantages of Dyke Model. There are two key issues when using the Dyke model
for monitoring: (a) overhead in monitoring and (b) Dyke stack size. The usage of
two extra (null) calls (pre-/post-calls) per procedure-call site adds to monitoring over-
head. Since, system call interception incurs ∼20% overhead [7], doubling the number
of intercepted system calls can raise overhead by two-fold. Secondly, note that, the
defining factor for runtime memory usage is the size of the stack used by the Dyke
model. The stack usage depends on the type of procedure calls: standard vs. recur-
sive. In standard, the maximum depth of the stack can be determined statically and
the Dyke stack size is set to that value. However, for recursion, the depth depends
on the program’s runtime behavior. If the recursion depth is such that it overflows
the Dyke stack, then the model fails to correctly identify the inter-procedural feasi-
ble paths and as such the monitoring mechanism becomes vulnerable to impossible path
attacks.

Proxi-Annotated Control Flow Graphs: Deterministic Context-Sensitive Monitoring 359

3 Proxi-Annotated Control Flow Graphs

In this section, we propose a new technique based on CFG representation which deter-
minizes stack operations without incurring overheads due to null calls. In addition, our
approach performs better in terms of memory usage when handling recursion compared
to the Dyke model. The central tenet of our technique is that by appropriately updating
and checking valuations of auxiliary integer variables introduced at each call site we
can detect impossible paths and resolve stack non-determinism efficiently. The auxiliary
variables are referred to as PROcedure conteXt Indicator (Proxi) and the corresponding
CFG as proxi-annotated CFG.

Definition 3 (Proxi-Annotated CFG). A proxi-annotated CFG of a procedure p is a
tuple PCFGp = (S, s0, SE , −→, L, V), where CFGp = (S, s0, SE , −→, L) and V is
the set of proxi variable arrays where |V| = number of possible return locations of p. �

Notations. We introduce here the notational convenience used in the rest of the paper.
Array names in V for PCFGq are denoted by vq

s and are associated with the called
procedure q and the return location/state s of the callee. The maximum index of the
array vq

s holding a non-zero value is denoted by Iq
s . The pre-specified size of a proxi

variable array is denoted by Nq
s .

Realizing PCFG Monitoring. The monitoring mechanism via PCFG proceeds by up-
dating the proxi variables in the following fashion:

1. Initialization. All proxi variables are initialized to zero, i.e, ∀vq
s .∀i < Nq

s .vq
s [i] = 0.

Furthermore, each Iq
s is set to zero.

2. Call to procedure: incrementing proxi variables.As eluded before, elements in array
vq

s records a call to procedure q with the return location s in the caller.
(a) If there exists a non-zero vq

r [Iq
r] less than vq

s [Iq
s] with r
= s, then Iq

s = Iq
s + 1.

vq
s [Iq

s] is incremented by one and all non-zero vq
r [Iq

r] where r
= s are also
incremented by one.

(b) Else, vq
s [Iq

s] are incremented by one and all non-zero vq
r [Iq

r] where r
= s are
incremented by one.

3. Return from a procedure: decrementing proxi variables. If a procedure q returns, the
correct return location s in the caller is determined by the array vq

s . The conditions
to be satisfied on return are that the valuation of vq

s [Iq
s] (a) is greater than zero and

(b) is minimum among all non-zero vq
r [Iq

r].
vq

s [Iq
s] is decremented by one. If vq

s [Iq
s]==0 and Iq

s
=0 then decrement Iq
s by one.

All other proxi variables associated with q, i.e., vq
r [Iq

r] are decremented by one.
Observation. The updates to the proxi variables ensure that the element of the proxi
variable array corresponding the last call in the execution sequence is always less than
the proxi variable elements for any prior calls.

Theorem 1. A sequence of steps, in terms of procedure calls, is feasible in a PDS model
iff it is also feasible in a PCFG.

360 S. Basu and P. Uppuluri

Calls to procedure q with return locations r and s

St
ac

k
op

er
at

io
n

←

PDS Proxi variable values
push(s) vq

s [0]=1 vq
r [0]=0 Iq

s =0 Iq
r =0

push(r) vq
s [0]=2 vq

r [0]=1 Iq
s =0 Iq

r =0
push(s) vq

s [0]=2,vq
s [1]=1 vq

r [0]=2 Iq
s =1 Iq

r =0
push(s) vq

s [0]=2,vq
s [1]=2 vq

r [0]=3 Iq
s =1 Iq

r =0
pop(s) vq

s [0]=2,vq
s [1]=1 vq

r [0]=2 Iq
s =1 Iq

r =0
pop(s) vq

s [0]=2,vq
s [1]=0 vq

r [0]=1 Iq
s =0 Iq

r =0

Fig. 3. Updates to proxi variables with sample operation sequence to monitor stack

Proof: The proof proceeds by showing that proxi variables correctly record the monitor
stack of a PDS model. Recall that a call to procedure q with return location s results in
push-ing s to the top of the monitor stack of PDS model (see Section 2.2).

Assume that a procedure q can be invoked multiple times with two different return
locations s and r. Let q be a new call, seen with the return location s. Following PDS
monitoring mechanism, s is pushed to the top-of-stackdue to the new call to q.

Case I: s is already present in the stack and the top-of-stack is r, i.e. in the execution
sequence there are at least two prior calls to q with two different return locations. This
implies that vq

r [Iq
r] is less than vq

s [Iq
s]. The corresponding updates to the proxi variable

vq
s [Iq

s] follows the rule 2(a) (see above). In other words, Iq
s is incremented and vq

s [Iq
s]

is incremented by one. Also vq
r [Iq

r] is incremented by one. As such, vq
s [Iq

s]==1 and
vq

s [Iq
s] < vq

r [Iq
r]. The return location for the new call to q is correctly identified as s.

Case II: s is present in the top of the stack. This implies the new call to q is a recursive
call with the same return location. The updates to the proxi variables follow the rule 2(b)
(see above). This ensures that number of recursions to q with same return location s is
equal to the valuation of vq

s [Iq
s]. �

Figure 3 shows a sample session of execution monitoring using PDS model and
PCFG. The sequence of operations on monitor stack are presented along with the cor-
responding changes in the proxi variables in PCFG.

Theorem 2. A PCFG is equivalent to Dyke model.

Proof: Theorem 1 states that PCFG only allows feasible inter-procedural sequences as
per the PDS model. Here we give the proof sketch showing that PCFG also resolves
non-determinism in PDS model monitoring.

Recall that a Dyke model instrumentation involves inserting distinct pre-/post-calls
at each call site. This ensures determinism in stack operations as each call site is distin-
guished by its pre-call. A Dyke stack records the pre-call and a path is deemed feasible
if each return leads to post-call matching with the last pre-call at the top of Dyke stack.

In identical fashion, PCFG inserts updates to the proxi variables at each call site. In
other words, a pre-call of a Dyke model is replaced by incrementing operations of proxi
variables and the post-call is replaced by assertions that must be satisfied followed by
decrementing the proxi variables. The variables are distinguished by the return locations

Proxi-Annotated Control Flow Graphs: Deterministic Context-Sensitive Monitoring 361

Call to q with return state s

Dyke Model Proxi-annotated CFG

precall(s)

if ∃r.vq
r[I

q
r]!=0 && vq

r[I
q
r] < vq

s[I
q
s] then

Iq
s++;

vq
s[I

q
s]++;

∀vq
r[I

q
r]>0 && r!=s vq

r[I
q
r]++;

postcall(s)

assert(vq
s[I

q
s]> 0);

∀r!=s.if vq
r[I

q
r]!=0 then assert(vq

s[I
q
s] < vq

r[I
q
r]);

∀r!=s.if vq
r[I

q
r] > 0) vq

r[I
q
r]--;

vq
s[I

q
s]--;

if vq
s[I

q
s]==0 && Iq

s!=0 then Iq
s--;

Fig. 4. Code Instrumentation

of the called procedure. As such, all procedure calls (i.e. stack operations in the context
of Dyke model) are determinized in PCFG with respect to their return locations. �

Figure 4 presents the instrumentations for PCFG corresponding to pre- and post-calls
in Dyke model. Feasible path in PCFG must satisfy all the assertions corresponding to
the post-call.

4 Discussion

There are two important distinguishing aspects of our technique that can make it poten-
tially more efficient than the existing (PDS/Dyke) stack-based techniques.

First, we replace null calls in Dyke model with updates to variables. Note that the
number of arrays of proxi variables |V| is equal to the number of pre-calls introduced by
the Dyke model. This will reduce runtime overhead caused by monitoring extra null calls
at each call site. The operations on the proxi variables (see Figure 4) can be executed in
time linear to the number of proxi variables by clever arrangement of proxi variables in
an ascending order.

Secondly, observe that, the bound on recursion depth of the execution sequence that
can be correctly monitored is equal to the pre-defined size of the Dyke stack. In PCFG,
the recursion bound depends on the kind of recursion. Specifically we identify two kinds:
uni-valent and multi-valent. Uni-valent recursion corresponds to the case where the same
procedure is invoked with the same return location recursively. In this situation, the
proxi variable element corresponding to the concerned procedure is simply incremented
(Rule 2(b) for proxi variable incrementation) with each recursion as opposed to Dyke
model where pre-calls are pushed in the stack. The bound on recursion depth, therefore,
is determined by the integer domain of the proxi variable element.

Multi-valent recursion occurs when there are at least two alternating recursive calls
to the same procedure with two different return locations. For example, let q be called
with return location s followed by a recursive call to q with r as return location (with
no intermediate returns from q). We say that the depth of alternation, in this example,

362 S. Basu and P. Uppuluri

is 1. Note that, for a subsequent new call to q with return location s (new alternation
depth becomes 2) leads to incrementation of the index Iq

s . As such, the maximum depth
of alternation in an execution sequence that can be monitored correctly is determined
by the ranges (e.g. Nq

s , Nq
r etc.) of the proxi variable array.

In summary, unlike PDS/Dyke models, PCFG model monitors recursion in two differ-
ent dimensions. The domain of individual elements in a proxi variable array determines
the maximum depth of the uni-valent recursion while the range/size of the array limits the
depth of alternation in multi-valent recursion. Such separation of uni- and multi-valent
recursive patterns adds to the flexibility and efficiency of monitoring. For example, if
it is statically determined that multi-valent recursions are not possible in an execution
sequence, then the array sizes of proxi variables are set to 1.

References

1. A.V. Aho. Handbook of Theoretical Computer Science Vol A. Elsevier Science Publishers
B.V., 1990.

2. D.Anderson, T. Lunt, H. Javitz,A. Tamaru, andA.Valdes. Next-generation intrusion detection
expert system: A summary. Technical Report SRI-CSL-95-07, SRI International, 1995.

3. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-
cation to model checking. In CONCURR, 1997.

4. S. Eckmann, G. Vigna, and R. Kemmerer. Statl. Technical report, UCSB, 2000-19.
5. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model check-

ing pushdown systems. In CAV, pages 232–247. Springer-Verlag, 2000.
6. J. Esparza and S. Schwoon. A bdd-based model checker for recursive programs. In Computer-

Aided Verification (CAV), pages 324–336. Springer-Verlag, 2001.
7. T. Bowen et al. Building survivable systems: An integrated approach based on intrusion

detection and confinement. In Darpa Information Security Symposium, 2000.
8. H. Feng, J. Griffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing sensitivity in static

analysis for intrusion detection. In IEEE Symposium on Security and Privacey, May 2004.
9. S. Forrest, R. Henning, J. Reed, and R. Simonian. A neural network approach towards

intrussion detection. In National Computer Security Conference, 1990.
10. J. T. Griffin, S. Jha, and B. P. Miller. Detecting manipulated remote call streams. In Usenix

Security Symposium, August 2002.
11. K. Ilgun. A real-time intrusion detection system for unix. In IEEE Symposium on Security

and Privacy, 1993.
12. C. Ko. Execution Monitoring of Security-Critical Programs in a Distributed System: A

Specification-Based Approach. PhD thesis, University of California, Davis, December 1996.
13. J. Pouzol and M. Ducasse. From declarative signature to misuse intrusion detection systems.

In RAID, 2001.
14. R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection systems from

high-level specifications. In USENIX Security Symposium, 99.
15. P. Uppuluri and R. Sekar. Experiences with specification-based intrusion detection. In RAID,

01.
16. D. Wagner and D. Dean. Intrusion detection via static analysis. In IEEE Symposium on

Security and Privacy, May 2001.

Using Schemas to Simplify Access Control for XML
Documents�

Indrakshi Ray and Marianna Muller

Computer Science Department,
Colorado State University,

Fort Collins, CO 80523-1873
{iray,muller}@cs.colostate.edu

Abstract. Organizations are increasingly using the the eXtensible Markup Lan-
guage (XML) for document representation and exchange on the Web. To protect
an XML document from unauthorized access, authorizations are specified on the
XML document itself or on the Document Type Definition (DTD) that defines the
type of the XML document. Each XML document or DTD is associated with an
XML Access Sheet (XAS) that specifies the authorizations. The DTD not being
an XML document complicates the specification and enforcement of authoriza-
tion policies. To overcome the above mentioned problem, XML Schemas need to
be used instead of DTDs. In this paper, we show how XAS DTDs can be spec-
ified using XML Schemas and propose an access control architecture that can
process XAS authorizations. Enforcement of access control allows users to view
only those parts of the documents that they are authorized to view. These parts
may not conform to the schema of the original document and hence may not be
valid. Towards this end we propose a schema loosening algorithm that generates
a schema that will be satisfied by documents satisfying the access control require-
ments.

1 Introduction

Organizations are increasingly using the world wide web to disseminate and distribute
information. Most of this information is specified in XML which is emerging as the
de-facto standard language for document representation and exchange over the Web.
In order to be processed an XML document must be well-formed (obeys the syntax of
XML) and valid (conforms to a proper Document Type Definition (DTD) that defines
the particular type of XML document). The information distributed by organizations
via the web have different levels of sensitivity: some of this information must be dis-
tributed internally, some must be shared with other organizations, and others must be
disseminated for public use. Protecting information with different levels of sensitivity
is non-trivial. To address this problem, researchers [1, 2, 3, 4, 5, 6, 7, 8, 9] have proposed
models and mechanisms for controlling access to XML documents.

To protect XML documents, authorization policies may be specified on the XML
document or on the associated DTD. If an authorization policy is specified on the DTD,

� This work was funded by AFOSR under Award No. FA9550-04-1-0102.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 363–368, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

364 I. Ray and M. Muller

the policy applies to all XML documents conforming to the DTD. Such authorization
policies are specified in a document known as XML Access Sheet (XAS). XAS is an
XML document and must be well-formed and valid.

DTDs not being XML documents do not satisfy the well-formedness and validity
requirements of XML. As pointed out by Zhang et al. [9], using DTDs to validate
XML documents causes a number of problems in the specification and enforcement of
authorization policies. First, the authorization policies for XML documents and DTDs
cannot be specified in an uniform manner because the structure of the documents differ.
Second, an XML parser is not sufficient for interpreting the authorizations on a given
XML document. Third, the use of DTD limits interoperability.

In this paper, we propose the use of XML Schemas, instead of DTDs, for validating
XML documents. This simplifies the specification and enforcement of authorization
policies. We show how authorization templates can be specified in the form of XML
Schemas. We propose an access control system that can process any authorization spec-
ified as an XAS that conforms to some XML schema. Enforcing access control on an
XML document often results in a pruned document; the pruned document contains only
those information that the user is authorized to see. This pruned document may not con-
form to the schema of the original document. We propose an algorithm by which the
original schema can be transformed to a loosened schema. This loosened schema will be
satisfied by all the documents generated from the original XML document that satisfy
the access control requirements.

The rest of the paper is organized as follows. Section 2 shows how XML schemas
can be used to specify authorization templates. Section 3 presents an access control
system that can process different kinds of authorizations associated with the documents.
Section 4 concludes the paper with some pointers to future directions.

2 Specifying Authorization Templates Using Schemas

Our approach allows for the specification of different kinds of authorization models. We
show how authorization policies adapted from the model proposed by Damiani et al.
[6] can be expressed using a schema. Each authorization is of the form (subject, object,
action, sign, type), where subject is the entity to whom the authorization is granted or
denied, object is either a uniform resource identifier (URI) of the resource or is of the
form URI:PE, where PE is a path expression on the tree of document URI, action is the
operation being authorized or forbidden, sign is either ‘+’ (denoting allow access) or ‘-’
(denoting forbid access), type is one of {LHD, RDH, L, R, LD, RD, LS, RS} depending
on the kind of authorization. Figure 1 shows an authorization template for such a model
can be specified as an XML schema.

3 Access Control System

In this section we present an access control system for authorizing XML documents.
This architecture is adapted from that proposed in [6]. Since we use XAS Schemas
instead of DTD, our architecture is not confined to intra-organizational applications.

Using Schemas to Simplify Access Control for XML Documents 365

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="stringtype">
<xs:restriction base="xs:string"/>
</xs:simpleType>

<xs:simpleType name="signvaluetype">
<xs:restriction base="xs:string">
<xs:pattern value="+|-"/>
</xs:restriction>
</xs:simpleType>

<xs:simpleType name="typevaluetype">
<xs:restriction base="xs:string">
<xs:enumeration value="LDH"/>
<xs:enumeration value="RDH"/>
<xs:enumeration value="L"/>
<xs:enumeration value="R"/>
<xs:enumeration value="LD"/>
<xs:enumeration value="RD"/>
<xs:enumeration value="LS"/>
<xs:enumeration value="RS"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="actiontype">
<cs:attribute name="value" type="stringtype" fixed="read" use="required"/>
</xs:complexType>

<xs:complexType name="signtype">
<cs:attribute name="value" type="signvaluetype" use="required"/>
</xs:complexType>

<xs:complexType name="typetype">
<cs:attribute name="value" type="typevaluetype" use="required"/>
</xs:complexType>

<xs:complexType name="authorizationtype">
<xs:sequence>
<xs:element name="subject" type="stringtype"/>
<xs:element name="object" type="stringtype"/>
<xs:element name="action" type="actiontype"/>
<xs:element name="sign" type="signtype"/>
<xs:element name="type" type="typetype"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="set_of_authorizations_type">
<xs:element name="authorization" type="authorizationtype" minOccurs="1"
maxOccurs="unbounded"/>

<xs:attribute name="about" type="stringtype" use="required"/>
</xs:complexType>

<xs:element name="set_of_authorizations" type="set_of_authorizations_type"/>

</xs:schema>

Fig. 1. XAS Syntax Specified as a Schema

Figure 2 shows the architecture of such a system. The following reasons motivate
the need for implementing such a system on the server side. First, this prevents the
client (user) from viewing or processing information that he is not allowed to see or
process. Second, this obviates the need for the client browser to provide XML support
for translating XML documents to HTML.

366 I. Ray and M. Muller

This architecture is based on the fact that an XML document is internally repre-
sented as an object-oriented document graph according to the Document Object Model
(DOM) Level 1 specification. DOM provides an object-oriented Application Program-
ming Interface (API) for HTML and XML documents.

+

+

++

−

− −

XML/HTML
Translation

++ −

Unparsing HTML Document

XML Document
Schema

XML Document

XASs XAS Schema
XAS DOM tree

XML DOM tree

XML Document
User’s View

+

Parsing

Tree
Labeling

Tree
Transform

+

Fig. 2. Architecture of the Access Control System

The following steps are performed by the access control system after receiving a
request to access an XML document. The input to the process is the document being
requested, the XML Schema against which the document must be validated, the XAS
for the document and the Schema, the XAS Schema against which the XAS is validated,
and the identity of the requester.

Parsing: The goal of this step is to generate DOM trees for XML and XAS documents.
First, the syntax of the XML document is checked with respect to the XML Schema.
If the syntax is correct, the XML document is compiled. The compilation results in
generating the object-oriented document graph according to the DOM format. The same
process is followed for the XAS documents. The output of this step are XML DOM tree
and XAS DOM tree(s).

Tree Labeling: The goal of this step is to label the nodes of the XML DOM tree that
indicates whether the requester has or does not have access to the node. We follow other
researchers and label a node with ‘+’ indicating that the requester has access, a node
with ‘-’ indicating that the requester does not have access. The XAS DOM tree(s) are
consulted to determine the access the requester has on the different nodes of the XML
document. Note that, in determining the access the entire XAS DOM tree need not be
consulted. We can prune the parts of the tree that are not related to the access request.
The output of this step is a labeled XML DOM tree.

Using Schemas to Simplify Access Control for XML Documents 367

Tree Transformation: The goal of this step is to generate an XML DOM tree that
represents the information the requester is permitted to view. The step proceeds as
follows. The label of the tree is consulted and the tree is pruned using a preorder traver-
sal. The output is the pruned XML DOM tree. Note that this document may not sat-
isfy the validity requirements of the original XML schema. For this reason, the XML
Schema is transformed into a loosened XML Schema that this new document will sat-
isfy. The generation of loosened schema is defined by algorithm 3. We propose generat-
ing the loosened schema off-line and not while the access request is getting processed.

Unparsing: The goal of this step is to convert the pruned XML DOM tree into a text
version. The step involves a translation process. The output is a text form of the pruned
XML document.

Translation: The goal of this step is to translate the XML document such that users
having browsers without XML capability can view the document. This step is a trans-
lation of the XML Document to an HTML document that can be viewed by the user.

Algorithm: Schema Loosening Algorithm
Input: (i) A = {a1,a2, . . . ,an} - the set of access rights obtained from the XASs of the
XML Document and the XML Schema for the document. Each element ai in the set A
is of the form (subi,ob ji,acti,signi, typei) (ii) ob j – the XML Document
Output: XML Schema S′- the loosened schema that specifies the type of all pruned
XML documents that satisfy the access control requirements.

Procedure: Loosen Schema(A, ob j)
begin

S = schema(uri(ob j)) /* get schema associated with XML Document */
T = CreateTree(S) /* function creates tree T from schema S */
for each ai in A do

if signi == ‘−′
Si = schema(pe(ob ji)) /* get sub schema associated with ob ji */
Ti = CreateTree(Si) /* function creates tree Ti from schema Si */
N = {n|n ∈ T ∧ n ∈ Ti} /* set of nodes identified by ob ji
for each n ∈ N do

if n.Attribute().use == ”required”
n.Attribute().use = ”optional”

if n.minOccurs == ”1”
n.minOccurs = ”0”

S′ = CreateSchema(T) /* Create schema with the updated nodes of tree T */
return S′

end

In this algorithm, we first generate the schema for the XML document and get the
corresponding tree. We look at each negative authorization from the set of authoriza-
tions. We identify the object pertaining to this authorization and get the tree corre-
sponding to the object. In this tree, we mark all the required attributes and elements as
optional. Repeating this process for all the negative authorizations, we get all the set

368 I. Ray and M. Muller

of attributes and elements of the tree that are optional. Generating the schema from the
modified tree gives us the loosened schema.

4 Conclusion

In this paper we propose an access control system that is suitable for XML documents
that are validated using XML schemas instead of DTDs. We show how to specify au-
thorization templates in the form of XML schemas, and provide an architecture of an
access control system that can process the authorizations specified on XML documents
and schemas. Enforcement of access control results in pruning of the document such
that the users have the authorization to view this pruned document. The pruned doc-
ument may not conform to the schema of the original document and hence may not
be valid. Towards this end we propose a schema loosening algorithm that generates a
schema that will be satisfied by documents satisfying the access control requirements.
In future, we plan to investigate how to reduce the time taken for evaluating the autho-
rizations specified on XML documents.

References

1. E. Bertino, S. Castano, and E. Ferrari. On Specifying Security Policies for Web Documents
with an XML-based Language. In Proceedings of the First ACM Symposium on Access Con-
trol Models and Technologies, pages 57–65, May 2001.

2. E. Bertino, S. Castano, and E. Ferrari. Securing XML Documents with Author-χ. IEEE
Internet Computing, 5:21–151, June 2001.

3. E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and Enforcing Access Control
Policies for XML Document Sources. World Wide Web Journal, 3(3):139–151, May 2001.

4. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents. ACM
Transactions on Information and System Security, 5(3):290–331, August 2002.

5. E. Damiani, S. Paraboschi, and P. Samarati. A Fine-Grained Access Control System for
XML Documents. ACM Transactions on Information and System Security, 5(2):169–202,
May 2002.

6. E. Damiani, S. Vimercati, S. Paraboschi, and P. Samarati. Design and Implementation of
Access Control Processor for XML Documents. In Proceedings of the Ninth International
World Wide Web Conference, May 2000.

7. A. Gabillon and E. Bruno. Regulating Access to XML Documents. In Proceedings of the
Fifteenth IFIP WG 11.3 Working Conference on Data and Applications Security, Niagara On
the Lake, Canada, July 2001.

8. J. P. Yoon. Bitmap-based High-speed Access Control for XML Documents. In Proceedings of
the Seventeenth IFIP WG 11.3 Working Conference on Data and Applications Security, Estes
Park, CO, August 2003.

9. X. Zhang, J. Park, and R. Sandhu. Schema Based XML Security: RBAC Approach. In
Proceedings of the Seventeenth IFIP WG 11.3 Working Conference on Data and Applications
Security, Estes Park, CO, August 2003.

 R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 369–378, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Automatic Enforcement of Access Control Policies
Among Dynamic Coalitions1

Vijayalakshmi Atluri and Janice Warner

MSIS Department and CIMIC, Rutgers University, USA
{atluri, janice}@rutgers.edu

Abstract. The need to securely share information on an ad-hoc basis between
collaborating entities is increasingly becoming important. We propose a
coalition based access control model (CBAC), comprised of three layers:
coalition, role and user-object layers. Our model enables translation of coalition
level policies to implementation level access control in a manner similar to that
of the layers of the TCP/IP protocol. We present a coalition policy translation
protocol that allows the implementation level access control details to be piggy-
backed as the access control policy percolates to the coalition level, and
similarly, as the coalition level policy trickles down to the implementation
level. Under our approach, a user’s request to access an object belonging to
another coalition entity is automatically translated by employing an approach
that considers attributes associated with user credentials and objects. Our
approach ensures that the individual access control policies of each coalition
entity as well as the agreed-upon coalition policies for sharing are enforced.

1 Introduction

There is an increasing need by applications to access shared resources among
different autonomous entities for the purposes of achieving a common objective. This
is widespread in environments such as military, emergencies, government agency
collaborations, and virtual enterprises. Such sharing is accomplished by forming
coalitions (or alliances or collaborations). In most cases, these coalitions are dynamic
in nature. They are formed in an ad-hoc manner and members may leave and new
members may join. For example, in a natural disaster, a dynamic coalition of
government agencies (e.g., FEMA, local police and fire departments), non-
government organizations (e.g., Red Cross) and private organizations (e.g., Doctors
without Borders, suppliers of emergency provisions) may be formed and need access
to information from one another about victims, supplies, and logistics, etc. [PTD02a].
Similarly, domestic or international governmental coalitions may be put in place to
share information between different agencies. For example, in a homeland security
setting, a coalition between agencies may be created for the purpose of conducting
comprehensive data mining. In the commercial world, companies often team up and
form virtual enterprises to benefit from complementary skills and expertise.

1 This work is supported in part by the National Science Foundation under grant IIS-0306838.

 V. Atluri and J. Warner 370

In these scenarios, the coalition members normally have internal access control
policies in place. Secure sharing of data requires that the members be able to exercise
fine-grained access control over the shared resources governed by their own security
policies. Typically, when entities agree to share their information resources, the
access control policies are agreed upon at the coalition level. These agreements are
not at the implementation level, in the sense that they do not specify which specific
users can access the data object. For example, an agreement between agencies A and
B is not an access control policy stating “a user Alice of agency A can access the
“immigration” file of agency B.” Therefore, enforcing these coalition-level security
policies requires transforming them to implementation level. A trivial solution would
be to form teams (workgroups) of employees at the corresponding levels of both
agencies. However, such a straightforward solution is not viable or scalable, may
result in delays and is not practical in case of dynamic coalitions.

Current approaches to facilitate sharing include three basic mechanisms: (i) Users
from one coalition entity are explicitly given permission to access resources from
another coalition entity. This approach is administratively time consuming and
requires explicit revocation after the coalition is disbanded or when a user is no longer
affiliated with the coalition entity. (ii) A single access id is provided to all of the users
of the coalition entity. While this simplifies administration, fine-grained access
control is not possible. (iii) The resources are copied to the coalition entity that
requires access to them. Updates are difficult and and this case may result in
uncontrolled sharing. Moreover, all three approaches are not suitable for dynamic, ad-
hoc coalitions and are only feasible among entities that have long-term partnerships.

We propose a coalition-based access control model comprising of multiple layers -
coalition, role and user-object layer. Our model enables translation of coalition level
policies to implementation level access control in a manner similar to that of
the TCP/IP protocol. We envision that such a framework will enable the implementation
level details to be piggy-backed as the access control policy percolates to the coalition
level, and similarly, as the coalition level policies trickles down to the implementation
level. Our approach is based on the following three principles:

1. The Existing Access Control Mechanisms Within Each Entity Should Remain
Intact. It would be naïve to expect that coalition members could and would
change their internal access control systems. Therefore, middleware systems
between the coalition partners are needed to negotiate and translate access.

2. A Common Access Control Model Will Best Facilitate Automation of Policy
Decisions. Because Role Based Access Control (RBAC) is policy neutral and
has been shown to be able to model a variety of access control mechanisms
including discretionary and mandatory access control [JSSS01, OSM00], it is a
good candidate to be used as a common model in our approach.

3. Administration of CBAC Should be Decentralized and Remain in the Hands of
the Resource Owners. Resource owners can best understand the risks of
unauthorized access and should make the decisions about control.

Addressing the security issues in the area of dynamic coalitions is relatively new.
Philips et al. [PTD02a] have described the dynamic coalition problem by providing
several motivating scenarios in a defense and disaster recovery settings, and have
developed a prototype that controls access to APIs and software artifacts [PTD02b].
Cohen et al. [CWTS02] have proposed a preliminary model that captures the entities

 Automatic Enforcement of Access Control Policies Among Dynamic Coalitions 371

involved in coalition resource sharing and identifies the interrelationships among
them. [BB03, KGBK03] have addressed the issue of automating the negotiation of
policy between coalition members in a dynamic coalition. However, none of the prior
work in coalition based access control addresses the issue of automatic translation of
coalition level policies to the implementation level policies, and vice versa. Our work
can be viewed as complementary to the above work.

This paper is organized as follows. Section 2 provides an overview of our CBAC
model approach. Section 3 presents the required definitions. Section 4 details our
approach. Section 5 summarizes our conclusions and describes future work.

2 Overview of Our Approach

We propose a formal framework that enables automatic translation of coalition-level
security policies so that users from one coalition entity gain access to objects residing
at another coalition entity. This is accomplished by translating coalition-level security
policies to implementation level security policies and vice versa. Specifically our
approach assumes that there exist three levels: coalition, role and user-object level.

Imagine a scenario where entities A and B are part of a coalition. They have
agreed to share some of their data objects. When users from A request access to the
data of B, the access request at the user level needs first to be translated into an
equivalent request compatible with access control policies at B. In order to
accomplish this, we propose to translate the user-object level access request, say
user-object request , into role level so that when the request is sent to B, the role

level at B is able to interpret it and decide whether to allow or deny it based on B’s
internal security policies. To this effect, A appends the role segment to the user
request, thereby forming role segment user-object request . At the coalition level,
the request is augmented with the coalition segment: coalition segment role segment
user-object request . When B receives the request on the other end, the coalition

level first interprets the coalition segment and sends role segment user-object
request to the role level at B. The role level interprets the role segment and sends the
user-object request to the user-object level. The process resembles the layers of the

TCP/IP protocol in terms of lower levels serving upper levels, as shown in Figure 1.
We assume each user in a coalition possesses a finite set of credentials and they are

assigned to appropriate roles based on their credentials. Under the RBAC model, roles
represent organizational agents who perform certain job functions within the
organization. Users in turn are assigned appropriate roles based on their
qualifications. In this paper, we exploit the credential mechanism to help assign users
to roles based on the credential attributes possessed by users. Unlike roles,
credentials are characterized by a set of attributes, which allows one to specify
permissions based on the user credentials that satisfy certain conditions. Therefore, a
user may only be assigned to a certain role if they have the required credentials.

We assume that every member of a dynamic coalition employs RBAC as the
access control policy (if not, the policies are translated and represented in RBAC),
and that there exists a universal set of credential types and object types. Suppose user
u from agency B wishes to access an object o of agency A. According to A’s access

 V. Atluri and J. Warner 372

User-Object
Level

Role
Level

Coalition
Level

user-object request

role segment user-object request

coalition segment role segment user-object request

user-object request

role segment user-object request

User-Object
Level

Role
Level

Coalition
Level

Entity A Entity B

User-Object
Level

Role
Level

Coalition
Level

User-Object
Level

Role
Level

Coalition
Level

user-object request

role segment user-object request

coalition segment role segment user-object request

user-object request

role segment user-object request

User-Object
Level

Role
Level

Coalition
Level

User-Object
Level

Role
Level

Coalition
Level

Entity A Entity B

Fig. 1. Illustration of Different Layers in the CBAC Model

policy over o, only certain roles are allowed access and therefore, only the users
who are assigned to these roles are allowed to access o. We compute the set of
credentials (i.e. their attribute values) possessed by all these users at A. Taking a
conservative approach, we assume these are the required set of credentials to access
o. We allow a user u to access o, only if u’s credential attributes are equivalent or a
superset of the set of required credential attributes. At B’s end, we take the most
authoritative set of credentials attributes possessed by user u to present with a
request for object o.

3 Preliminaries

We briefly present the necessary formalism required to describe our approach.
Specifically, we define our models use of objects, credentials and the RBAC model.

Objects:
Each organizational entity maintains a set of objects, OBJS, that can be shared with
other organizational entities within a coalition. Each object belongs to an object-type,
organized in an object-type hierarchy.

Definition 1. [Object-Type] An object-type ot is a pair (ot_id, OA), where ot_id ∈ OT
is a unique object-type identifier; and OA is the set of attributes associated with ot_id.
Each oai ∈ OA is denoted by an attribute name.

Definition 2. [Object] An object obj is a triple (ot_id, obj_id, obj-attr-values), where
ot_id ∈ OT, obj_id ∈ OBJS, obj-attr-values = (oa :v1, ..., oa: vn), where {oa1, .. oan }
⊆ OA(ot). OA(ot) denotes the set of attributes associated with ot.

We use obj(obj_id), obj(ot_id) and obj(obj-attr-values) to denote the object id, the
object-type id, and the set of attribute values of the object obj, respectively. The set of
object attributes describe the objects such as keywords or concepts.

The RBAC Model:
In our work, we adopt the NIST standard of the RBAC model [FERR01]. For the sake
of simplicity, we do not consider sessions or separation of duties constraints.

 Automatic Enforcement of Access Control Policies Among Dynamic Coalitions 373

Definition 3. [RBAC]

• U, ROLES, OPS, and OBJS are the set of users, roles, operations, and objects.
• UA ⊆ U × ROLES, a many-to-many mapping user-to-role assignment relation.
• PRMS, (the set of permission) ⊆ {(op, obj) | op ∈ OPS and obj ∈ OBJS}.
• PA ⊆ PRMS×ROLES, a many-to-many mapping of permission-to-role

assignments.
• assigned-users(r) = {u ∈ U | (u, r) ∈ UA}, the mapping of role r onto a set of

users.
• assigned-roles(u) = { r ∈ ROLES | (u, r) ∈ UA}.
• assigned-permissions(r) = { p ∈ PRMS | (p, r) ∈PA}, the mapping of role r onto

a set of permissions.
• assigned-objects(r, p) → {obj ⊆ OBJS}, the permission-to-object mapping,

which gives the set of objects associated with permission p for a given role.
Formally, assigned-objects(r, p) = {obj ∈ OBJS | p = (op,obj)}.

• RH ⊆ ROLES × ROLES is a partial order on ROLES, called the role hierarchy.

Due to the role hierarchy, there exists an inheritance relation, written as where r1
 r2 only if all permissions of r2 are also permissions of r1, and all users of r1 are also

users of r2. Formally: (r1 r2) assigned-permissions(r2) ⊆ assigned-permissions(r1)
 assigned-users(r1)⊆assigned-users(r2). We assume that a comparison between

roles can always be made. Parallel, incomparable role hierarchies are not allowed.

Credentials:
We assume that each subject is associated with one or more credentials. Credentials
are assigned when a user is created and are updated according to the profile of the
user. To make the task of credential specifications easier, credentials with similar
structures are grouped into credential-types. Credential-types are typically organized
as credential-type hierarchy. We denote the set of credential-type identifiers with CT,
the set of credential identifiers with CI, and the set of user identifiers with U. A
credential-type can be formally defined as follows.

Definition 4. [Credential-Type] A credential-type ct is a pair (ct_id, A), where ct_id ∈
CT is a unique identifier and A is the set of attributes belonging to ct_id. Each ai ∈ A
has an attribute name and A(ct) is the set of attributes belonging to ct.

Example 1: The credential type “doctor” can be (doctor, {affiliation, specialty}).

Definition 5. [Credential] A credential c, an instance of a credential-type ct, is a 4-
tuple (ct_id, c_id, user_id, user-profile), where ct_id ∈ CT, c_id ∈ CI, user-id ∈ U
and user-profile = (a1 : v1, …., an : vn), where {a1, .. an} ⊆ A(ct).

The set of credentials associated with users in the system is denoted by the
credential base (CB). We use c(c_id), c(user-id), c(ct_id) and c(user-profile) to
denote the credential id of c, the user to which c is assigned, the credential type id of c
and the set of attribute values of the user u (the user profile) for c, respectively.

Example 2: An example of a credential for credential type “doctor” is as follows:
(doctor, c-1, Roberts, (affiliation: Doctors without Borders, Specialty: immunology)).

 V. Atluri and J. Warner 374

The attribute values of the credentials can be specified similarly to attribute
certificates. Such certificates can be issued to users within coalition entities.

4 Coalition Based Access Control (CBAC) Model

In this section, we present the proposed CBAC model, the coalition policy translation
protocol, and an example that illustrates the working of our protocol.

Definition 6. [Coalition] A coalition C, is a tuple (coalition_id, E) where coalition_id
is a unique identifier of a coalition and E = {e1, e2, …} is a set of coalition entities that
have unique identifiers, entity_ids.

Example 3: In a natural disaster, the International Red Cross is often on site
providing shelter, food and protection to displaced persons. Doctors without Borders
may provide services to combat the spread of infectious diseases. The two
organizations could benefit from a coalition system that allows them to access each
other’s information in a secure manner. Throughout this paper we will expand on an
instance of this example where both organizations respond to an emergency in
Turkey. In our example, Doctors without Borders has noticed a large number of
infected wounds and wants to determine whether the problem is localized and if so,
the source of the infection. Thus they enter a coalition agreement to obtain the
necessary data from the Red Cross. Treatment case records from the emergency in
Turkey and prior information on diseases or injuries in Turkey are to be shared.

Coalition Level Policy Specification: This is a high level agreement between the
members of the coalition on the types of objects they will share. We assume the
objects of one coalition member, called the source_entity, are shared with another
coalition member, the destination_entity.

A coalition level policy p is stated as follows: p = (coalition_id, source_entity_id,
destination_entity_id, source_object_type). A coalition_id is a unique identifier for
the coalition, source_entity_id is a unique identifier for the coalition member who will
share its data objects, destination_entity_id is a unique identifier for the coalition
member who is granted access to the objects belonging to the source entity and
source_object_type is the set of object types that can be shared. We use
p.coalition_id, p.destination_entity_id, p.source_entity_id, and p.source_object_type
to identify these parameters of policy p. The specification of object types in the
coalition policy, as opposed to object ids, allows the policy to be stated at a more
abstract level, facilitating the dynamic addition of new objects without having to
change the coalition level policy specification.

Example 4: In our example, the International Red Cross has agreed to provide access
to its emergency response information system as it applies to the earthquake
emergency in Turkey. The agreed upon high-level coalition policy among these two
coalition members can be specified as follows: Coalition level policy, p1: (Turkey-
0704, RedCross, Drs_wo_Borders, {Concept: Location = “Turkey”}).

Definitions that follow are required for our policy translation protocol. Note that,
unlike prior approaches, users are not mapped to a specific role at the source entity.
Instead, their credential attributes are matched with those required to access an object.

 Automatic Enforcement of Access Control Policies Among Dynamic Coalitions 375

Definition 7. [Assigned-User-Credentials] Given a user u and a credential
base CB, the set of credentials assigned to a user are assigned-credentials(u) =
{c ∈ C | c(user-id) = u}.

Definition 8. [Assigned-Role-Credentials] Given a role r and a set of users U, we
define the set of credentials assigned to a role r, assigned-credentials(r) =
∪{assigned-credentials(u) | u ∈ assigned_users(r)}.

Definition 9. [Assigned-Role-Credential-Attributes] Given a role r and a set of users
U, we define the set of credential attributes assigned to a role r, assigned-credential-
attributes(r) = ∪ {c(user-profile) | c ∈ assigned- credentials(r)}.

Definition 10. [Required-Object-Credentials] Given a role r, an object obj and a set of
permission-role assignments PA, we define the set of required credentials to access an
object obj, required-credentials(obj) = ∪{assigned-credentials(r) | obj ∈ assigned-
objects(r, p) (p, r)∈ PA}.

Definition 11. [Required-Object-Credential-Attributes] Given a role r, an object obj
and a set of users U, the set of credential attributes required to access an object obj is,
required-credential-attributes(obj)=∪{c(user-profile)|c ∈ required-credentials(obj)}.

The policy translation protocol uses coalition segment, role segment and user-
object segment in its request/response messages. The format of these segments are:

Coalition Segment: coalition_id, source_entity_id, destination_entity_id
Role Segment: assigned-credential-attributes(r)
User-Object Segment: user_id, object , where object can either be obj_id or

ot_id.

Algorithm[Coalition Policy Translation Protocol]
Object Request:
Input: user-object request (user_id, object_type)
request_object(destination_user_id, source_object_type){
if user_id ∈ U,

{destination-role-id-set ← assigned-roles(destination-user-id)
RA ← assigned-credential-attributes(destination-role-id)such
that destination-role-id ∈ destination-role-id-set;
if (there exists a policy p such that object_type ∈

p.source_object_type)
request_message ← p.coalition_id, p.source_entity_id,
p.destination_entity_id, RA user_id, p.source_object_type }

else return error message “Invalid user”}
Response:
Input: request_message
respond_object (source_entity_id, destination_entity_id,
source_object){

if there exists a policy p′ such that
(p.source_object_type ∈ p′.source_object_type)
(p.destination_entity_id = p′.destination_entity_id)

 for every obj such that p.source_object_type∈obj(obj-attr-values)
 if RA ⊇ required-credential-attributes(obj)

allow access to obj by destination_user_id}
else

return_error_message(“No credential match”)}
else return_error_message(“Invalid request”)}

 V. Atluri and J. Warner 376

In the following, we present the detailed steps of the protocol:

Step 1: At the destination coalition entity, a user requests an object by specifying the
user-object segment: destination_user_id, source_object . The user-object segment
 identifies the requesting user and the requested object or set of objects.
Step 2: The user-object segment is mapped at the role level to a role and the user_id
is removed from the user-object segment. If the user is a member of more than one
role, the highest level role in the hierarchy is selected. The role segment is comprised
of the credential attributes associated with the assigned-role. The resulting message
is: assigned-credential-attributes(destination-role-id) source-object .
Step 3: The combined role and user-object segments are sent to the coalition level.
The request is mapped to a coalition instance. Then the coalition layer determines
which coalition member shares the specified object type, appends the coalition
segment to the request and delivers it to the appropriate coalition member. The
coalition message is: coalition_id, source_entity_id, destination_entity assigned-
credential-attributes(destination-role-id) source-object .
Step 4: The message is sent to the source coalition entity which validates it.
Step 5: The role level at the source coalition entity examines the credential attributes
specified in the role segment and tests if (assigned-credential-
attributes(destination_role_id) ⊇ required- credential-attributes(source-object).
Step 6. If the above condition is satisfied, then access is granted to the objects
associated with the source object id.

A system architecture for the CBAC system consists of a Coalition Control System
(CCS) and an RBAC module. The CCS is the key component. It accomplishes the
translation of coalition policies and controls external access to internal resources by
entity members at other coalition member sites. It has three sub-components –
coalition level policy interpreter, role interpreter, and user-object access controller.
Although the example given in this paper is for the simplest case of two entities
involved in a coalition, the approach is applicable to coalitions or partnerships with
multiple entities. When there are multiple entities, we assume that there exists a
coalition level policy instance among each pair of coalition entities. As a result, a
pair-wise handshaking is required to enforce the agreed upon policy. This is
recommended because: (i) it allows the coalition members to provide different levels
of access to different partners based on level-of-trust. (ii) It facilitates the members to
join and leave a coalition, without having to dissolve a coalition.

Example 5: Dr. Roberts, a member of Doctors Without Borders, wishes to access
data on infectious diseases in the area of the earthquake maintained by the
International Red Cross. Figure 2 illustrates the steps described below:

1. He sends a request to his organizational system, which is handled by its coalition
control system. The access request is in the form: user-object segment = roberts,
(concept: infectious diseases, location = Turkey) . The user-object access
controller validates Dr. Roberts and passes the request to the role interpreter.

2. The role interpreter selects the role played by Roberts, doctor, and retrieves the
credentials associated with this role_id by computing the assigned-credential-
attributes(doctor). The retrieved credential is of type medical-doctor and has the
attributes affiliation and specialty. It appends the role segment to the user-object

 Automatic Enforcement of Access Control Policies Among Dynamic Coalitions 377

segment: medical-doctor, (affiliation: Doctors without Borders, specialty:
immunology) roberts, (concept: infectious diseases, location = Turkey) and
passes it to the coalition level policy interpreter.

3. The coalition level policy interpreter determines the appropriate coalition and
coalition member for the requested object based on the object-type, and appends
the coalition segment to the role and object segments: Turkey-0704, RedCross,
Doctors without Borders, medical-doctor, (affiliation: Doctors without Borders,
specialty: immunology) roberts, (concept: infectious diseases, location =
Turkey) . The message is then passed to the International Red Cross system.

4. The Red Cross system validates the destination member and coalition id. It passes
the valid request to its role interpreter after removing the coalition level segment.

5. The role-interpreter at this end attempts to test if someone with the received
credential attributes could access objects of the specified types. It identifies the
objects and computes the required-credential-attributes(obj) such that (concept:
infectious diseases, location = Turkey ∈ obj(obj-attr-values). If assigned-
credential-attributes(medical-doctor) ⊇ required-credential-attributes(obj), the set
of objects are then passed to the user-object access controller: 517,730 .

6. The user-object access controller retrieves the objects and makes them available to
Dr. Roberts.

Role Interpreter

User-Object
Access Controller

11

Doctors Without
Borders

International
Red Cross

<roberts, concept: head injuries>

Dr. Roberts

2

<doctor, (location: Turkey, specialty: immunology)
<concept: infectious diseases>>

3

Coalition-level
Policy interpreter

Role Interpreter

User-Object
Access Controller

<doctor, (location: Turkey, specialty: immunology)
<concept: infectious diseases>>

Coalition-level
Policy interpreter

<555444555, DB99, RC11, <doctor, (location:Turkey,
speciality: immunology) <concept: infectious diseases>>>

44

<934, 527, 777, 1112>

5

6

Fig. 2. The Different Steps of Object Request and Response

5 Conclusions and Future Research

In this paper, we have proposed a coalition-based access control model (CBAC)
comprising of multiple layers – coalition, role, and user-object (or implementation)
layer. Our model enables translation of coalition level policies to implementation
level access control in a manner similar to that performed by the layers in the TCP/IP
network protocol. The CBAC framework described in this paper allows for dynamic,
ad-hoc formations of information sharing systems for coalitions that share objects
based on object attributes and credential attributes.

 V. Atluri and J. Warner 378

We plan to undertake several research tasks in this area. (1) We have assumed that
objects are owned by only one member of the coalition. However, there may be the
need to have object ownership shared by several entities. We intend to extend our
approach to facilitate such cooperative environments similar the work on cooperative
role-based administration in [WL03]. (2) We have assumed that coalition member
entities agree on high-level policies before there is any flow of information, making
the coalition formation not completely ad-hoc. We plan to extend our approach to
allow organizational entities to publish their policies and services. Coalitions could
then be formed based on the compatibility and adherence to the published policies. (3)
We have not considered static and dynamic separation of duties constraints and plan
to extend our CBAC model to incorporate these constraints as well. Moreover,
delegation is an important feature, which must be supported in coalition-based
systems [FPPKK02]; and we intend to include this support as well. (4) We intend to
implement our approach using the OASIS XACML specification, XML specification
of attribute certificates, and registry service similar to that of UDDI registry.

References

[BB03] V. Bharadwaj and J. Baras, “A Framework for Automated Negotiation of Access
Control Policies”, Proceedings of DISCEX III, 2003.

[CWTS02] E. Cohen, W. Winsborough, R. Thomas and D. Shands, “Models for Coalition-
based Access Control (CBAC), SACMAT 2002.

[FERR01] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli, Proposed
NIST Standard for Role-Based Access Control, TISSEC, August 2001.

[FPPKK02] P. Freudenthal, K. Pesin, Keenan, Port, & Karamcheti, “dRBAC: Distributed
Role-Based Access Control for Dynamic Coalition Environments”, ICDCS,
2002.

[JSSS01] S. Jajodia, P. Samarati, S. Pierangela, L. Maria, and V. S. Subrahmanian,
“Flexible support for multiple access control policies,” ACM TODs, June 2001.

[KGBK03] H. Khurana, S. Gavrila, R. Bobba, R. Koleva, A. Sonalker, E. Dinu, V. Gligor
and J. Baras, "Integrated Security Services for Dynamic Coalitions " Proc. of the
DISCEX III, 2003.

[KH02] Kuo and Humenn, “Dynamically Authorized RBAC for Secure Distributed
Computation”, ACM Workshop for XML Security, November, 2002

[OSM00] S. Osborn, R. Sandhu and Q. Munawer, “Configuring RBAC to Enforce
Mandatory and DAC Policies, ACM TISSEC, May 2000.

[PTD02a] C. Philips, T.C. Ting, and S. Demurjian, “Information Sharing and Security in
Dynamic Coalitions”, SACMAT 2002.

[PTD02b] C. Philips, E. Charles, T. Ting, and S. Demurjian, “Towards Information
Assurance in Dynamic Coalitions”, IEEE IAW, USMA, February 2002

[WL03] H. F. Wedde and M. Lischka, “Cooperative Role-Based Administration”,
SACMAT 2003.

 R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 379---384, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Implementing Consistency Checking in
Correlating Attacks

Kaushal Sarda
1
, Duminda Wijesekera

2
 and Sushil Jajodia

2

1
Capgemini, Pirojshanagar, Vikhroli, Mumbai 400 079, India

2
 The Center for Secure Information Systems,

George Mason University, Fairfax VA 22030, USA
kaushal.sarda@capgemini.com
{dwijsek, jajodia}@gmu.edu

Abstract. Static analysis of attack sequences (a.k.a. topological vulnerability
analysis -TVA) studies sequences of attacks that can eventually lead to
exploitable vulnerabilities in a network. In models where the attacks are
specified in terms of their preconditions and post conditions, the sequences that
can be launched are those in which the post condition of the antecedent attack
implies the precondition of the precedent attack. We show a method of doing
so, and show the drawbacks in omitting these checks in the CRIM [5]) model.

Introduction

Topological Vulnerability Analysis (TVA) statically analyses sequences of
exploitable vulnerabilities existing in a given network configuration so that no
sequence of them can be systematically exploited in order to drive the network to an
undesirable state. Steps taken during this process are called attacks, and networks
states appearing immediately before and after are referred to as preconditions and
post conditions of the attack. Thus, an attack chain or an attack tree is one in which all
attacks launched Consequently, in the predicate-based model, these translate to a
collection of post conditions of the precedent before the one in question prepares the
environment in which it can be launched. attacks implying the pre conditions of their
successors. However the inconsistency of such pre conditions results in a modeling
error, as it symbolizes an unachievable network state. The CRIM model [5] and some
other [7] that use its definitions do not check for this latter condition. As a remedy we
offer a set of definitions that rectify this problem and some Prolog code that can
compute attack sequences as proposed here.

The structure of the rest of paper is as follows. The next section describes the
terminology and concepts used there after. We then formulate them in SWI Prolog, as
we have implemented them. The subsequent section compares our correlation
definitions with prior definitions. The final section concludes the paper.

Terminology and Concepts

Many tools such as [1], [2], and [3] determine vulnerabilities of individual hosts,
although they do not compute vulnerabilities caused due to their interactions. Thus, if

 K. Sarda, D. Wijesekera, and S. Jajodia

380

only these tools are used to fix security holes of a network, applications that are
secure when used in isolation, may become vulnerable when used in combination. An
example is a file transfer utility (ftp) and an http service being hosted on a single
machine. If an attacker uses ftp to load a program on a host and execute it by
employing hosted web server to exploit a system. TVA is used to determine such
chains of attacks that can lead to undesirable state.

There are at least two kinds of approaches to TVA. The first [4] uses a state based
model of the network to discover all possible state transition paths that end in an
undesirable one. The major disadvantages of this model are the well-known state
explosion problem. The second approach uses logic to sequence the network states by
joining them with atomic attacks. The Cooperative Module for Intrusion detection
system (CRIM) [5] cluster, merge and correlate attacks. CRIM uses the following
definitions to do so where A and B be two attacks with pre() and post() denoting pre
and post conditions as a conjunction of literals.

post(A) = expr
A1,

expr
A2
, …, expr

Am

pre(B) = exprB1, exprB2, …, exprBn where expr can be p or not(p) for a
predicate p.

Definition 1. (Direct and Indirect Correlation and Attack Paths Ala CRIM)
Attack A and B are directly correlated if one of the following conditions is satisfied:

1. exprAi and exprBj has the most general unifier (mgu) θ for some iε[1,m] and
jε[1,n], or

2. exprAi and knows(user,exprBj) has mgu θ for some iε[1,m] and jε[1,n]
where knows() expresses the attackers knowledge about the vulnerability.

They can also be correlated are indirectly correlated through rules R1,…, Rn of the
form p → q. The correlation definition used in [5] has some limitations. The key
aspect of two attacks being correlated is that the launch of the attack A must make the
network state such that attack B can be launched. For this to happen it is imperative
that no subset of the post condition set of attack A would negate any of the
preconditions of attack B. Thus, the post conditions of attack A must be consistent
with preconditions of attack B for them to be correlated. For otherwise, attack B
cannot be performed after attack A.

The correlation definition in [5] verifies if there exists any expression in post(A)
that can either directly or indirectly be unified to an expression in pre(B) list. Now
suppose exprA1 unifies with exprB1 directly and exprA2 and exprA3 imply not(exprB2), the
conditions expressed using exprA2, exprA3, and exprB2 cannot exist at the same state. By
the CRIM definition the attacks A and B will still be correlated, resulting in creating
many attack paths that cannot be launched. This is an inaccuracy in the modeling
presented in [5] and other work using the same correlation definition such as [7]. The
same argument also holds true for the indirect correlation definition. Our definition of
attack correlations and paths follow.

Definition 2. (Explicit and Semi-explicit Correlations)
If post(A) → pre(B), then we say that attack B is explicitly related to attack A If
there is another predicate C such that post(A)^C → pre(B) then we say that B is semi-
explicitly correlated to , provided that C does not imply Pre(B) by itself and
post(A)^C is consistent. An attack path is sequence of correlated attacks.

Implementing Consistency Checking in Correlating Attacks 381

Attack Correlations in SWI Prolog

This section, we use SWI prolog [6] to implement both definitions and show the
difference by means of an example. In order to do so we use the following predicates:
We use lower case letters predicates and upper case letters for their lists.

1. present(k,P): k unifies with at least one element in P. For example,
present(k,[p,t,k]).

2. different(A,P): An element in A does not unify with some element in P, defined as
different(A,P):- present(X,P),not(present(X,A)).

3. subset(K,T): any element of T unifies with some element of K.
4. conflict(H,T): An element in T appears negated in H. For example,

conflict([q,not(p)],p).
5. inconsistent(C,D): An element in C conflicts with some element in D, defined as

inconsistent(PreL,PostL):present(H,PreL),conflict(H,T),subset
(T,PostL).

6. correlated(C,D): Every element in C unifies with some element in D, defined as
correlated(A,B):-not(different(A,B)),not(inconsistent(A,B)).

This is an auxiliary predicate stating that the group of elements in D falsifies no element
in C.

For example, consider the two attacks and a rule given below:

post(attack1,[a, s, t]).
pre(attack2,[s,t]).
conflict(A,s):- istrue(A,p),istrue(A,m).

Here correlated([s,t],[a,s,t]) holds because
not(different([s,t],[a,s,t])) and
not(inconsistent([s,t],[a,s,t]) hold. Note that istrue(A,p) is true if p in A.

The not predicate in SWI Prolog [6], implements negation as failure defined as usual the
cut-fail combination given as

not(Goal).
not(Goal) :- Goal, !, fail.

The following example based on our implementation illustrates the above
definitions.

post(attack1,[p,y,n,z,s,t])
Pre(attack2,[s,t,z])
Conflict(A,s):- istrue(A,p), istrue(A,m)
conflict(R,t):- istrue(R,g)

Our implementation gave the following results:

?- correlated([s,t,z], [p,y,n,z,s,t]).
Yes

We then modified the example as follows:

post(attack1, [p,y,n,z,s,t])
Pre(attack2, [s,t,z])
Conflict(A, s):- istrue(A, p),istrue(A, n)
conflict(R, t):- istrue(R, g)

The result we obtain for the same query now is:

?- correlated([s,t,z], [p,y,n,z,s,t]).
No

 K. Sarda, D. Wijesekera, and S. Jajodia

382

We now define attack chains using the following predicates and rules, some of
these are available in Prolog.

1. nth(n,Q,T): the nth element of the list Q is T.
2. composed([R],Q,P): list P is generated by pre-pending R to Q.
3. length(S,N): the cardinality of S is N.
4. union(P,T,S): S unifies with the union of lists P and T.
5. pre(D,Prelist): Prelist is the precondition for attack D.
6. post(C,Postlist): Postlist is the post condition of attack C.
7. alist(W,Prelist,Postlist): Prelist and Postlist are respectively the collections

of preconditions and post conditions of the list W of atomic attacks.
8. chain(P): P is a list of correlated and consistent attack lists (i.e. alists), defined as

follows:
 chain(S):- length(S,1), present(X,S),
 alist(X,Prelist2,Postlist2).
 chain(P):-composed([R],Q,P),

alist(R,Prelist,Postlist),chain(Q),nth1(1,Q,T),
alist(T,Prelist1,Postlist1),
correlated(Prelist,Postlist1).

Here P is defined as a chain if every element of the chain is an attack list, and each
attack list element is correlated to the next attack element.

An attack path it is an attack chain that causes the network to reach an exploited
state. Thus attack paths are special attack chains that are harmful and must be
avoided. The attack path definition is built using the predicates and rules listed below.

1. network(n,P): all predicates in P are initially true for network n.
2. exploits(n,A): list of attacks A cause network n to reach an undesirable state.
3. last(x,L): x is the last element of L.
4. totalcorrelation(P1,P2): there is no element unifying with some element of P2

but with none in P1 and there is no (group of) element(s) in P1 conflicting with some
element of P2, defined as

totalcorrelation(P1,P2):-not(different(P1,P2)),
 not(inconsistent(P2,P1)).

5. attackpath(N,A,X): an attack chain given by the list A can be launched on network
N to accomplish the exploited state caused by attack X, defined as follows:

 attackpath(N,A,X):- network(N, Initconditions), chain(A),
 pre(X, Prelistc), exploits(N, Exploit),

 present(X,Exploit),
 last(X,A),prechain(A,Prelistd),
 totalcorrelation(Initconditions,Prelistd).

Table 1. Attack Information

Attack Name Attack Preconditions Attack Post conditions
Attack 4 pre(attack4,[u]) post(attack4,[a])
Attack 5 pre(attack5,[v,w]) post(attack5,[b,c])
Attack 6 pre(attack6,[x]) post(attack6,[d])
Attack 7 pre(attack7,[e,f]) post(attack7,[u,v,w])
Attack 8 pre(attack8,[g,h]) post(attack8,[x])
Attack 9 pre(attack9,[c,d]) post(attack9,[q,r,i])

Implementing Consistency Checking in Correlating Attacks 383

We now consider an example using these predicates with the configuration given
in Table 1.

network(N,[e,f,g,h]), exploits(N,[attack1]).
conflict(A,t):- istrue(A,i).

When these facts were provided to the model, the output obtained on using the
attack path definition was as follows:

?- attackpath(N, [[attack1], [attack2,attack3],
[attack4,attack5,attack6], [attack7,attack8]], attack1).
Yes

We now show that this attack path can be realized as a consequence of stated facts.
The attacker eventually needs to launch attack1. He initially launches attack7 and
attack8 in parallel. This can be done as the union of their preconditions e,f,g and h are
initially satisfied in n because of network(N,[e,f,g,h]). Consequently, their post
conditions u, v, w and x become true. As a result the attacker can launch attack4, attack5
and attack6 simultaneously. This is because the union of the post conditions of attack7
and attack8 are correlated to the union of the preconditions of attack4, attack5 and
attack6. This group of attacks allows simultaneous launching of attack2 and attack3.
Their post conditions validate the preconditions of attack1. Hence the attack path

‘[[attack1],[attack2,attack3],[attack4,attack5,attack6],[attack7
,attack8]]’ can be taken.

Comparing Results

We now show the difference between our attack correlation and that of CRIM [5]
using an example. To do so, consider a network n with an initial set of vulnerabilities
“e, f, g, h” with the set of attacks given in Table 2.

Table 2. Information of Attacks used in this example

Attack Name Attack Preconditions Attack Post conditions
Attack 1 pre(attack1,[p,q,r,t]). post(attack1,[m,n]).
Attack 2 pre(attack2,[a,b]). post(attack2,[p,t]).
Attack 3 pre(attack3,[c,d]). post(attack3,[q,r]).
Attack 4 pre(attack4,[u]). post(attack4,[a]).
Attack 5 pre(attack5,[v,w]). post(attack5,[b,c]).
Attack 6 pre(attack6,[x]). post(attack6,[d]).
Attack 7 pre(attack7,[e,f]). post(attack7,[u,v,w]).
Attack 8 pre(attack8,[g,h]). post(attack8,[x]).
Attack 9 pre(attack9,[c,d]). post(attack9,[q,r,I]).

Attack1 causes the exploit represented in the model as exploits(N,[attack1]).
Another condition specified in this scenario is that predicate i will violate t, expressed
as conflict(A,t):- istrue(A,i). According to the CRIM attack correlation definition in [5],
the only requirement is that preconditions of the precedent and post condition of the
antecedent attacks must unify. We have implemented this as:

correlated(C,D):- pre(D,Prelist), post(C,Postlist),
 present(X,Postlist), present(X,Prelist).

 K. Sarda, D. Wijesekera, and S. Jajodia

384

where C and D represent correlated attacks. When we used this modified attack
correlation definition, we get results as follows:

?- chain([[attack1],[attack2,attack9],
[attack4,attack5,attack6],[attack7,attack8]]).

 Yes

For the same example our definition gives:
?-

chain([[attack1],[attack2,attack9],[attack4,attack5,attac
k6], [attack7,attack8]]).

No

When the CRIM attack correlation definition is used, the model accepts the
occurrence of attack chain [[attack1], [attack2, attack9], [attack4,
attack5, attack6], [attack7, attack8]]. The post condition for attack9 is
[q,r,i]. Thus t is not satisfied, preventing occurrence attack1. Because our definition
checks the consistency between the two attacks, we are able to recognize that
[attack1] and [attack2, attack9] are not correlated, as they are inconsistent, thereby
removing the modeling inaccuracy of [5].

Conclusions

Correlating attacks is an important in TVA. We have demonstrated a limitation in the
correlation definition used in the CRIM model [5], which leads to non-executable
attack paths. We have proposed new correlation definitions that overcome this
limitation by using consistency checking between the post conditions of an antecedent
attack and the preconditions of a precedent attack correctly. As shown, although
expensive, omitting this consistency checking causes inaccurate attack path
computations.

References

1. Computer Oracle and Password System (COPS) information and software on the web at
<ftp.cert.org/pub/tools/cops>.

2. Internet Security Systems, System Scanner information at <http://www.iss.net>.
3. Network Associates, CyberCop Scanner information at <http://www.nai.com/

asp_set/products/tns/ccscanner_intro.asp>.
4. Ronald W. Ritchey and Paul Ammann. “Using model checking to analyze network

vulnerabilities.” In Proceedings 2000 IEEE Computer Society Symposium on Security and
Privacy, pages 156-165, Oakland, CA, May 2000.

5. F. Cuppens et A. Miège, “Alert correlation in a cooperative intrusion detection framework.”
IEEE Symposium on Research in Security and Privacy, Oakland, Mai 2002.

6. http://www.swi-prolog.org
7. Peng Ning, Yun Cui, Douglas S. Reeves, “Analyzing Intensive Intrusion Alerts Via

Correlation,” in Proceedings of the 5th International Symposium on Recent Advances in
Intrusion Detection (RAID 2002), LNCS 2516, pages 74--94, Zurich, Switzerland, October
2002.

 R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 385---390, 2004.
© Springer-Verlag Berlin Heidelberg 2004

LSAD: Lightweight SYN Flooding Attack Detector

Seung-won Shin, Ki-young Kim, and Jong-soo Jang

Electronics and Telecommunications Research Institute,
161Gajeong-dong, Yusung-gu, Daejon, Korea

{swshin, kykim, jsjang}@etri.re.kr
http://www.etri.re.kr/

Abstract. Currently, there are lots of approaches to detect SYN flooding, but
they require too many resources to manage most of ongoing traffic. We pro-
pose a simple and robust approach to detect SYN flooding attacks by observing
essential network information. Instead of managing all ongoing traffic on the
network, our approach only monitors SYN count and ratio between SYN and
other TCP packets. To make the detection mechanism robustly and easily, we
use EWMA (exponentially weight moving average) approach in SPC (statisti-
cal process control) [3] [10] [11]. It makes the detection mechanism much more
generally applicable and easier to implement. The trace-driven simulation re-
sults demonstrate that our proposal is efficient and simple to implement and
prove that it detects SYN flooding accurately and finds attack in a very short
detection time.

Keywords: network security, network intrusion detection system, SYN
flooding.

1 Introduction

To defend SYN flooding attacks [1], a lot of defense mechanisms have been pre-
sented, for example Syn cookies[5], Syn cache[7], SynDefender[6], Syn proxying[8]
and Synkill[9]. All of these approaches should be installed at the firewall of the vic-
tim server or inside the victim itself. Above approaches defend victims efficiently, but
they do not prevent network from lots of wasted SYN packets, because the defense
line is close to the victim and network resources are wasted by huge amount of SYN
packets. To compensate these, Haining W et al proposed new technique defending
SYN flooding attack at the leaf router. Their approach protects network resources
from exhaustion with very simple and robust mechanism [2].

We also made our focus like Haining W et al, because it protects victim and also
avoids network resources consumption. However, although their approach is efficient
to detect SYN flooding and protect network resources, it has a problem to maintain
all incoming TCP session information. We examined our traffic traces and found that
hundred thousands sessions have to be maintained. To overcome this, researches
about session management are proposed using timeout or other threshold value, but
these makes decrease the possibility to detect all suspicious flows. For this reason, we
tried to find method to detect SYN flooding without storing huge amount of sessions.

 S.-w. Shin, K.-y. Kim, and J.-s. Jang 386

In this paper, we present and evaluate LSAD (Lightweight SYN flooding Attack
Detector) system for detecting SYN flooding efficiently. Our main focus is to solve
problem mentioned above paragraph and detect SYN flooding without too much
burden. LSAD system detects SYN flooding by simple statistical approach. Instead of
monitoring all ongoing packets on the network or the victim server itself, LSAD
system only watches the TCP SYN packets and other TCP packets (TCP packets
without SYN flag). If SYN flooding attacks happen and SYN number increases, then
LSAD finds it by these. The first parameter of SYN count shows us dynamic behav-
ior of TCP SYN. However, it presents energetic changes in most periods [4], so we
add the ratio value between SYN packets and other TCP packets to our consideration.
Because the ratio does not change seriously in normal status [4], it can compensate
the instability of SYN count. If serious change happens in both parameters, LSAD
system finds that it is possible to occur SYN flooding.

The rest of this paper is organized as follows. In Section 2, we describe the LSAD
system and explain statistical approaches that we used. Section 3 shows the simula-
tion environment and analysis results and our discussions are also provided. Finally,
future works and conclusion are drawn in Section 4.

2 LSAD

The main goal of LSAD system is to detect SYN flooding attack without high cost.
The simple statistical detection approach of LSAD system makes this possible. Unlike
the other approaches, LSAD system does not monitor the entire flows on the network.

2.1 EWMA Algorithm

The performance of EWMA control chart is approximately equivalent to that of the
cumulative sum chart (CUSUM chart) [3] [10] [11], and in some ways it is easier to
set up and operate. As with the CUSUM, the EWMA is typically used with individual
observations and this chart was introduces by Roberts. The exponentially weighted
moving average is defined as like followings.

1)1(−−+= i ii zxz λλ (1)

Where 10 ≤< λ is a constant and the starting value (required with the first sam-
ple at i = 1) is the process target, so that z0 = µ0 (µ0 is the target value).

Sometimes the average of preliminary data is used as the starting value of the

EWMA, so that z0 =
−
x . To demonstrate that the EWMA zi is a weighted average of

all previous sample means, we may substitute for zi-1 on the right-hand side of equa-
tion (1) to obtain

])1()1(

])1()[1(

2
2

1

21

−−

−−

−+−+=

−+−+=

ii i

ii ii

zxx

zxxz

λλλλ
λλλλ

Continuing to substitute recursively for zi-j, j = 2,3,…, t, we obtain

 LSAD: Lightweight SYN Flooding Attack Detector 387

 0

1

0

)1()1(zxz i
ji

j
i

j
i λλλ −+−= −

−

=

 (2)

Since the EWMA can be viewed as a weighted average of all past and current ob-
servations, it is very insensitive to the normality assumption. It is therefore an ideal
control chart to use with individual observations. If the observations xi are independ-
ent random variables with variance σ2, then the variance of zi is;

])1(1)[
2

(222 i
zi

λ
λ

λσσ −−
−

= (3)

Therefore, the EWMA control chart would be constructed by plotting zi versus the
sample number i (or time). The center line and upper and lower specification limits
(USL and LSL) for the EWMA control chart are as follows.

])1(1[
)2(

2
0

iLUSL λ
λ

λσµ −−
−

+= (4)

Center Line = µ0

])1(1[
)2(

2
0

iLLSL λ
λ

λσµ −−
−

−= (5)

In equations (4) and (5), the factor L is the width of the control limit [10] [11].

2.2 How to Feel the Sign of SYN Flooding

To detect SYN flooding, we used received SYN number and ratio between SYN
packets and other TCP packets information. The parameters that LSAD has are like
followings.

 Received number of SYN packets [Parameter A]

packets SYNexcept packets TCP Received

packets SYN Received
 [Parameter B]

LSAD system applies EWMA method into both parameters to find change. This
testing approach is similar to the algorithm as we mentioned in above section 2.1. To
find the change of each Parameter, we used EWMA like followings. From the equa-

tion of (2), we match the variables of equation (2) to our data. The ix means both

Parameters and λ means the parameter that controls how much current prediction is
influenced by past observations. For Equation (4) and (5), we applied 20 into the
target value µ0, because we know that the received number of SYN packets in 10 ms
does not exceed the 20 in most cases from our previous research [4]. For Parameter B,
we chose the value larger than 0.2, because it does not exceed 0.2 in our previous
research [4]. Based on above assumptions, we make equation (2) and (4) reality (be-

 S.-w. Shin, K.-y. Kim, and J.-s. Jang 388

cause we are just interested in increasing traffic, we only consider USL). Conse-
quently, we just check whether EWMA results of test traffic traces are larger than
USL.

3 Simulation and Results

To evaluate and validate the LSAD system, we have made trace driven simulation
experiments. We have collected traces from E Research Institute. Our simulation
program is written in C language and matlab script language and running on Linux
platform and Matlab program.

3.1 Traffic Traces

For this analysis, we have used traces collected on E Research Institute in Korea.
These traces were taken on a 150 Megabit Ethernet connecting E Research Institute to
the Internet. We think there is only few malicious packets in our traces, because its
internal network is protected by high performance IDS (Intrusion Detection System)
and Firewall. We also made attack traffic by IXIA traffic generator. We made 4 SYN
flooding attack traces with changing sending rate from 500 to 1200. And our attack
traces have 4 target victims.

3.2 Detect SYN Flooding Attack

To detect SYN flooding Attack, we have applied proposed EWMA approach on all
the normal traffic traces. Figure 1 and Figure 2 represent the normal traffic behavior
for captured normal network. The test statistics, EWMA results of each parameter, for
all traces are plotted in following Figures. In Figure 1, EWMA test results of Parame-
ter A are represented and EWMA results of Parameter B, are shown in Figure 2. We
selected λ as 0.45 and L (the width of control limit) as 4 in Equation (4) and (5). And,
we chose µ0 as 25 for Parameter A and 0.25 for Parameter B. Because our previous
research [4] showed that the received SYN number in every 10ms does not exceed 20
and ratio value does not exceed 0.2 (we give µ0 a margin – 5 and 0.5 to each parame-
ter - to alleviate false-positive).

We also applied our proposed scheme on the attack traces. The simulation results
are plotted in Figure 3, showing that the EWMA results exceed the flooding threshold
“USL” for both Parameters at attack time. The test values suddenly increase when the
SYN flooding attack comes about. Once the flooding attack is detected, LSAD sys-
tem can send alarm to other security appliance or security administrator. At this point,
we have to think about other important issue of detection time. In some sense, the
detection time becomes another question, because it can affect to the performance of
defense system. If detection system did not find SYN flooding attack for a long time,
it could not protect victims from the attack (it was already damaged by attack). Be-
cause of this, defending system has to detect attack as soon as possible. LSAD finds
attack very quickly, because our proposed scheme is very sensitive to abrupt change.

 LSAD: Lightweight SYN Flooding Attack Detector 389

Fig. 1. EWMA test results of Parameter A (Normal Traffic)

Fig. 2. EWMA test results of Parameter B (Normal Traffic)

Fig. 3. EWMA test results of Parameter A(top) and B(bottom) (Attack Traffic)

 S.-w. Shin, K.-y. Kim, and J.-s. Jang 390

4 Conclusions

This paper presented LSAD system that is a simple and robust SYN flooding detec-
tion mechanism without serious flow management algorithms. LSAD uses simple
statistical detection approach (EWMA). Our approach can be a sensor example to
detect SYN flooding or other DDOS attack without high cost. The distinguishing
features of LSAD include, it does not monitor all flows until SYN flooding starts and
requires low storage spaces and computation power; it is immune to SYN flooding
itself by its simple architecture; EWMA approach is employed, making it robust and
simple.

References

1. D. Moore, G. Voelker, and S. Savage, “Inferring Internet denial of service activity”, In
Proceedings of USENIX Security Symposium, 2001

2. Haining Wang, Danlu Zhang, Kang G. Shin, “Detecting SYN Flooding Attacks”, Proceed-
ings of IEEE INFOCOM, 2002

3. David Drain, “Statistical Methods for Industrial Process Control”, Chapman & Hall, 1997
4. Seung-won Shin, Ki-young Kim, Jong-soo Jang, “Analysis of SYN Traffic: An Empirical

Study”, Technical Document in ETRI, 2004
5. D. J. Berstein and Eric Schenk, “Linux Kernel SYN Cookies Firewall Project”, http://

www.bronzesoft.org/projects/scfw
6. Check Point Software Technologies Ltd. SynDefender http:// www.checkpoint.com/ prod-

ucts/firewall-1
7. J. Lemon, “Resisting SYN Flooding Dos Attacks with a SYN Cache”, Proceedings of

USENIX BSDCon’2002, 2002
8. Juniper Networks Integrated Firewall Appliance, http://www.juniper.net
9. C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram and D. Zamboni,

“Analysis of a Denial of Service Attack on TCP”, Proceedings of IEEE Symposium on Se-
curity and Privacy, 1997

10. Douglas C. Montgomery, “Introduction to Statistical Quality Control”, WILEY, 2001
11. Douglas M. Hawkins, David H. Olwel, “Cumulative Sum Charts and Charting for Quality

Improvement”, Springer, 1998

UGSP: Secure Key Establishment Protocol
for Ad-Hoc Networks�

Neelima Arora1 and R.K. Shyamasundar2

1 Currently at: Intel Technology Pvt. Ltd, India
neel@iitbombay.org

2 School of Technology and Computer Science, Tata Institute of Fundamental
Research, Mumbai, India
shyam@tcs.tifr.res.in

Abstract. In this paper, we propose a secure key establishment proto-
col, called UGSP, for wireless ad-hoc networks using tamper proof hard-
ware (TPH). UGSP results in creating a secure communication channel
between two nodes without any third party involvement and hence is suit-
able for ad-hoc networks. UGSP is robust to man-in-the-middle attack,
passive eavesdropping, active impersonation attacks ensuring source au-
thentication, data confidentiality and data integrity for communication.
The system is amenable to dynamic addition of new members. A com-
parative evaluation of UGSP with other approaches along with issues of
scalability and cost-effectiveness are discussed.

1 Introduction

The salient features of ad-hoc networks pose both challenges and opportunities
in achieving security goals characterized by attributes like availability, confiden-
tiality, integrity, source authentication and nonrepudiation [13]. Nodes, roaming
in hostile environment (e.g., a battlefield) with relatively poor physical protec-
tion, have non-negligible probability of being compromised. Therefore, we should
not only consider malicious attacks from outside a network, but also take into
account the attacks launched from within the network by compromised nodes.

One of the largely investigated areas of ad-hoc network security research is
devoted to secure routing protocols [11]. However, most of the routing schemes
known neglect the crucial challenge in ad-hoc security: key establishment and
key distribution. Protocols such as Ariadne[3], SPINS[9], TESLA[10], SEAD [4]
and SRP [8] all assume the pre-existence and pre-sharing of secret and/or public
keys for all the nodes. Recently some attempts for key distribution in ad-hoc
networks have been proposed [13, 6, 12, 2] using variants of threshold certificates
and trust. However, these do not address resource limitations of devices and

� The work was done under the Futuristics Technologies: Computer and Network
sponsored by Ministry of Information Technology, New Delhi, India. The authors
thank Prof A. Perrig (CMU) for many suggestions.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 391–399, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

392 N. Arora and R.K. Shyamasundar

further, it must be noted that while threshold cryptography is attractive, it is
expensive. Resurrecting Duckling paradigm [12] proposed for ubiquitous com-
puting environment requires different types of hardware, master-slave notions
and needs close proximity of the entities. While the technique [2] is interesting,
it needs experimental validation.

Our aim is to arrive at a peer to peer protocol, for communication among
a dynamic user group (DUG), that is resilient against the above mentioned
attacks while maintaining confidentiality, integrity and authenticity. Even if the
node gets compromised, it should not allow the attacker to gain access to any
useful secret of the network. Typical examples of DUG include employees of
a company, mobile cell-phone users of a particular network etc. Our protocol
referred to as UGSP (User Group Security Protocol) uses a cheap uniform TPH,
and overcomes a majority of the deficiencies mentioned above.

Rest of the paper is organized as follows: section 2 describes the structure
of DUG and system architecture for UGSP followed by UGSP protocol in section
3. Security and performance analysis are provided in section 4 and 5 respectively.
The paper concludes with section 6.

2 System Architecture for UGSP

One of the characteristics of ad-hoc networks is that the topology and member-
ship is dynamic. In view of this, we shall first show how dynamic groups can be
constructed and communication can be achieved among them in a secure way.
Such a scenario is general and can overcome the drawback of explicit distribution
of keys a priori. We shall call a typical dynamic group to be user group (UG) that
can be authenticated using some information. To achieve secure communication
among members of UG, we assume the following characteristics:

1. GroupName (GN): Each group will have a GroupName, it will be used by
the user to access the right authentication information at the time of com-
munication.

2. Group Access Code (GAC): For each UG, there will be a GAC and will be
used during imprinting users of the group and for authentication at the time
of communication.

3. UG owner: has the following functions: (a) assign a GAC for the UG, call
it My − GAC (MGAC), (b) assign a GroupName for the UG, and (c) dy-
namically imprint nodes that want to be a part of UG. Any node can create
its own group and be the owner. After the nodes are imprinted by the UG
owner node, that node comes on par with any other node in the UG and has
no special privilege during communication.

The structure of TPH for UGSP shown in Fig. 1 has:

1. Access Module: contains (i) an universally unique, unalterable id, (ii) write
only memory for hardware access code (HAC) (attempt to overwrite the

UGSP: Secure Key Establishment Protocol for Ad-Hoc Networks 393

Authenticate (A)Generate (G)

1GN GN 2

2GN1GN

Handshaking Module Access Module

1 2

Communication Module

Imprint (I)GGAC

PRIVATE KEY

MGAC
2

Hash
Function (HF)

GAC GAC GAC

HAC

id

Validate
 (V)

MGAC
1

MGAC
2

MGAC

PRIVATE KEY PUBLIC KEY

GetImprinted
 (GI)

.........

.........

.........

.........

GN

GN

n

n n

n

: Denotes write
 −only memory

GGAC : Global GAC
MGAC : My GAC
 Code
GAC : Group Access
 Code
HAC : Hardware Access
GN : GroupName

: Denotes a
 functional block
: Denotes read−
 write memory
: Denotes non−
 erasable memory

Fig. 1. TPH Hardware for UGSP Node

HAC will reset all other memory locations to null), and function V alidate,
V , for local authentication of the user with the hardware. If HAC ′ is the
value given by the user, then
V (HAC ′) = if HAC ′ = HAC then TRUE elseFALSE

Only after the user correctly enters the HAC, access to hardware is granted;
otherwise the TPH will remain in locked state.

2. Handshaking Module: (i) has n write-only memory slots for writing My-
GAC (MGAC) for the UG where the node is the owner, (ii) has n memory
slots for writing the corresponding GroupNames for UGs. The reason that
we store GN on TPH does not enhance security but makes the data more
portable, (iii) has a write-only memory slot where Global-GAC (GGAC)
will be written by the manufacturer of the TPH (same for all the hardware
pieces), and (iv) has memory for private key (PRK) that is not accessible to
others, and has Memory slot for the corresponding public key (PUK) (these
two values are unique for all the hardware pieces and will be determined by
the manufacturer of the hardware). The module realizes two functions:

(i) Imprint(I): When invoked, user will be asked whether he wants to set up a
new UG or imprint the other node for any of the existing UGs. In case of a new
UG, the function prompts the user to input a MGAC value and a GroupName
for the group. The value is then encrypted using the other node’s public key and
sent to the other node. The MGAC and GroupName are then written in their
memory slots in this module. If UG already exists, the user inputs GroupName,
the corresponding MGAC is encrypted and sent. That is,
If node i creates a new UG and adds node j as a member:

Imprint(MGAC, GN, PUK(j)) =
HF (GGAC, id(i), EPUK(MGAC), GN), EPUK(MGAC), GN

If node i already owns a UG and adds node j as a member:
Imprint(GN, PUK(j)) =

HF (GGAC, id(i), EPUK(MGAC), GN), EPUK(MGAC), GN

394 N. Arora and R.K. Shyamasundar

(ii) GetImprinted(GI): GI(EPUK(MGAC), GN, m) decrypts MGAC using PRK,
writes MGAC and stores GN in the memory slot m of the communication module
as directed by the user.
3. Communication Module: It has (i) n write-only memory slots for writing GAC
for the UG where the node is a user, (ii) n memory slots for writing the corre-
sponding GroupNames for UGs, (iii) non invertible pseudo random hash func-
tion, HashFunction, HF (w, x, y, z), embedded in the hardware [7] and (iii) has
two functions:

(i) Generate(G) : G(y, z) = HF (GAC, id, y, z)
(ii) Authenticate(A) : A(w, id′, y, z) =

if w = HF (GAC, id′, y, z) then TRUE else FALSE

The hardware is tamper resistant in the following way: (i) Codes of func-
tions (GI, I, V, HF, G, A) and id cannot be accessed directly, and (ii) inputs
coming from write-only memory to hardware functions are hidden and cannot
be changed during the evaluation.

3 UGSP: User Group Security Protocol

The user will carry the TPH with him as a token (just as a ATM user carries
ATM card with him). In order to use the hardware, the user will be required to
interface it with his mobile device and to enter the HAC correctly, which will be
locally authenticated within the hardware. Only after successful authentication,
hardware can be used subsequently.

Notation:

– id(j) denotes the identity of node j, GN refers to the GroupName of the
UG in context, N denotes the nonce, Ksy denotes the symmetric session key
established between the pair of communicating nodes and (M1 , M2) denotes
concatenation of M1 with M2.

– HF(w,x,y,z)referred to as MAC denotes the pseudo random hash function in
the TPH, having four input parameters w, x, y, z.

– PUK, PRK are hard coded public and private keys of the node from
Handshaking Module; EKj

(N) denotes N encrypted with Kj .

Operational Steps: The protocol consists of two phases. Phase I corresponds
to bootstrapping of valid nodes while Phase II is session specific and happens
when nodes want to communicate with each other.

Phase I (Network formation): In Step 1, user inputs the HAC when
prompted to do so, which will be compared with the HAC stored on the TPH.
In Step 2, the communicating nodes, which have been authenticated in step 1,
will exchange RSA public keys. Nodes use function G to generate the packet
for transmitting and every node on receiving the data invokes function A to
evaluate the authenticity of the packet against id of the sender node, GAC, and

UGSP: Secure Key Establishment Protocol for Ad-Hoc Networks 395

data received. If that fails, the receiver aborts; otherwise it proceeds to the next
step (cf. Fig. 3).

Phase II (Communication among UG): will be invoked when any node
wants to communicate with some other node in the network. During step 3,
the two communicating nodes establish a symmetric key. Directly using the
private-public key pair will be bandwidth and computation expensive. Hence, we
establish a symmetric key which ensures the establishment of a secure channel
between two nodes. The trasitions are as shown in Fig. 5.

The following scenarios capture the functions of UGSP:

1. Creating a new UG and adding members: As already mentioned, when
two nodes want to communicate they first check (using GroupName) whether
they are already a part of the same UG or one of the nodes own an UG and wants
to add the other node. If not, one of the nodes creates a new UG and imprints
the other node using function I. Packet description and algorithm is given in
Figure 2 and 4. Node i is creating a new UG and is adding a new member j to
the UG. In Step 1, both users authenticate to the hardware using valid HAC.
This can be thought of as if the smart card PIN is stored on the smart card
and which can only be read by the smart card reading machine. Hence, user
authentication can be done by a standalone ad-hoc smart card machine, not
connected to the bank’s back-end server, by comparing the PIN stored on the
card with the PIN entered by the user. In Step 2, node j sends his PUK to node
i. Node i validates the authenticity of PUK by invoking the function A in its
hardware. Node i is able to generate the same MAC using his hardware because
he has the same GGAC in his Handshake Module. After validation, i creates
a new UG by invoking function I and assigning a GroupName and a MGAC
to the UG. Function I encrypts MGAC with PUK of node j, generates MAC
of the data and sends it across. Node j now authenticates the MAC, and passes
the encrypted MGAC to its GI function, which decrypts MGAC and writes
it to the Communication Module of the hardware along with the GroupName.
Thus, node j is imprinted dynamically.
2. Joining an already existing UG: The packet and protocol description
will be the same as given in Figure 2 and 4. The only difference will be that in
this no new UG is created.
3. Communication among members of a UG: Here, node i is the sender
and node j is the receiver. GAC for the UG is matched with various GACs by the
GroupName. After one of the nodes has imprinted the other node dynamically,
the communication takes place as described in Phase II (cf. Fig. 5).

Most previous work on secure ad-hoc network relies on asymmetric cryptog-
raphy for establishing security parameters every time. However, computing such
signatures on resource-constrained nodes is expensive and hence, may not be the
ideal solution. A protocol with shared key is the most generic option, as it is not
expensive both in terms of bandwidth and computation. UGSP uses the Public
Key operations in a limited way as compared to other protocols.

396 N. Arora and R.K. Shyamasundar

4 Security Analysis

Creating a UG is a local operation between the owner and the TPH, protected by
HAC. Thus, we analyze in detail the security properties of UGSP while adding
a user and during communication between two nodes.

Packet No. Packet Description
2.a : j → i : HF (GGAC, id(j), N1, PUK),

N1, PUK, id(j)
2.b : i → j :
HF (GGAC, id(i), EPUK(MGAC),

GN), EPUK(MGAC), id(i), GN

Fig. 2. Description of packets when Node i is imprinting Node j

 hardware access code
 authenticated with the

 else abort

2. User j is locally1. User i is locally
 authenticated with
 the hardware access
 code else abort

4. Authenticate
 if authenticated
 then generate
 the 1024 bit RSA
 key pair, generate
 MAC using function
 G and transmit
 else abort

 using A
3. Generate 1024bit
 RSA key pair,
 generate MAC using

 send the packet
 function G and

5. Authenticate

if authenticated
using function A

then generate MAC
using function G
and trasmit

 if success
 then store the various
 values exchanged
 so far and proceed
 else abort

6. Authenticate using A

10. Verify the MAC
 using function A

9. Generate the MAC
 using function A

12. Verify the MAC
 using function A

PHASE 2 : Session Specific

Step 3

8. Verify the MAC
7. Generate a 64 bit
 DES symmetric
 key and use G to
 generate MAC

 using function A

Packet 3.a

Packet 3.b

Packet 3.c
11. Generate the MAC

Packet 2.a

Step 1

SENDER
node i

PHASE1 : Bootstrapping

node j
RECEIVER

Step 2

Packet 2.b

Packet 2.c

Fig. 3. Communication Between Nodes
(cf. labels to Fig. 5)

1. User i is locally
 authenticated with
 the hardware access
 code else abort hardware access code

 authenticated with the
2. User j is locally

 else abort

4. Authenticate received
 MAC against id, PUK
 and GGAC

5.Use function Imprint
 to encrypt the MGAC
 with PUK and to write
 it in Communication

 also along.
 Module. Send GN

6. Authenticate the MAC
 received against GGAC,
 id and GN
7. Invoke function GI, and
 pass the encrypted MGAC

 imprint the hardware
 and GN to it. This would

Step 2 3. Send request to become
 UG member by sending

 PUK and the correspon−
 −ding MAC

Packet 2.b

Packet 2.a

Step 1
Node i Node j

Fig. 4. Imprinting algorithm at
nodes (Packets as in Fig. 2)

Security while adding a user: While adding an user to any UG, GGAC and
GAC of the UG are both needed; otherwise a valid MAC in packet 2.b (refer
Figure 4) cannot be formed and hence, will be rejected by the GI function of the

UGSP: Secure Key Establishment Protocol for Ad-Hoc Networks 397

PHASE I : Bootstrapping
Step 2 : exchange public keys

2.a : i → j : HF(GAC, id(i), N1, Ki), N1, Ki,
id(i), GN

2.b : j → i : HF(GAC, id(j), EKi(N1), Kj),
N2, Kj, id(j)

2.c : i → j : HF(GAC, id(i), EKj(N2), ∗)

PHASE II : Session specific
Step 3 : establish a shared symmetric
key using the established public key
3.a : i → j : HF(GAC, id(i), N3, EKj(Ksy)),

N3, EKj(Ksy)
3.b : j → i :
HF(GAC, id(j), EKsy (N3), EKi(Ksy))
3.c : i → j : HF(GAC, id(i), EKsy (id(i)), ∗)

Fig. 5. Communication between i & j

node. GAC is known only to the UG owner and hence will not be accessible to the
attacker even from a compromised UG member. GGAC is written in the write-
only memory, and hence, cannot be known outside the TPH. Generating hash
digest (MAC) with GGAC as a common input at both the nodes is equivalent
to making the hash function unknown – similar to those envisaged in [1].

Security while imprinting: In this case, when the attacker gets the packet
during the transition 2.b (cf. Fig. 4),MGAC cannot be decrypted as PRK is
not known outside the TPH (decryption happens inside GI). Thus, an adversary
cannot get the GAC of the UG.

Security while communication
1. Attack from outside the network: A node outside the network means that

it does not have the TPH token configured with the GAC for that
group. An attacker node from outside the network will generate a MAC corre-
sponding to transition packet 2.a (cf. Fig. 3), that cannot be authenticated at
receiving node due to the non-availability of GAC for the UG. If the attacker is
at receiving end then it will fail to authenticate itself to the sender as it fails to
form a valid Packet 2.b (cf. Fig. 3) due to a different GAC.

2. Attack from a compromised node: The attacker is assumed to have the
TPH configured with the group access code for that group. Here, two level of
attacks are possible:
(i) Attacker does not know the HAC: The authentication will fail during Step 1
(cf. Fig. 3). Hence, the attacker will not be able to use the hardware token. While
if the attacker tries to overwrite the HAC, the other authentication information
(such as GGAC and GACs, PRK etc.) are reset to null (property of TPH)
and hence, earlier analysis holds. (ii) Attacker knows the HAC:The attacker

398 N. Arora and R.K. Shyamasundar

can send valid packets to the network, but with his own id. It cannot actively
impersonate any other node in the network (because of the properties of G). The
attacker cannot simulate the hardware behavior and try to pass any other id to
the model, as GAC is not known outside TPH. Thus, software simulation of the
TPH will also not work. When nodes realize that some node is compromised
then they can block that particular node from any further communication as
the compromised node can participate in communication using its own identity.

Note that as compared to a PKI based system, when the node gets com-
promised, the attacker could get the keys and will be able to actively impersonate
the user. Even though the keys may be password protected but should be acces-
sible through brute-force methods (such as bit by bit reading of the hard disk),
to which the TPH is resistant.

5 Performance Analysis

Scalability: In UGSP, the user could get an imprinted TPH from a UG owner
(an employee could get it from his company, or buy a blank TPH from the market
configured with HAC). In either case a user can either become a member of other
groups or initiate his own group. Under UGSP, nodes can securely communicate
if they are members of the same UG. If not, one of the nodes can imprint the
other node to become part of the same UG. After this, the key establishment
and data transfer can be initiated as per the ad-hoc network requirements. The
nodes can form a communication network with other nodes in DUG securely
without having to maintain either a database or a trusted third party; also,
no other authentication is needed for data transfer. Thus, UGSP is suitable for
ad-hoc wireless network security and is quite scalable.

Let us analyze UGSP with a PKI-based security from a scalability per-
spective. Under PKI each node will have a public-private key pair from a PKI
and uses the certificate for authentication. To verify a certificate the node has
to either go to a trusted third party (which is not possible in ad-hoc network)
or maintain its own database of public keys of the other nodes (security is not
guaranteed). The requirement of on-line authentication is not only costly but
also infeasible for ad-hoc networks.

Cost-effective Implementation: UGSP has been implemented using iButton
[5] which is off-the-shelf chip enclosed in a 16mm stainless steel costing less than
ten dollars in retail. It has an on-board 512-bit SHA-1 engine that can compute
160-bit MACs in less than 0.0005 seconds as compared to 0.5 seconds for a typical
micro-controller. iButton can be interfaced with a host system via serial/parallel
port or USB. It is tamper proof, quite rugged and can be mounted virtually
anywhere either indoor or outdoor. Our protocol has been tested with iButton.
Mobility of the nodes was also emulated and multi-hop routing scenarios were
evaluated against performance and energy cost. Note that, iButton offers the
functionality of write-only memory, laser etched id and function G- more than
that needed for UGSP. To provide a cheaper solution, we have completed the
design of the required TPH and are in the process of testing it on a FPGA board.

UGSP: Secure Key Establishment Protocol for Ad-Hoc Networks 399

6 Conclusion

To sum up, the proposed UGSP is resilient to attacks in ad-hoc networks forming
a DUG. UGSP is based on mutual authentication rather than only one sided. The
protocol provides dual security as we are using a TPH token and access code
for using the TPH. Thus, even if the configured hardware token is stolen, an
attacker cannot use the token without knowing HAC. Thus, it achieves security
using the paradigm of “Something you know, and something you get” providing
dual security to the network. The concept is similar to that used in ATMs (a
combination of card and PIN is required to access the account). Once a secure
communication channel is established among nodes, any of the existing protocols,
for instance TESLA [10], can be used to run the application. Tamper proof
nature of the hardware also makes UGSP secure against brute force attacks on
compromised nodes. Based upon our experience of using the prototype, we have
found that implementation of UGSP can be done in cost-effective way. UGSP is
scalable and robust to addition of new members in the User Group.

References

1. M. Bellare, R. Canetti, H. Krawczyk, Keyed Hash Functions and Message Authen-
tication, Proc. of Crypto, LNCS 1109, pp. 1-15, 1996.

2. S. Capkun, J-P. Hubaux, L. Buttyan, Mobility Helps Security in Ad Hoc Networks,
ACM MobiHoc 2003.

3. Y.C. Hu, A. Perrig, D.B. Johnson, Ariadne: A Secure On-Demand Routing Protocol
for Ad Hoc Networks, Mobicom, 2002.

4. Y.C. Hu, D. Johnson, A. Perrig, SEAD: Secure Efficient Distance Vector Rout-
ing for Mobile Wireless Ad Hoc Networks, IEEE Workshop on Mobile Computing
Systems and Applications, June 2002.

5. iButton Details: www.ibutton.com.
6. A. Khalili, W. Arbaugh, Toward Secure Key Distribution in Truly Ad-Hoc Net-

works, IEEE Workshop on Security and Assurance in Ad-Hoc Networks, 2003
7. L. Lamport, Password Authentication with Insecure Communication, CACM, 24,

pp. 770-771, 1981.
8. P. Papadimitratos, Z. Haas, Secure Routing for Mobile Adhoc Networks, Commu-

nication Networks and Distributed Systems Modeling and Simulation Conference,
Jan 2002.

9. A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, D.E. Culler, SPINS: Security Protocols
for Sensor Networks, Wireless Networks, 2002.

10. A. Perrig, R. Canetti, J.D. Tygar, D. Song TESLA Broadcast Authentication Pro-
tocol, RSA Cryptobytes, 2002.

11. E. M. Royer, C. K. Toh, A Review of Current Routing Protocols for Ad Hoc Mobile
Wireless Networks, IEEE Pers. Comm., Apr. 1999.

12. F. Stajano, R. Anderson, Resurrecting Duckling: Security Issues for Ad-hoc Wire-
less Networks, 3rd AT & T Software Symp., Oct. 1999.

13. L. Zhou, Z. Haas, Securing Ad Hoc Networks, IEEE Networks, 13(6), 1999.

Tracing Attackers with Deterministic Edge
Router Marking (DERM)

Shravan K Rayanchu1 and Gautam Barua2

1 Samsung India Software Operations,
Bangalore 560052, India
shravan.kr@samsung.com

2 Dept. of CSE, IIT Guwahati,
Guwahati 781039, India

gb@iitg.ernet.in

Abstract. Tracing the attackers in a distributed denial-of-service
(DDoS) attack is particularly difficult since attackers spoof the source
addresses. We present a novel approach to IP Traceback - Determinis-
tic Edge Router Marking (DERM). The proposed scheme is scalable to
thousands of attackers, is very simple to implement at the routers, has no
bandwidth overhead and needs minimal processing and storage require-
ments at the victim. As each complete mark fits into a single packet,
our scheme can also be used for per-packet filtering and as a congestion
signature in a pushback protocol. The traceback procedure requires a
small number of packets and can be performed during the post-mortem
analysis of an attack. Only limited co-operation is required from Internet
Service Providers (ISP). They do not have to reveal the topology of their
internal networks.

1 Introduction

DDoS attacks are among one of the hardest security problems to address because
they are simple to implement, hard to prevent, and difficult to trace. Ideally, the
network traffic of an attack should include information identifying the sources.
The Internet protocol (IP) specifies a header field in all packets that contains
the source IP address, which would seem to allow for identifying every packet’s
origin. However, the lack of security features in TCP/IP specifications facilitates
IP spoofing - the manipulation and falsification of the source address in the
header. Thus, an attacker could generate offending IP packets that appear to
have originated from almost anywhere. IP traceback methods provide the victim
with the ability to identify the address of the true source of the packets causing a
DoS attack. A perfect solution to this problem is complicated especially because
of the use of zombies and reflectors [1]. The exact origin of the attack may
never be revealed as even the MAC source addresses may be spoofed. Hence,
the traceback schemes try to solve the more limited problem of identifying the
closest router(s) to the attacker(s).

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 400–409, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Tracing Attackers with Deterministic Edge Router Marking (DERM) 401

2 Evaluation Metrics and Assumptions for Traceback
Schemes

We now present some of the important evaluation metrics essential in comparing
IP Traceback approaches. These were originally proposed in [2].

ISP Involvement : An ideal traceback scheme must be inserted with little infras-
tructure and operational changes and the actual traceback process must involve
little or no burden on the ISP. Number of attack packets needed for traceback:
Once the attack has been identified, the traceback scheme should require very
few packets to identify the attacker. Post-mortem Analysis: It must be possible
to initiate the traceback procedure and identify the attacker after the attack as
the victim might not be in a position to perform the analysis during the attack.
Processing, Bandwidth and Memory requirements: Processing and memory over-
head on routers must be minimal for the practical deployment of the scheme.
Since bandwidth is one of the bottlenecks during flooding attacks, the scheme
must not introduce additional bandwidth overhead. Ease of evasion: It must be
very difficult for an attacker who is aware of the scheme to orchestrate an attack
that is untraceable. Ability to handle major DDoS attacks: This reflects how well
a scheme can perform traceback under severe circumstances. An ideal scheme
should be able to identify all the attackers involved. Scalability: An ideal scheme
should be easily scalable.

Assumptions mentioned here are largely borrowed from the previous schemes
[3, 4]. The following are the basic assumptions for DERM:

1) An attacker may generate any packet, 2) Attackers may be aware that they
are being traced, 3) Packets may be lost or reordered, 4) An attack may consist of
just a few packets, 5) Packets of an attack may take different routes, 6) Routers
are both CPU and memory limited, 7) Routers are not compromised.

We first propose a basic scheme which we term Basic Deterministic Edge
Router Marking (Basic DERM) and then improve the scheme by introducing
multiple hash functions.

3 Basic Deterministic Edge Router Marking

The 16 bit packet ID field and the 1 bit RF in the IP header are used for marking
packets.Each and every packet that enters the network is marked; this removes
the problem of an attacker spoofing any mark. The packet is marked by the
edge ingress router to which the source is connected. Every incoming packet is
marked whereas outgoing packets are not marked.

3.1 Marking Procedure for Basic DERM

In order to identify an attacker, the victim needs to know the IP address of the
attacker which is 32 bits long. But all we have is the 16 bit ID field and the
1 bit RF field. The problem with other packet marking schemes which try to
construct the IP address of the attacker (or the router nearest to the attacker)

402 S.K. Rayanchu and G. Barua

in multiple packets is that the markings cannot be used for filtering purposes as
the victim cannot make out anything from the information available in a single
packet. Hence, we must try to convey the information about the IP address of
the attacker in a single packet. Instead of marking the packets with the IP ad-
dress of the attacker which is 32 bits long, it would suffice if we send a 16 bit
representation of the IP address. Of course, this would mean that there might
be some collisions. In Basic DERM, each incoming packet on the ingress router
is marked with a 16 bit hash of its own IP address. The ID field is used for this
purpose. The RF bit is kept aside as of now. The hash mark (HM(IP)) serves as
the representation of the IP address of the edge router. It is assumed that the
hash function HM is known to everyone including the DERM enabled routers,
all the destinations which would utilize HM and the attackers. It is further as-
sumed that HM is an ideal hash. An ideal hash function minimizes the number
of collisions.

ID = HM(IPA)

IPA

Fig. 1. Marking procedure for Basic DERM

3.2 Reconstruction by the Victim in Basic DERM

The victim has a table RecordTbl, each entry of which consists of the tuple
< HashMark, RECV bit, IngressAddList >, where HashMark is a possible
hash mark and IngressAddList is the list of all ingress edge router addresses
that have this hash mark. RECV bit is initialized to zero before the attack.
This bit indicates whether the victim has received a particular HashMark. The
reconstruction by the victim has two phases. One is the filtering phase and the
other is the Attacker Identification phase. The filtering phase starts when the
victim detects that it is under an attack. As with all the schemes, we assume that
there is an intrusion detection system (IDS) which helps us identify the attack
packets. Whenever an attack packet is identified, the HashMark of the packet is
noted and the corresponding RECV bit in the RecordTbl is marked as 1.

Filtering Phase in Basic DERM : One of the aims of the traceback schemes is to
aid the victim during the attack by helping it in filtering out the attack traffic. We
note down the HashMarks in the RecordTbl for which the corresponding RECV
bit is 1. These HashMarks can be used to identify the attack packets and to filter
them. Thus, unlike other schemes, the victim itself can filter the packets without
relying on the upstream routers to filter the traffic. Also wherever possible, the
upstream routers can use these HashMarks to filter the traffic before the entire
bandwidth at the victim is consumed. Protocols like Pushback [5] need some kind

Tracing Attackers with Deterministic Edge Router Marking (DERM) 403

of a congestion signature which it uses to identify attack packets. In this case
the HashMarks can be used as a congestion signature. Once an attack packet is
identified, the Hashmark can be used to filter further attack packets which are
now not sent to the IDS, whose load now decreases. The filtering simply consists
of checking whether the RECV bit corresponding to the HashMark is 1. If so,
the packet may be an attack packet and hence can be dropped. However, there
may be collisions with legitimate packets which will also get dropped. These are
called false positives.

Attacker Identification Phase in Basic DERM : In basic DERM, this involves
noting the list of ingress IP addresses corresponding to each HashMark which
has the RECV bit set to 1. This may result in many false positives as there will
be more than one ingress address corresponding to each HashMark. It is however
to be noted that only one packet from the attacker is enough to carry out the
Attacker Identification Phase. This is one of the advantages of DERM against
schemes like PPM[3].

3.3 Analysis

False positives during the Attacker Identification phase: Here we calculate the
number of legitimate user IP addresses that we falsely identify as an attacker. Let
M be the number of edge routers and d (=16) be the length of the HashMark. Let
N be the number of attackers. If there is only one ingress address corresponding
to each HashMark, then there will be no false positives because of the properties
of the assumed ideal hash function HM . Hence, the rate of false positives is
0, when M is less than or equal to the number of possible HashMarks, 2d.
Suppose that M is greater than 2d. The expected number of different HashMarks,
E(HashMarks) which have RECV bit = 1 after the Filtering phase can be
thought of as the expected number of faces turning up on a 2d sided die after
N throws. This is a special case of the classical occupancy problem which is
discussed in [7]. The expected number of different HashMarks is given by

E(HashMarks) = 2d − 2d(1 − 1/2d)N

Let the number of ingress addresses that match a particular HashMark be Nd =
M/2d. Thus the number of false positives would be

E(false positives) = (2d − 2d(1 − 1/2d)N) ∗ Nd − N

False positives during the Filtering Phase: Here we calculate the number of
legitimate user packets that might get discarded during the filtering phase, as
a result of falsely identifying them as attackers. In Basic DERM, the number
of false positives during the Filtering Phase is the same as the number of false
positives during the Attacker identification Phase.

Storage requirements for RecordTbl : The amount of storage required for
IngressAddList is Nd ∗ 32 bits and one bit for storing the RECV bit. Hence,
the total amount of storage required is (Nd ∗ 32 + 1) ∗ 2d bits.

404 S.K. Rayanchu and G. Barua

4 Multiple Hash DERM

In order to reduce the false positives that arise while identifying attackers, we
modify the scheme to use multiple hash functions of an IP address, HM1, HM2
.. HMf . As before all these are assumed to be ideal hash functions. The 16 bit
field now consists of a d bit HashMark and a log(f) bit Hash function identifier,
where f is the number of Hash functions used. Hence, d + log(f) = 16

4.1 Marking Procedure for Multiple Hash DERM

At startup, each DERM enabled router calculates f HashMarks by hashing its
IP address with the functions HM1, HM2, .. HMf . The router deterministically
marks the packets with any one of these f HashMarks. The processing required
for each packet would be limited to generating a small random number from 1
to f and then inserting the corresponding d bit HashMark in the packet along
with the log(f) bit hash function identifier.

4.2 Reconstruction by the Victim in Multiple Hash DERM

Instead of having a single RecordTbl, each victim must have f tables RecordTbl1,
RecordTbl2, .. RecordTblf . Each of the tables will have as entries the tuple
< HashMark, RECV bit, IngressAddList > which have the same meaning
as stated before. As before, the reconstruction will consist of two phases, the
Filtering Phase and the Attacker Identification Phase.

Filtering Phase in Multiple Hash DERM : As already stated, we assume that
there is an attack identifying algorithm that gives us the identified attack pack-
ets. Whenever the victim gets such a packet, the hash function identifier is noted
and then the corresponding RecordTbl is identified. Then, the RECV bit corre-
sponding to the HashMark in the packet is set to 1. These HashMarks are then
used for aiding the victim in filtering the attack traffic. It is important to note
that the number of false positives in this case would more than Basic DERM; in
fact it would be multiplied by f times. This is because of the fact that during
filtering the victim has to decide whether to drop the packet or not depending on
the HashMark of the packet and nothing else. As the number of different Hash-
Marks would now be multiplied by f , the false positives would also increase f
times.

Attacker Identification Phase in Multiple Hash DERM : In this phase, the victim
first collects all the ingress IP addresses in RecordTbl1 for which the correspond-
ing RECV bit is set to 1. Then it takes one IP address at a time and calculates
HM2, HM3 .. HMf for that IP address. Now if the RECV bits correspond-
ing to the HashMarks in the respective RecordTbls are set i.e. if the RECV
bit for HashMark2 is set in RecordTbl2, RECV bit for HashMark3 is set in
RecordTbl3, .. RECV bit for HashMarkf is set in RecordTblf , then that IP
address is identified as the attacker’s, else it is discarded. Because of these ad-
ditional checks, the number of false positives now decrease.

.

Tracing Attackers with Deterministic Edge Router Marking (DERM) 405

If (OUTPUT) ==1
then add IP2 to AttackerList

....

HM

HM1

HM2

HM3

HM4

RECV1

1

0

0

0

List

IP1,IP7

IP2,IP3

IP8,IP4

IP6,IP5

HM

HM1

HM2

HM3

HM4

List

IP2,IP8

IP3,IP1

IP5,IP4

IP6,IP7

RECV2

0

0

0

1

List

IP4,IP2

IP3,IP8

IP1,IP6

IP7,IP5

RECVf

0

0

1

0

HM

HM1

HM2

HM3

HM4

...
.

HMf

HM2

AND

OUTPUT

Fig. 2. Attacker Identification in Multiple Hash DERM

4.3 Analysis

False positives during the Attacker Identification phase: From the previous anal-
ysis, the expected number of false positives in RecordTbl1 is:

E(false positives) = (2d − 2d(1 − 1/2d)N) ∗ Nd − N

Consider RecordTbl2, the expected number of different HashMarks which
have RECV bit set to 1 for this table is:

E(HashMarks) = 2d − 2d(1 − 1/2d)N

Consider one of the false positives generated in RecordTbl1. For this to still be
a false positive it must match one of the above HashMarks. Thus the probability
that HM2 of this IP address will be accepted as a false positive after taking
RecordTbl2 into consideration is E(HashMarks)/2d Therefore, the probability
that a particular false positive of RecordTbl1 would still be a false positive after
considering all the remaining f − 1 tables is:

(E(HashMarks)/2d)f−1

Hence, the number of false positives that arise while identifying the attacker
is given by,

falsepos = ((E(HashMarks)Nd − N)(
E(HashMarks)

2d
)f−1

Thus, the maximum number of attackers NMAX (actually attacking net-
works) that we can afford such that, the number of false postives are less than
1% of N can be obtained by setting falsepos to 0.01N and solving for N.
False Positives During the Filtering Phase: The number of false positives during
the filtering phase of Multiple Hash DERM would simply be f times the number
of false positives during the filtering phase of Basic DERM: (E(HashMarks) ∗
Nd − N) ∗ f .

Storage Requirements for the Tables: Storage requirements would be simply be
f times the storage required for each table i.e. ((Nd ∗ 32) + 1 + d) ∗ 2d ∗ f bits.

406 S.K. Rayanchu and G. Barua

Expected number of packets required to identify an attacker : In case of Basic
DERM, only a single packet is required to carry out the Attacker Identification
procedure. However, in Multiple Hash DERM we require that the HashMarks
of all the f functions are collected. The expected number of packets E(f) that
are required to be sent by a particular attacker is given by a Coupon Collector
problem discussed in [7]:

E(f) = f(
1
f

+
1

f − 1
+

1
f − 2

+ ... + 1) ≈ f(log(f) + 0.577)

0

500

1000

1500

2000

2500

3000

3500

4000

10 11 12 13 14 15

Nmax

Fig. 3. Plot of NMAX against d for M = 217

Figure 3 shows the plot of the maximum number of attackers NMAX that we
can afford against the length of the HashMark d. If we assume that there can be
128, 000 ingress edge router addresses, then the maximum value of NMAX = 3800
occurs when d = 12 (and so there are 16 hash functions). The storage require-
ment at the victim end for this value of d is found to be 8 MB and the expected
number of packets required to be sent by an attacker for it to be identified,
E(f), is found to be 54. This shows that the algorithm can handle a large num-
ber of attackers with reasonable space and time requirements. The identification
of attackers can also be done with a relatively small number of packets.

On Low Volume Attacks

As stated earlier, Multiple Hash DERM requires only E(f) number of packets to
get all the f HashMarks of the attacker. In this section we discuss how DERM
fares for attacks constituting less than E(f) packets. Let N be the number of
attackers and let each attacker send m packets, where m ≤ E(f). Now, the
expected number of different HashMarks that the victim would receive from a
particular attacker is given by,

f ′ = f(1 − (1 − 1
f

)m)

The expected number of different HashMarks that have RECV set to 1 in
each RecordTbl is,

E(HashMarks) = 2d(1 − (1 − 1
2d

)
f′N

f)

In order to identify the attackers, we carry out the attacker identification
procedure as before. Since all the f HashMarks are not received, we cannot

Tracing Attackers with Deterministic Edge Router Marking (DERM) 407

identify the attackers by checking if the corresponding RECV bit is set to one
in the remaining f −1 RecordTbls. Instead, we identify the attackers by checking
if the RECV bit is set in atleast f ′ − 1 RecordTbls. However, this would result
in the increase of false positives. The number of false positives is given by,

(E(HashMarks) ∗ Nd − N)
(

E(HashMarks)
2d

)f ′−1

5 Related Work and Comparison

5.1 The Pushback Protocol

The main idea behind the pushback protocol [5] is that if routers can detect
packets belonging to an attack, they can then drop only those packets and thus
the DDoS problem would be solved. Bad traffic is characterized by an attack sig-
nature which we strive to identify; what can be really identified is the congestion
signature, which is the set of properties of a subset of traffic identified as causing
problems. The authors in [8] use the destination address (victim’s address) as
the congestion signature. Thus even legitimate traffic destined for the victim is
automatically dropped. One of the advantages of DERM is that it can be used
as an effective congestion signature in the pushback protocol.

5.2 Packet Marking Schemes

In these schemes, basically some traceback data is inserted in each packet so
that a victim can use this information to identify the attacker. To be effective,
packet marking should not increase a packets’ size. Furthermore, packet-marking
methodologies must be secure enough to prevent attackers from generating false
markings.

Probabilistic Packet Marking (PPM): In this scheme [3], the routers enroute
probabilistically mark packets. As with DERM, the 16 bit ID field in the IP
header is used for this purpose. Partial address information of the edges of a
router are marked. A victim reconstructs the attack path with these marked
packets. There are many advantages of DERM over PPM. The number of packets
required in DERM in order to identify the attacker is much less (1 packet for
Basic DERM and E(f) packets for Multiple Hash DERM) as compared to PPM
which requires a large number of packets. In PPM, the victim can reconstruct
the path to the attacker based on multiple packet markings, but there is no
guarantee that an individual packet will contain a marking that can identify
an attacker. One of the major disadvantages of PPM is Mark Spoofing. If an
attacker injects a packet with erroneous information and no router on the path
marks the packet, then the spoofed marks from the attacker would also reach
the victim.

Deterministic Packet Marking (DPM): In DPM ([4, 9]), only the edge routers
participate in the marking procedure. As in DERM, interfaces are used as atomic

408 S.K. Rayanchu and G. Barua

units of traceback. DPM tries to construct the ingress address of the router
closest to the source by fragmenting the IP address and sending it in two packets.
The ID field is used to carry one half of an IP address and the RF bit is used to
denote whether it is the first half or the second half of the IP address. A hash
of the IP address is also sent along with the fragmented IP address to aid the
victim in the reassembly procedure. Constructing an IP address from fragments
would require trying out all the possible permutations. This results in a high
number of false positives while assembling the fragments, especially in the case
of a DDoS attack where multiple fragments from multiple attackers are collected.
Per-packet filtering is not possible in DPM.

Pi and StackPi : Path Identification Mechanisms : In these schemes ([10, 6]),
each packet is marked deterministically by the enroute routers. The StackPi
mark created by a router is a 2 bit message digest of the concatenation of the
IP addresses of the previous router and the current router. Only the last eight
marks (16/2 = 8) made by the routers along the path reach the destination. In
any case, the packets travelling along the same path will have the same marking
so that the victim needs only to identify the StackPi marks of the attack packets
and filter out all further packets with the same marking. As multiple routes
may exist from a source to a destination, multiple sets of marks will have to
be handled. All routers need to participate in the scheme rather than only edge
routers and this is a restriction. As is the case with StackPi, DERM also requires
constructing a table (RecordTbl) which consists of mapping the HashMarks with
the IP addresses. This task is much easier in DERM as we have to collect the edge
router IP addresses and simply hash them to get the corresponding HashMarks.
Also, since these marks are only dependent on the edge routers we can have the
table constructed at a particular location and distribute them. But in StackPi,
the marks from a particular source will be different for two different hosts. Hence,
each host has to construct its own table. Moreover, in StackPi we are dealing
with addresses of hosts (not edge routers) which will be much more difficult to
maintain.

6 Conclusion and Future work

In this paper, we have presented Deterministic Edge Router Marking (DERM),
a technique to defend against DDoS attacks. The marking procedure for the
routers is simple and can easily be implemented. The processing overhead at the
victim during reconstruction is also very little. The reconstruction by a victim
is done in two phases, a filtering phase and an attacker identification phase.
The filtering phase involves setting a flag in a table based on marks in incoming
packets to help identify attack traffic and the using of these marks for filtering
the attack traffic. The Attacker Identification Phase consists of noting down the
IP addresses of ingress packets and checking them against filter table entries to
see whether the corresponding flag bits are set to 1. Analysis shows that about
3800 attackers can be handled with less than 1% false positives. This compares
favourably with other known techniques and where scaling is a major issue. The

Tracing Attackers with Deterministic Edge Router Marking (DERM) 409

storage requirements on the victim side are not very high. The expected number
of packets required to identify an attacker is also small. Further work involves
dealing with reflector attacks, where victim sites are used to reflect attack packets
to camouflage the actual sources. The issue of compatibility of the scheme with
IP fragmentation is another task for the future.

References

1. Paxson, V.: An Analysis of Using Reflectors for Distributed Denial-of-Service
Attacks. Computer Communication Review 31(3) (2001)

2. Belenky, A., Ansari, N.: On IP Traceback. IEEE Communications Magazine 41(7)
(2003) 142–153

3. Savage, S., Karlin, A.: Practical Network Support for IP Traceback. ACM SIG-
COMM (2000) 295–306

4. Belenky, A., Ansari, N.: IP Traceback with Deterministic Packet Marking. IEEE
Communication Letters, 7, (2003)

5. Ioannidis, J., Bellovin, S.M.: Implementing Pushback: Router-based Defense
against DDoS Attacks. Proceedings of the Symposium on NDSS 2002, San Diego,
CA. (2002)

6. Yaar, A., Perrig, A., Song, D.: StackPi: A New Defense Mechanism against IP
Spoofing and DDoS Attacks. Technical Report, Carnegie Mellon University (2003)

7. Feller, W.: An Introduction to Probability Theory and Its Applications (2nd edi-
tion). Vol 1 (1966)

8. Mahajan, R., et. al: Controlling High Bandwidth Aggregates in the Network.
Computer Communication Review 32(3), (2002) 62-73

9. Belenky, A., Ansari, N.: Tracing Multiple Attackers with Deterministic Packet
Marking (DPM). Proceedings of the IEEE PACRIM ’03, Victoria, B.C., Canada.
(2003)

10. Yaar, A., Perrig, A., Song, D.: Pi: A path identification mechanism to defend
against DDoS attacks. IEEE Symposium on Security and Privacy (2003)

Distributing Key Updates in
Secure Dynamic Groups�

Sandeep S. Kulkarni and Bezawada Bruhadeshwar

Department of Computer Science and Engineering, Michigan State University,
East Lansing MI 48824 USA Tel: +1-517-355-2387, Fax: 1-517-432-1061

{sandeep, bezawada}@cse.msu.edu

Abstract. We focus on the problem of distributing key updates in se-
cure dynamic groups. Due to changes in group membership, the group
controller needs to change and distribute the keys used for ensuring en-
cryption. However, in the current key management algorithms the group
controller broadcasts these key updates even if only a subset of users
need them. In this paper, we describe a key distribution algorithm for
distributing keys to only those users who need them. Towards this end,
we propose a descendent tracking scheme. Using our scheme, a node
forwards an encrypted key update only if it believes that there are de-
scendents who know the encrypting key. We also describe an identifier
assignment algorithm which assigns closer logical identifiers to users who
are physically close in the multicast tree. We show that our identifier
assignment algorithm further improves the performance of our key dis-
tribution algorithm as well as that of a previous solution. Our simulation
results show that a bandwidth reduction of upto 55% is achieved by our
algorithms.

Keywords: Secure Multicast, Key Distribution, Descendent Tracking,
Identifier Assignment.

1 Introduction

In group oriented applications, such as conferencing, networked gaming and news
dissemination, it is necessary to secure the data from intruders as the data is
confidential or it has monetary value. In the algorithms for secure group commu-
nication (e.g., [1–6]), a group controller distributes a cryptographic key, called
the group key, to all the group users. The group membership is dynamic. To
protect privacy of the current users, the group controller changes and securely
distributes the group key at each membership change. This rekeying is especially
needed when a user leaves the group and should no longer understand the group
communication.

� This work is partially sponsored by NSF CAREER 0092724, ONR grant N00014-
01-1-0744, DARPA contract F33615-01-C-1901, and a grant from Michigan State
University.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 410–419, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Distributing Key Updates in Secure Dynamic Groups 411

In the algorithms in [1–4], the group controller distributes additional keys
which are shared by different subsets of users. These shared keys reduce the
number of group key update messages the group controller needs to transmit.
The group controller encrypts the new group key with a minimum subset of
the shared keys and transmits it to the current users. To reflect current group
membership, the group controller changes and securely transmits the shared
keys known to the leaving user. Although each of the new shared keys needs
to be transmitted to only a subset of the users, the current key management
algorithms assume a broadcast primitive. Hence, all the current users receive
all the key update messages. Of course, users cannot decrypt the key update
messages that are not intended for them since they do not have the necessary
keys.

From the above discussion, we observe that the current key management al-
gorithms only focus on what key update messages are sent but do not emphasize
on how they are distributed. This results in wastage of bandwidth as users re-
ceive key update messages for keys that they do not need. This wastage increases
further if retransmission is required for any lost messages and such retransmis-
sion is done using a broadcast. Although solutions for reducing the number of
retransmissions in secure group communication have been proposed in [7,8], the
group controller still needs to broadcast them. Thus, efficient distribution of key
updates is an important problem in secure dynamic groups.

In this paper, we propose an algorithm for the distribution of key update
messages in secure dynamic groups. In our key distribution algorithm, we in-
tegrate the key management algorithms in [1, 2] with appropriate forwarding
functionality. We assume that the users are arranged in a multicast tree which
can be built using any of the IP [9–12] or overlay [13–15] multicast protocols.
Depending on the multicast protocol used, an intermediate node in the multicast
tree can be a router (IP multicast) or an overlay node. Hence, we only focus on
the actions of an intermediate node as the implementation details are beyond
the scope of this paper. The contributions of our paper are as follows:

– We describe a compact descendant tracking scheme to track the descendants
of the intermediate nodes. The memory required at the intermediate nodes
for our scheme is small and scales logarithmically in the group size. The ad-
vantage of our descendant tracking scheme is that this information can either
be updated periodically or after the group communication has resumed.

– We describe the forwarding mechanisms used by the intermediate nodes to
forward the key update messages.

– We describe a user identifier assignment algorithm. Using our assignment
algorithm, the group controller assigns closer logical identifiers to users who
are located close to each other in the multicast tree. We show that our assign-
ment algorithm improves the performance of our key distribution algorithm
as well as that of a previous solution in [16].

Organization of the Paper. The paper is organized as follows. In Section 2,
we describe the notations used in our key distribution algorithm and describe a
previous solution. In Section 3, we describe our key distribution algorithm and

412 S.S. Kulkarni and B. Bruhadeshwar

our user identifier assignment algorithm. In Section 4, we present the simulation
results. Finally, in Section 5, we conclude and discuss some future work.

2 Notations

In this section, we describe the various components in our algorithms, i.e., the key
management algorithms, the multicast tree and the problem of key distribution.
We also briefly describe a previous solution to the problem of key distribution.

Key Management Algorithms. In the key management algorithms from [1,2],
the group controller arranges the users and the keys in a key tree. The leaf nodes
in this key tree correspond to the users in the group (cf. Figure 1). Based on
this arrangement of users and keys, we number them according to their location
in the tree. For example, in a key tree of height h, the user ui1i2..ih

denotes the
user obtained by taking the ith1 child at level 1, ith2 child at level 2, and so on.
The keys are also numbered likewise. Each node in the key tree is associated
with a key from the logical key hierarchy [1] or a key from the complementary
key hierarchy [2] or both. We use ki1i2..il

to denote the logical key at node
i1i2..il . And, we use ci1i2..il

to denote the complementary key at node i1i2..il.
For the levels where the group controller uses logical keys, the user obtains the
keys on the path to the root. For the levels where the group controller uses
complementary keys, the user gets the keys associated with the siblings of its
ancestors. For example in Figure 1, user u1112 gets the group key (kg), the logical
keys (k1, k11 and k1112), and the complementary keys (c112, c113, c114, c1111, c1113
and c1114). Finally, we use k(m) to denote that message m is encrypted using
the key k and, hence, only users that have the key k can obtain m.

k
c

u 1112

1112

k 1
Level 1

Level 0 (root)

Level 4 (h)

Level 3

Level 2

1111
1114k

1114c
1113k
1113c

111c

14k13k12k11k

2k

gk

4kk 3

1114u1113u1111u

c

1112k

114c112c

1111c

113

Fig. 1. Partial view of key tree

Multicast Tree. In our key distribution algorithm, we assume that the group
controller distributes data and key update messages to the users and, hence
the root of the multicast tree is the group controller. Any multicast protocol
IP [9–12] or overlay [13–15] can be used to build the multicast tree; our approach
is independent of the protocol used to build the multicast tree. We define the
parent of a user x, say parent.x, as the next hop node on the path from x to

Distributing Key Updates in Secure Dynamic Groups 413

the group controller. For an intermediate node, we consider its children and all
other nodes reachable through its children as its descendents. Each intermediate
node performs reverse path forwarding, i.e., a message from the group controller
is replicated on all outgoing links except on the link on which the message was
received. We define a Key Distribution (KD) aware intermediate node as a node
which supports our key distribution algorithm. Unless otherwise specified, in
our paper, we assume that all intermediate nodes in the multicast tree are Key
Distribution (KD) aware.

Problem of Key Distribution. In the current key management algorithms
[1,2], when group membership changes, the group controller changes the keys in
the key tree and securely broadcasts the new keys. Since all users do not need
all the keys, this mode of key distribution is not efficient. Hence, we focus on
the key distribution in algorithms where each user receives only a small subset
of keys that includes all the keys it needs.

Previous Solution for Key Distribution. In [16], to distribute the changed
keys in the key tree, the group controller encrypts the keys at the higher lev-
els using changed keys at the lower levels. For example, when u1111 leaves, to
distribute a new key k′

1, the group controller generates the messages k′
11(k

′
1),

k12(k′
1), k13(k′

1) and k14(k′
1), where the key k′

11 is already distributed using keys
further down in the key tree. Before transmitting these messages, the group
controller broadcasts the identifier of the leaving user to the current users. Us-
ing this information and knowledge of the structure of the key tree, each user
calculates the level numbers of the changed keys it needs. This information is
propagated towards the group controller. Upon reception of replies, the group
controller transmits the key update messages and includes the level number,
at which the key is changed, in each message. When an intermediate node re-
ceives a key update message with a level number l, it forwards the message to
its descendants only if some descendant of l had requested that key. The main
shortcoming of this key distribution algorithm is that, it is executed for every
membership change which causes delay at the users for receiving key updates.

3 Proposed Improvements for Key Distribution

In this section, we identify our approach for reducing the cost of key distribution.
In Section 3.1, we describe our descendant tracking scheme that enables the
intermediate nodes to approximately track its descendants. In Section 3.2, we
describe our algorithm for assigning identifiers to users. This algorithm can be
used to improve the performance of the key distribution algorithms in Section
3.1 and in [16].

3.1 Descendant Tracking Scheme

A simple method to track descendents is to store the identity of each descendant
user and forward the key update message only if any descendant user needs this

414 S.S. Kulkarni and B. Bruhadeshwar

key. However, this straightforward solution requires each intermediate node to
store a large amount of information, especially in large groups.

To describe our scheme, first, we define the steady state configuration of the
multicast tree. Then, we describe the technique used at the intermediate nodes
to update the descendant tracking information to account for group membership
changes. Finally, we describe how keys are forwarded by the intermediate nodes.

Steady State Configuration. At each intermediate node, we store a h x d
matrix called DT (Descendant Tracker), where h and d are, respectively, the
height and degree of the key tree. Each element in DT is a single bit. Thus, the
information kept in DT is very small, even for large groups. For example, for a
group of 1024 users, where the group controller maintains a key tree of degree 4
and height 5, each intermediate node stores only 20 bits of information in DT .
To track a descendant user with identifier ui1i2..ih

, at an intermediate node, we
set the elements, DT [1, i1], DT [2, i2], ..DT [h, ih], to 1.

When the group is initialized, the group controller assigns each user a unique
identifier based on its location in the key tree. The users who are leaves in the
multicast tree record their identifiers in their DT matrices. The intermediate
nodes request their children for the DT information. The DT entries of a parent
are the disjunction (binary OR) of the corresponding entries of its children. As
an illustration, in Figure 2, we show the DT entries at a leaf node, R1 with
users U2211, U3311 and U3111, and the disjunction of these entries by its parent
node, R2 with user U2111. Although, the descendants identified in a DT matrix
are a superset of the actual descendant users, the DT matrix provides sufficient
information about the descendants to reduce traffic.

3 4

1

2

1

3

0

1

1

2

1

1

0

1

0

0

0

00

1 0

4 0

1

3 4

1

2

1

3

0

1

1

1

2

1

1

0

0

1

0

0

0

00

1 0

4

d (degree)

h (height)h (height) 3 4

1

2

1

3

0

1

1

2

1

0

0

0

0

0

0

0

00

0 0

4

1

d (degree)

h (height)

(OR)

Before disjuction, R entries for U Combined entries at R
2 2R entries for users U1 2111

d (degree)

(2211, 3311, 3111)

Fig. 2. DT entries at intermediate nodes R1 and R2

Tasks for Join. When a new user joins the group, the group controller dis-
tributes any keys, the new user needs, using a secure unicast channel. Also, the
group controller distributes the new keys to the current users, where the inter-
mediate nodes perform appropriate forwarding using the existing DT entries.
The new user receives its identifier from the group controller and provides this
information to its local intermediate node. The local intermediate node updates
its DT matrix. Further, if the DT matrix has changed, it propagates this infor-
mation to its ancestors in the multicast tree.

Tasks for Leave. When a user leaves the group, we do not update the DT
entries at the intermediate nodes immediately. We perform an update of the DT

Distributing Key Updates in Secure Dynamic Groups 415

entries only when the number of group membership changes exceeds a threshold
level. Although this could cause some messages to traverse extra links, updating
the DT matrix periodically allows us to achieve a tradeoff between the processing
overhead and the amount of bandwidth reduced.

Forwarding Key Update Messages Encrypted with Logical Keys. In a
key tree with only logical keys [1], each user knows all the keys associated with
its ancestors. Thus, based on the naming scheme of the key tree from Section 2,
the label of every key a user knows is a prefix of the user’s identifier. Now, con-
sider the case when some user, say u1112, leaves the group. The group controller
changes all the keys known to u1112 and distributes them to the remaining users
who need these keys.

To determine if a key update is needed by any descendants of an intermediate
node, we need to determine whether the label of the encrypting logical key is
a prefix of at least one descendant in the intermediate node’s DT matrix. To
allow the intermediate nodes to make this identification, the group controller
includes the label of the encrypting logical key in the key update message and
transmits it to the users. For example, to send k12(k′

1), the group controller
appends the label 12, to the encrypted message. To identify if the label l1, ..lk
of the encrypting logical key is a prefix to any descendant user, an intermediate
node checks whether the DT elements, DT [1, l1],..,DT [k, lk] are all set to 1.

Forwarding Key Update Messages Encrypted with Complementary
Keys. We note that, in a key tree with only complementary keys [2], each user
knows the keys associated with the siblings of its ancestor. Thus, the labels of
these keys differ in the last position from any prefix of the user’s identifier.

To determine if a key update is needed by a descendant of an intermediate
node, we need to determine whether the label of the encrypting complementary
key differs in the last position from a prefix of a descendant’s identifier. As in
the case of transmitting keys encrypted with logical keys, the group controller
appends the label of the encrypting complementary key to the key update mes-
sage. Thus, to distribute c′

112(c
′
12), the group controller appends the label 112 to

the message. To verify that the label l1, l2,.., lk of the encrypting complemen-
tary key is matched, an intermediate node checks whether the entries, DT [1, l1],
DT [2, l2] .., DT [k − 1, lk−1] and any entry DT [k, lp] where p
= k, are set to 1.

3.2 User Identifier Assignment Algorithm

The key distribution algorithms we described in Sections 2 (from [16]) and 3.1,
route the key update messages based on the identity of the descendants. The
performance of these algorithms can be improved if the distribution of leaf nodes
(group users) in the multicast tree corresponds to the distribution of the leaf
nodes in the key tree. In this ideal scenario, users close to each other in the
multicast tree will need almost the same key update messages and hence, the cost
of key distribution would be low. While such a scenario is not always possible,
one heuristic to achieve a near ideal scenario is to assign a joining user a logical
identifier that is closer to the logical identifiers of users who are close to this

416 S.S. Kulkarni and B. Bruhadeshwar

user in the multicast tree. In this section, we use this heuristic to describe a user
identifier assignment algorithm.

When a user sends a join request, the group controller communicates with
this user using a secure unicast channel and learns about the location of the
user in the multicast tree. Now, the group controller can use a program such
as mtrace [17] to identify other nearby users in the multicast tree and record
their logical identifiers. The group controller selects a user ui1i2..it

, at the first
intermediate node which is closest to the joining user. To assign an identifier
to the joining user, the group controller selects an identifier ui1i2..ip

such that
ip
= it and 1 ≤ p, t ≤ d, i.e., the identifiers differ in the last position. The
group controller assigns this identifier to the joining user, if it is not already
assigned to any other user. If this attempt fails, the group controller repeats
this process with another user at the first intermediate node. As an illustration,
consider that the group controller selects the user u1111 at the first intermediate
node. The group controller generates the identifiers 1112, 1113, 1114, which differ
in the last position with 1111. If any of these identifiers are still available, the
group controller assigns one of them to the joining user. If no more users exist
at the first intermediate node, the group controller selects users at the second
intermediate node and so on.

In our assignment algorithm, as the intermediate nodes are further away from
the joining user, the group controller successively moves up the position at which
the identifiers differ. For example, the group controller selects a user, ui1i2..ikil

,
at the second intermediate node, and tries to assign the joining user, ui1i2..ipil

,
such that ip
= ik, i.e., the identifiers now differ in the second last position. The
group controller repeats this process until it successfully assigns an identifier or
stops, if the only users found are very close to itself.

In case the group controller finds that the only intermediate nodes with users
are very close to itself, the group controller assigns the next available identifier
to the joining user. We do not select the logical identifiers of users close to the
group controller due to two reasons. The first reason is that these users are not
in the proximity of the joining user. The second reason is that these users, being
close to the group controller, receive almost all of the key update traffic anyway
and, thus, there would be no performance gain if the joining user is logically
closer to these users.

4 Simulation Results and Analysis

We simulated our algorithms using the NS2 network simulator [18]. We per-
formed experiments on randomly generated network topologies for groups of
256, 512 and 768 users. We used the CBT [9] protocol to build the multicast
tree with the group controller as the root node. For each experiment, we selected
a random set of users to join or leave the group and recorded the number of mes-
sages in the multicast tree over the entire multicast session. We measure the to-
tal bandwidth reduction achieved in our algorithms using the formula: TBRR=
BWbroadcast−BWoptimised

BWbroadcast
, where BW stands for bandwidth and TBRR stands for

Distributing Key Updates in Secure Dynamic Groups 417

total bandwidth reduction ratio. We also measure the hopwise breakup of the
TBRR for a given network topology, termed PBRR, which gives an overview
of the performance of our algorithms as a function of the network distance away
from the group controller.

We conducted experiments on three key management algorithms. The first
algorithm is the logical key hierarchy algorithm, referred as LKH, in [1]. The
second and third algorithms are from our earlier work which appears in [2]. In
the second algorithm, the group controller uses complementary keys at every
level in the key tree. In the third algorithm, the group controller uses both
logical and complementary keys at every level in the key tree. We refer to these
algorithms, respectively, as CKH and LKH + CKH. For comparison purposes
we also simulated the previous key distribution solution [16] we described in
Section 2. We refer to the various key distribution algorithms as follows: (a)
Id-based – our key distribution algorithm from Section 3.1, (b) Id-based-cluster
– combination of algorithms in Sections 3.1 and 3.2, (c) Level-based – the key
distribution algorithm from [16] that is described in Section 2, and (d) Level-
based-cluster – combination of algorithms in [16] and 3.2.

In Figure 3, we plot the TBRR for a group of 512 users. The TBRR achieved
is in the range of 20-45%. We observe that using our identifier assignment algo-
rithm improves the TBRR of our key distribution algorithm as well as that of
the level based key distribution algorithm.

In Figure 4, we plot the PBRR for a group of 768 users. The PBRR value for
Hop Number 1 indicates the TBRR observed between hop 0 (group controller)
and hop 1 (immediate children of group controller) and so on. From Figure 4,

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Number of Leaving Users

B
an

dw
id

th
 R

ed
uc

tio
n

R
at

io

Group Size: 512 Algorithm: LKH Metric: TBRR

Id−based
Id−based−cluster
Level−based
Level−based−cluster

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

Number of Leaving Users

B
an

dw
id

th
 R

ed
uc

tio
n

R
at

io

Group Size: 512 Algorithm: CKH Metric: TBRR

Id−based
Id−based−cluster
Level−based
Level−based−cluster

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45
Group Size: 512 Algorithm: LKH+CKH Metric: TBRR

Number of Leaving Users

B
an

dw
id

th
 R

ed
uc

tio
n

R
at

io

Id−based
Id−based−cluster
Level−based
Level−based−cluster

(a) (b) (c)

Fig. 3. TBRR for a group of 512 users using (a) LKH (b) CKH and (c) LKH+CKH

0 1 2 3 4 5
−20

0

20

40

60

80

100

Hop Number

P
er

ce
nt

ag
e

of
 O

bs
er

ve
d

T
B

R
R

Group Size: 768 Algorithm: LKH Size of Leaving Users: 200

Id−based
Id−based−cluster
Level−based
Level−based−cluster

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90
Group Size: 768 Algorithm: CKH Size of Leaving Users: 200

Hop Number

P
er

ce
nt

ag
e

of
 O

bs
er

ve
d

T
B

R
R

Id−based
Id−based−cluster
Level−based
Level−based−cluster

0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

Hop Number

P
er

ce
nt

ag
e

of
 O

bs
er

ve
d

T
B

R
R

Group Size: 768 Algorithm: LKH+CKH Size of Leaving Users: 200

Id−based
Id−based−cluster
Level−based
Level−based−cluster

(a) (b) (c)

Fig. 4. PBRR for a group of 768 users using (a) LKH (b) CKH and (c) LKH+CKH

418 S.S. Kulkarni and B. Bruhadeshwar

we observe that the Level-based algorithm causes more link stress near the group
controller due to the responses by the users for each membership change. We
note that, this problem is remedied by using our identifier assignment algorithm
which reduces the link stress near the group controller in this algorithm.

5 Conclusion

In this paper, we addressed the problem of distributing key updates to users in
secure dynamic groups. Towards this end, we described a descendant tracking
scheme to track the descendants of the intermediate nodes in the multicast tree.
In our descendant tracking scheme, each intermediate node stores a small infor-
mation about its descendants. Next, we described the forwarding mechanisms
used by the intermediate nodes based on the descendant tracking information.
Each intermediate node forwards an encrypted key update message only if it
believes that its descendants know the encrypting key. Using simulation results
we showed that our key distribution algorithms reduce the bandwidth needed
for distributing key updates in the key management algorithms in [1,2] by upto
55% when compared to the broadcast of key updates.

Also, we described an algorithm for assigning identifiers to group users so that
users who are physically close in the multicast tree are assigned logically close
identifiers. We showed that our assignment algorithm improves the performance
of our key distribution algorithm as well as that of the previous solution in [16].
Our key distribution algorithm can also be used to distribute data messages in
secure interval multicast [19] where the group controller needs to send a message
securely to a subset of the users.

For overlay multicast protocols [13–15], where the end hosts attempt to
reduce bandwidth usage, the use of our key distribution algorithm results in
better performance. The processing overhead of users in overlay multicast pro-
tocols [13–15] is high as the users need to constantly monitor and reconfigure the
overlay links and route multicast data. Our key distribution algorithm reduces
the processing overhead of the users by reducing the key update traffic that the
users need to process.

For our key distribution algorithm it is not necessary that all the intermediate
nodes store the DT matrices. We note that, a few selected nodes at appropri-
ate points in the multicast tree are sufficient. We are currently exploring the
selection techniques for choosing the best set of intermediate nodes which will
participate in the key distribution algorithm. Also, many overlay multicast pro-
tocols maintain more links connecting the users. We are exploring methods to
exploit the added connectivity to distribute the key updates more efficiently.

References

[1] Chung Kei Wong, Mohamed Gouda, and Simon S. Lam. Secure group communi-
cations using key graphs. IEEE/ACM Transactions on Networking, 2000.

Distributing Key Updates in Secure Dynamic Groups 419

[2] Sandeep S. Kulkarni and Bezawada Bruhadeshwar. Adaptive rekeying for secure
multicast. IEEE/IEICE Special issue on Communications: Transactions on Com-
munications, E86-B(10):2948–2956, October 2003.

[3] Debby M. Wallner, Eric J. Harder, and Ryan C. Agee. Key management for
multicast: Issues and architectures. RFC 2627.

[4] D.McGrew and A.Sherman. Key establishment in large dynamic groups using
one-way function trees. Manuscript.

[5] H.Harney and C.Muckenhirn. Group key management protocol (GKMP) specifi-
cation. RFC 2093, July 1997.

[6] S.Mittra. Iolus: A framework for scalable secure multicasting. In Proc. ACM
SIGCOMM’97, pages 277–288, 1997.

[7] Sanjeev Setia, Sencun Zhu, and Sushil Jajodia. A comparative performance analy-
sis of reliable group rekey transport protocols for secure multicast. In Performance
Evaluation, special issue on the Proceedings of Performance 2002, volume 49, pages
21–41, Rome, Italy, 2002.

[8] Y. Richard Yang, X. Steve Li, X. Brian Zhang, and Simon S. Lam. Reliable group
rekeying: A performance analysis. In Proceedings ACM SIGCOMM 2001, San
Diego, August 2001.

[9] A.J.Ballardie, P.F.Francis, and J.Crowcroft. Core based trees. In Proceedings of
the ACM SIGCOMM, October 1993.

[10] T.Pusateri. Distance vector multicast routing protocol. IETF Draft, update to
RFC 1075, draft-ietf-idmr-dvmrp-v3-06.txt, June 1998.

[11] S.Deering et al. Protocol independent multicast, sparse mode protocol: Specifica-
tion. IETF Draft, work in progress, 1995.

[12] S.Deering et al. Protocol independent multicast (pim), dense mode protocol:
Specification. IETF Draft, work in progress, 1995.

[13] Y.-H.Chu, S.G.Rao, S.Seshan, and H.Zhang. A case for end system multicast.
IEEE Journal on Selected Areas in Communications, 20(8):1456–1471, October
2002.

[14] B.Zhang, S.Jamin, and L.Zhang. Host multicast: A framework for delivering mul-
ticast to end users. In IEEE INFOCOM, March 2000.

[15] J.Liebeherr, M.Nahas, and W.Si. Application-layer multicasting with delaunay
triangulation overlays. IEEE Journal on Selected Areas in Communications,
20(8):1472–1488, October 2002.

[16] Di Pietro, L. V. Mancini, Y. W. Law, S. Etalle, and P. J. M. Havinga. Lkhw:
A directed diffusion-based secure multicast scheme for wireless sensor networks.
In 32nd Int. Conf. on Parallel Processing Workshops (ICPP), pages 397–406,
October 2003.

[17] Bill Fenner and Steve Casner. A traceroute facility for ip multicast. Internet
Draft, July 2000.

[18] Ns. ucb/lbnl/vint network simulator - ns (version 2). http://www-
mash.cs.berkeley.edu/ns.

[19] Mohamed G. Gouda, Chin-Tser Huang, and E.N.Elnozahy. Key trees and the
security of interval multicast. In 22nd International Conference on Distributed
Systems, pages 467–468, 2002.

Succinct and Fast Accessible Data Structures for
Database Damage Assessment�

Jing Zhou, Brajendra Panda, and Yi Hu

Compuer Science and Computer Engineering Department,
University of Arkansas, Fayetteville, AR 72701, USA

{bpanda, jzhou, yhu}@uark.edu

Abstract. This paper presents methods for assessing damage in a data-
base system after an attack is identified and a malicious transaction is
detected. By using pre-developed data structures our protocols identify
all affected transactions and also damaged data items without requiring
any log access. These data structures are built using bit-vectors and
are manipulated using logical AND and OR operations to achieve faster
damage assessment.

1 Introduction

Database management systems (DBMS)s have the ability to recover from system,
media, transaction, and communication failures. But when an attacker corrupts
a data item, the DBMS itself cannot identify the malicious activity and recover.
An intrusion detection system can be employed to recognize malicious activities
in the database system and catch all malicious transactions. Once a malicious
transaction is identified, damage assessment and recovery must be carried out
immediately to restore the database to a safe state.

In this research, we focus on fast and precise damage assessment after the
identification of a malicious transaction. We have presented two damage assess-
ment models. The first one is the base model that uses dependency relationships
among transactions to identify all affected transactions and then checks their
operations to determine all damaged data items. The second method utilizes
the base model to offer parallelism in the damage assessment process. This is
required to further accelerate the process and can be utilized best when af-
fected transactions form multiple clusters based on their dependency relation-
ships.

The rest of the paper is organized as follows. The next section presents nec-
essary background and motivations for this work. Sect. 3 and 4 discuss our base
model and the parallel damage assessment model respectively. Sect. 5 concludes
the paper.

� This work has been supported in part by US AFOSR under grant F49620-01-10346.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 420–429, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Succinct and Fast Accessible Data Structures 421

2 Background and Motivations

Defending data from illegal access is extremely important for survivability of
any critical information system [10]. Since prevention mechanisms do not always
succeed, intrusion detection systems are critical for discovering system misuse.
Unfortunately, most of the detections are at the operating system level; detec-
tions at the DBMS level are limited [6],[2],[3] and cannot guarantee prompt
detection of malicious database modification. Once the attacking transaction is
commited, the database system will make the transactions effect permanent and
those corrupted data items will be made available to other valid transactions.
Thus, the damage will spread quickly through the database by legitimate users
as they update other data items after reading any damaged data [1]. So it is ex-
tremely important to perform fast damage assessment and recovery [8] to stop
further contamination and make the database system available as soon as possi-
ble. Ammann et al. presented an approach based on marking damage to maintain
database consistency [1]. Liu et al. [7] reordered transactions for efficient recov-
ery. Zuo and Panda [11] also developed other protocols for distributed database
damage assessment. But in all these approaches, log was accessed and significant
I/Os were involved. Lala and Panda [5] reduced the damage assessment time by
saving the dependency relationships to avoid frequent log access. However, the
shortcoming with that model is that data items were not made available before
the entire recovery work was completed.

The main goal of this research is to provide a fast and accurate damage
assessment model, which limits the amount of damage by hiding the affected
data items from other transactions until recovery is complete, and at the same
time, reduces denial-of-service by releasing unaffected data items for access. Our
model, unlike previous models, does not access the log during the damage assess-
ment process. Rather it processes pre-developed bit-matrices using simple logic
(AND and OR) operations to identify affected transactions. Following damage
assessment, all unaffected data items can be made available to users immedi-
ately and the recovery work can be carried out to restore legitimate values of all
damaged data items.

3 The Base Model

Both the models presented in this paper are based on the assumptions that the
malicious transaction has been identified, the scheduler produces a rigorous his-
tory, the database log cannot be corrupted, a data item will not be updated
twice by one transaction, and that the dependency relationships among trans-
actions will not change during recovery. The data structures developed for the
base model is presented below.

3.1 Data Structures

First we define some of the terms that are essential for this model. Definition 1
is taken from [9] and Def. 2 is taken from [5].

422 J. Zhou, B. Panda, and Y. Hu

Definition 1. A write operation wi[x] of a transaction Ti is dependent on a
read operation ri[y] of Ti if x is computed using the value obtained from ri[y].

Definition 2. A write operation wi[x] of a transaction Ti is dependent on a
set of data items I if x = f(I), i.e., the values of data items in I are used in
calculating the new value of x. There are the following three cases for the set of
data items I. (previous value of x is the value before current operation)

Case 1: I =Ø. This means that no data item is used in calculating the new value
of x. We denote such an operation as a fresh write. If wi[x] is a fresh write and
if the previous value of x is damaged, the value of x will be refreshed after this
write operation.

Case 2: x /∈ I. Then wi[x] is called a blind write. If wi[x] is a blind write and if
the previous value of x is damaged and none of the data items in I are damaged,
then the value of x will be refreshed after this write operation.

Case 3: x ∈ I. If the previous value of x is damaged, then x remains damaged.
Otherwise, if any other item in I is damaged, x is damaged.

Definition 3. A transaction Ti is dependent on another transaction Tj if any
of the data item(s) in Ti has been updated based on a data item that has been
modified by Tj.

Definition 4. A legitimate write operation wi[x] of Ti is either a fresh write or
a write operation that does not use any damaged data in its calculation.

Definition 5. The legitimate write that has refreshed the damaged data is called
a valid write.

Read Matrix: This matrix is created to store information on data items that all
updating type committed transactions have read. The first column records trans-
action IDs and the other columns represent all data items in the database. Each
row represents a transaction. The corresponding columns that represent the data
items that have been read by the transaction are set to 1s, other columns that
have not been read are set to 0s. If all the updates made by a transaction are
fresh writes, then a 0-vector is stored in the corresponding row.

Write Matrix: This matrix stores information on all the data items that updat-
ing type committed transactions have written. Like the Read Matrix, the first
column records the transaction IDs, while remaining columns represent all data
items in the database, and each row represents a transaction. In a vector of a
transaction, the bits corresponding to the data items written by the transaction
are set to 1s, and the rest of the bits are set to 0s.

Damaged Data Vector(DDV): This vector, which is a zero-vector initially, rep-
resents all data items that have been marked as damaged during the damage
assessment procedure. In this vector, if the value at the position of data item di

is 1 then di has been identified as damaged; otherwise, di has a consistent value.

Damaged Transaction List(DTL): This list shows all transactions that have been
marked as damaged.

Succinct and Fast Accessible Data Structures 423

3.2 Damage Assessment Procedure

The Read Matrix and Write Matrix are constructed by scanning the database
log and extracting information about the committed transactions. The order of
the transactions in the matrices must remain the same as the order of com-
mit sequence of the transactions in the log. Upon identification of a malicious
transaction, the damage assessment procedure begins. Our damage assessment
method is based exclusively on Read Matrix and Write Matrix instead of the
database log. We will explain the damage assessment procedure using following
example.

Example 1. Let a history H consist of the following operations: H = r1[B]r1[D]
r1[E]r3[E]w1[C]r1[D]w1[D]c1r2[C]r2[D]r2[E]w2[B]w2[A]c2w3[A]w3[B]c3r4[A]w4
[D]r4[C]w4[E]c4

The transaction dependency relationships in H can be established based on
the definition of transaction dependency (see Def. 3). A directed acyclic graph
is used to represent the dependency as in Fig. 1. A directed edge indicates that
the transaction that the arrow points to is dependent on the transaction where
the edge starts. For example, in Fig. 1, T2 is dependent on T1, T4 is dependent
on both T1 and T3.

Fig. 1. Transaction Dependency Graph

The Read Matrix and Write Matrix for H based on the commit sequence of
the transactions are constructed. A data item that a transaction have read or
written is indicated by a 1 against the column representing the data item in the
matrices. The matrices for H are depicted in Table 1 and Table 2.

Table 1. Read Matrix for H

ID A B C D E

T1 0 1 0 1 1
T2 0 0 1 1 1
T3 0 0 0 0 1
T4 1 0 1 0 0

424 J. Zhou, B. Panda, and Y. Hu

Table 2. Write Matrix for H

ID A B C D E

T1 0 0 1 1 0
T2 1 1 0 0 0
T2 1 1 0 0 0
T4 0 0 0 1 1

Following is the damage assessment using the matrices.

1. Identify the corresponding row in the Write Matrix that represents the data
items written by the malicious transaction. For example, suppose transaction
T1 is the malicious transaction. Add transaction T1 to the DTL. Then locate
the position of transaction T1 in the matrix (say m).

2. Do the logical OR operation (DDV OR Write Matrix[m]). Positions of 1-
bits in the Write Matrix indicate that the corresponding data items have
been damaged. Initially the DDV is set to 0s, that is, nothing is identified
as damaged. For the previous example, after the OR operation, the DDV
becomes: 0 0 1 1 0 . This indicates that data items C, D are damaged.

3. To find out the transactions that have read the damaged data items, first in-
crease m by 1. Then carry out the logical AND operation (Read Matrix[m]
AND DDV). If the resulting vector is not zero, then the corresponding
transaction has read one or more damaged data and, thus, has been af-
fected. Add the transaction to the DTL. Moreover, perform the operation
(Write Matrix[m] OR DDV) and store the result as the new DDV. Here we
assume that once a transaction reads a damaged data, all data items written
in this transaction are damaged. Since T2 has read {C, D, E} and {C, D} ∈
DDV, the data items written by T2, i.e., A and B, are damaged, too. The
new DDV becomes: 1 1 1 1 0 .

If a transaction has a valid write on any data item, those data items are
removed from the DDV. For example, since T3 has read {E} and E is not
damaged by the malicious transaction, so what T3 has written, {A, B} in this
case, will be refreshed if they have been damaged before. The corresponding
value for these data items in the DDV will become 0s.

4. Repeat step 3 until all the transactions in the Read Matrix and Write Matrix
are processed. For the above example, it can be observed that transactions
T2, T4 are all damaged, which is consistent with the transaction dependency
relationship depicted in Fig. 1. DDV shows that the damaged data items
include {C, D, E}.

After damage assessment work is completed, the damaged transactions are
located and damage data items are marked, undamaged data items can be avail-
able to the legitimate user right away. Consequently recovery work can be per-
formed. We will not discuss the recovery algorithm in detail. Researchers have
developed several models such as in [4] and [8] to perform recovery work.

Succinct and Fast Accessible Data Structures 425

4 Parallel Damage Assessment

In a large database management system, some transactions have little or no
relationship with each other. In order to do the damage assessment and recovery
more efficiently, transactions can be partitioned into clusters based on their
relationships with each other. Clusters that have no dependency relationships
can be processed simultaneously. During damage assessment, only the cluster
that contains the malicious transaction and the clusters depending on the former
are considered. This further reduces damage assessment time.

Definition 6. A cluster Ci is a group of transactions that have dependency
relationships.

Definition 7. A cluster Ci is dependent on another cluster Cj if any of the
transaction(s) in Ci reads the data item that has been modified by transaction(s)
in Ci to perform write operation.

Before discussing the method, first let us look at an example. We assume
that the scheduler has produced a serializable history and the subscripts of the
transactions denote the serialization order, i.e. T1 is scheduled before T2, T2
before T3, so on and so forth.

Example 2
T1 : a = 10; T2 : x = 30; T3 : b = a ∗ x; T4 : a = b;
T5 : c = a ∗ 100; T6 : y = 200; T7 : x = y − 10; T8 : m = x;
T9 : m = x/2; T10 : n = c − m; T11 : m = n ∗ n;

Fig.2. shows the transaction dependency graph for Hc. It also shows the
transactions in each cluster and the relationships among the clusters. A dotted
square represents a cluster and a dotted edge represents the cluster dependency.
The cluster that the dotted edge points to depends on the cluster from which
the dotted edge starts. If a transaction that is located in C1, is found to be
a malicious transaction, then only the transactions in C1 and C3 are checked
to perform the damage assessment. After they are processed, all other clusters
depending on them can be processed. Similarly, if some clusters do not depend
on each other and are determined to have affected transactions, they can be
processed in parallel. This would accelerate the processing time.

4.1 Clustering Procedure

The Read Matrix and Write Matrix, as discussed in Sect. 3, are modified to
capture the cluster information. One more column is added in both matrices to
store the cluster that the transaction belongs to. Another matrix, Write Cluster,
is developed for recording the data items updated by transactions in a cluster.
Each of the remaining columns represents a data item. An additional column
is used to store the number of transactions in the cluster. This information is
used to decide if two clusters need to be merged when a transaction depends

426 J. Zhou, B. Panda, and Y. Hu

Fig. 2. Clusters and their dependencies

on both. They are initialized to all 0s at first. Not all the data items that have
been updated by the transactions in a cluster will be marked as 1, rather only
those data items that are most up to date are recorded. For example, after
T2 in C1 updated data item D, a transaction in another cluster updated D,
then the corresponding position for data item D in Write Cluster of C1 should
be marked as 0. Other than this, two lists, Dependent Cluster List(DCL) and
Ancestor Cluster List(ACL) for each cluster are used to store important infor-
mation to do damage assessment. DCL is used to store all the dependent clusters
for one cluster. ACL stores all the clusters it depends on. For example, if C1
depends on C2, and C2 depends on C3, the information is stored as illustrated
by Table 3.

Table 3. Dependent and Ancestor Clusters

Cluster ID Dependent Cluster Ancestor Cluster
C1 C2C3

C2 C1 C3

C3 C1C2

The procedure for construction of clusters and matrices for the clusters are
as follows:

Succinct and Fast Accessible Data Structures 427

A variable, say Cluster Position, is assigned to the cluster ID for the first
transaction. Another variable, Scan Position, records the corresponding posi-
tion for this transaction in the Read Matrix and Write Matrix. Update the
Write Cluster [Cluster Position] by performing the logical OR operation with
Write Matrix [Scan Position]. Update the transaction number value for the
cluster.

For every transaction that follows, first increment Scan Position by 1. Check
if it has dependency relationship with existing clusters by performing logical
AND operation (Read Matrix [Scan Position] AND Write Cluster [Position])
for Position from 1 to Cluster Position.

If the result contains only 0s, this transaction is independent of any existing
cluster. Increment Cluster Position by 1, assign Cluster Position as the new
cluster ID to this transaction. Add a row for the new cluster in Write Cluster.
The value for the corresponding data items is the same as this transactions cor-
responding row in Write Matrix. This can be obtained by performing the logical
OR operation. Update the transaction number value for the new cluster. Update
the rows representing other clusters in the Write Cluster by performing logical
operation NOT (Write Matrix[Scan Position])ANDWrite Cluster[Position] for
Position from 1 to Cluster Position-1.

If it depends on one of the clusters, add this transaction into this cluster.
Update the corresponding row in the Write Cluster by performing logical OR
operation. Similarly, update all other clusters Write Cluster by performing logi-
cal operation NOT (Write Matrix[Scan Position])ANDWrite Cluster[Position]
for Position from 1 to Cluster Position-1. Update the transaction number value
for this cluster. Store the Cluster Position as the cluster ID in the Read Matrix
and Write Matrix for the transaction.

Otherwise, it is dependent on more than one cluster. There are two solutions
for this situation. One solution is to merge all the clusters that it depends on into
one cluster; the other is to form a new cluster that depends on several clusters.
If we want to merge the clusters, restrictions can be set so that the size of the
cluster will not grow too big. The whole idea of clustering is to perform damage
assessment and recovery in parallel to achieve efficiency. But if we partition the
database log based only on the dependency relationships without any restriction,
the cluster can become too large, in the worst case one cluster for the whole log.
The disadvantage is that the parallelism will be reduced. In that case, we can
restrict the number of transactions, page size, and execution time to limit the
cluster sizes. In the following discussion, we adopt number of transactions in any
cluster as the restriction and assume that a variable Nt will store this value.

Before clusters are merged, see if the number of transactions after merging
is less than Nt. Then these clusters can be merged together with the new trans-
action. Corresponding rows in the Write Cluster have to be updated at the
same time . The cluster ID information for each transaction that belongs to the
merged clusters has to be modified too.

Otherwise, a new cluster will be generated. First add a new row to the
Write Cluster with the corresponding transactions information of what data

428 J. Zhou, B. Panda, and Y. Hu

items have been updated. Then update the DCL for all the clusters the trans-
action depends on to include the new cluster. Update the ACL of this cluster
to include all the clusters it depends on too.

The above process is repeated until all transactions that follow in the log
have been processed.

4.2 Parallel Damage Assessment Procedure

The parallel damage assessment starts by identifying affected clusters. The clus-
ters containing the malicious transactions are located first. Following their DCL,
the clusters that are dependent on the malicious clusters can be determined.
Then in all the affected clusters, similar procedure as in the Base Model can be
used to find the affected transactions. Clusters of which all ancestors have been
processed can now be checked for damaged assessment. Several of such clusters
can be processed simultaneously if they have no dependency relationships. The
steps for checking clusters for damage assessment are enumerated below.

1. From the modified Write Matrix or Read Matrix, find the cluster ID of the
malicious transaction. Then find the dependent clusters of the affected clus-
ter from DCL and put them into Affected Cluster. Repeat this procedure
until all the affected clusters are found.

2. For all the affected clusters, if their ancestors in ACL fulfill one of the fol-
lowing conditions, perform damage assessment the same way as in the Base
Model for the transactions in this cluster to identify affected transactions.
(a) ACL is null
(b) The cluster does not belong to the Affected Cluster
(c) The cluster belongs to the Affected Cluster, but it has already been

checked for affected transactions
3. If several clusters satisfy the above conditions, they can be processed con-

currently if they have no dependency relationships.
4. Repeat steps 2 and 3 until all clusters in the Affected Cluster are processed.

5 Conclusion

In this paper, we have focused on damage assessment in a database affected by
committed malicious transactions. Two damage assessment models have been
presented. These models use succinct auxiliary data structures to identify all af-
fected transactions without requiring any log access. Since these data structures
are built using bit-vectors and are manipulated using logical operations, damage
assessment can be done very quickly. After affected transactions are identified,
unaffected data items can be made available to users while the recovery phase
continues.

The base model provides fundamental structures for the later approach. Con-
sidering that transactions in a big database system may have little or no rela-
tionship with each other, parallel damage assessment procedure is presented to
further reduce the damage assessment time. In this approach, transactions are

Succinct and Fast Accessible Data Structures 429

clustered based on the dependency relationships. Damage assessment is per-
formed by finding the cluster that contains the malicious transaction and all
other clusters that depend on the former. All clusters whose ancestor clusters
are either unaffected or already checked can be processed in parallel. In future
we wish to carry out simulation analysis to study performance of these models.

Acknowledgment. We are thankful to Dr. Robert L. Herklotz for his support,
which made this work possible.

References

1. P. Ammann, S. Jajodia and C.D. McCollum, B.T. Blaustein, Surviving Information
Warfare Attacks on Databases, In proceedings of the 1997 IEEE Symposium on
Security and Privacy.

2. D. Barbara, R. Goel, and S. Jajodia, Mining Malicious Data Corruption with
Hidden Markov Models, In Proceedings of the 16th Annual IFIP WG 11.3 Working
Conference on Data and Application Security, Cambridge, England, July 2002.

3. Y. Hu and B. Panda, A Data Mining Approach for Database Intrusion Detection,
In Proceedings of the 2004 ACM Symposium on Applied Computing, Special Track
on Database Theory, Technology, and Applications, Nicosia, Cyprus, March 2004.

4. S. Jajodia, C. D. McCollum, and P. Amman, Trusted Recovery, Communications
of the ACM, 42(7), pp. 71-75, July 1999.

5. C. Lala and B. Panda, Evaluating Damage from Cyber Attacks: A Model and
Analysis, IEEE Transactions on System, Man, and Cybernetics Part A: Systems
and Humans, Vol. 31, No. 4, July 2001.

6. V.C.S. Lee, J.A. Stankovic, S.H. Son, Intrusion Detection in Real-time Database
Systems Via Time Signatures, In Proceedings of the Sixth IEEE Real Time Tech-
nology and Applications Symposium, 2000.

7. P. Liu, P. Ammann and S. Jajodia, Rewriting histories: recovering from malicious
transactions, Distributed and Parallel Database, vol. 8, no.1, pp.7 40, January
2000.

8. B. Panda and R. Yalamanchili, Transaction Fusion in the Wake of Information
Warfare, In Proceedings of the 2001 ACM Symposium on Applied Computing,
Special Track on Database Systems, Las Vegas, Nevada, March 2001.

9. S. Patnaik and B. Panda, Dependency Based Logging for Database Survivabil-
ity from hostile transactions, In Proceedings of the 12th International Conference
Computer Application and Industry Engineering, Atlanta, GA, November 1999.

10. Defending Americas Cyberspace: National plan for information system protection,
version 1.0. The White House, Washington, DC, 2000.

11. Y. Zuo and B. Panda, Damage Assessment Models For Distributed Database Sys-
tems, In Proceedings of the 18th Annual IFIP WG 11.3 Working Conference on
Data and Application Security, Sitges, Spain, July 25-28, 2004.

 R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 430–440, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Secure Checkpointing Protocol for
Survivable Server Design

Vamsi Kambhampati, Indrajit Ray, and Eunjong Kim

Department of Computer Science,
Colorado State University

{vamsi, indrajit, kimeu}@cs.colostate.edu

Abstract. Secure checkpointing appears to be a useful technique for designing
survivable systems. These are fault-tolerant systems that are robust against
malicious security attacks. Secure checkpointing, however, is not easily done.
Without adequate protection, the checkpointing process can be attacked and
compromised. The checkpointing data can be subjected to malicious attacks and
be a source of security breach. In this paper, we present a new secure
checkpointing scheme that is robust against malicious attacks. Our approach
uses strong cryptographic techniques for data confidentiality and integrity,
Byzantine agreement protocols for compromised peer detection and information
dispersal techniques for reliability and availability.

1 Introduction

Businesses around the world are increasingly relying on the Internet for their daily
operation. However, the open nature of the Internet makes it vulnerable to different
types of security related attacks. Over the last few years business around the world
has lost enormous amounts of money owing to these attacks. Thus organizations that
use networked computer systems are clamoring to find effective ways to defend their
networks against cyber attacks. The ideal approach to defense is, of course, to prevent
the attacks from happening in the first place. However, distributed denial-of-service
attacks are extremely difficult to prevent. Even with today's sophisticated intrusion
detection technologies the best that can be hoped for is to detect such an attack in a
timely manner, then rely on system administrators to launch mitigating actions to
recover from the effects of such an attack. For denial-of-service types of attacks the
mitigating actions take the form of isolating the attacked server from the network,
stopping the services it provides, patching up the vulnerability that was exploited to
launch the attack and possibly waiting till such times as the symptoms of the attack
subside to restart the server. Unfortunately, almost always these steps require human
intervention, which can be slow. Until the server can be adequately isolated, it can do
damage to any other machine that it is connected to. Further, the clients that are
currently receiving services from the attacked server, encounter a disruption of
services; future clients are denied service till such time as the server is back up.

We believe that instead of relying solely on attack prevention technologies,
systems should also be able to survive attacks and continue to provide services, even

A Secure Checkpointing Protocol for Survivable Server Design 431

if in a somewhat degraded manner. Our network survivability project addresses this
problem of survivability of servers facing denial-of-service attacks. We adopt a three-
pronged approach - (i) Predict network attacks and establish a multi-layered defensive
framework in real time. (ii) Automatically migrate compromised (or to be
compromised) services to other safer parts of the network. This is done without
affecting the clients that were being served during the occurrence of the attack; the
clients are continued to be provided with the services as usual as if nothing happened.
(iii) Isolate and confine the network attack to the already compromised servers so as
to prevent it from spreading.

This paper reports on one aspect of our efforts to re-distribute system services in
the face of attacks. In order to migrate an affected server, we need to keep track of the
process state of the server immediately before it was affected. This process state is
then restored on a new machine and recovered. The process of saving process states is
known as checkpointing. It has been well studied by fault-tolerant researchers and
is mature. However, a malicious environment as ours throws a number of challenges
to checkpointing techniques that have not yet been addressed by researchers. If a
server is compromised, any checkpointing data that it stores needs to be considered
malicious. To begin wit, therefore, we cannot store a server’s checkpoint data on the
same machine. It needs to be stored in remote locations. This creates a second
problem. Any of these remote locations can itself be attacked and compromised.
Thus, we need to disperse the checkpoint information over a number of locations such
that compromise of one (or even a few) does not affect the quality of checkpoint data.
The third problem that needs to be solved is how to distribute securely the checkpoint
data to these remote locations. The current paper addresses these issues. We propose a
secure checkpointing scheme that is robust against malicious attacks. Our approach
uses strong cryptographic techniques for data confidentiality and integrity, Byzantine
agreement protocols for compromised peer detection and information dispersal
techniques for reliability and availability.

The rest of the paper is organized as follows. Section 2 provides some background
information about checkpointing, information dispersal and byzantine agreement.
Section 3 describes our checkpointing protocol. It begins with a description of our
system model. Section 3.2 presents our consensus algorithm that is used by a group of
servers to determine if some of them have been compromised. Section 3.3 describes
the checkpointing and dispersing process. Section 3.4 describes the secure group
communication scheme that is used by the servers to distribute checkpoint data in a
secure manner. Finally, section 5 concludes the paper.

2 Background and Related Work

Checkpointing is a well-known technique used in fault-tolerant systems design.
Checkpointing periodically saves the state of a running process to stable storage.
After a failure, the recovery process uses this checkpointing data to restore the system
to a consistent state before the failure. In the most general setting, simplistic
checkpointing (called sequential checkpointing) periodically dumps the entire process
state to stable storage at each checkpoint. However, its simplicity forsakes efficiency
in terms of storage space and communication overhead. Several checkpointing
schemes [1, 2, 3, 4, 16, 17] have been proposed in the literature to improve efficiency

432 V. Kambhampati, I. Ray, and E. Kim

of checkpointing and to reduce overhead. Some of these include incremental
checkpointing, compression, buffering, copy-on-write, compiler assistance and
diskless checkpointing.

Quintessential to designing survivable storage systems is a mechanism for
dispersing information on multiple physical storage media to improve reliability and
to reduce storage space consumption. Rabin proposed an efficient Information
Dispersal Algorithm (IDA) for security, fault-tolerance and load-balancing [6]. The
idea is to divide a file F into n number of pieces and during reconstruction any m
pieces (m n) from the n pieces would suffice to successfully reconstruct the original
file F. Any such (m -1) pieces would not reveal any information about the contents of
the original file.

Central to our problem is determining if a process has become faulty. Software
errors and adversary attacks targeted towards a specific process running on a node,
forces the process to behave arbitrarily (Byzantine manner) [10]. Our approach for
detecting process failures follows that of Byzantine Agreement (BA) [12, 13]. In
general, solving Byzantine Agreement reduces to solving binary consensus problem
in a distributed environment [13]. However, it has been proven that reaching
consensus is impossible in an asynchronous environment that is subject to even a
single crash fault [18]. Synchronous systems do not suffer from this problem because
computations or communications are expected to finish within a bounded time. In
contrast, partial synchrony places bounds on processing and message transmission
times but the bounds are not known. Further, they hold only after some unknown
time, called the global stabilization time (GST) [11]. Chandra and Toueg [11]
introduced the concept of unreliable failure detectors to augment the asynchronous
system model with an external detector that can make mistakes. They define failure
detectors in terms of abstract properties. Unreliable fault detectors in an asynchronous
environment can make mistakes by erroneously adding a non-faulty process to their
suspect list and later remove them when they receive a response from the suspected
process. Unreliable fault detectors are classified by the number of mistakes they make
i.e., their accuracy and their ability to detect faulty processes i.e., their completeness.
Several classes of Byzantine fault detectors were defined by Chandra et al. using the
above properties. In addition, Chandra and Toueg give a transformation algorithm that
transforms an eventual weak completeness detector D to an eventual strong
completeness detector D’.

Malkhi and Reiter [12] suggested using an unreliable fault detector from the S(bz)
class for solving consensus in an asynchronous Byzantine environment subjective to
malicious attacks. Their detector is able to detect quiet processes and any process
which sends non-well-formed messages. Further randomization techniques applied to
the S(bz) detector result in a hybrid protocol that guarantees termination even if
eventual weak accuracy does not hold.

Kihlstrom et al. [9] further improved the completeness properties proposed by
Chandra et al. by defining fault detectors in terms of deviation from Algorithm A
that is used for solving consensus. Two new completeness properties namely
eventual strong Byzantine completeness for algorithm A and eventual weak
Byzantine (k + 1)-completeness for algorithm A. These two properties combined
with the existing [11] accuracy properties form a new set of unreliable Byzantine
fault detectors that are capable of capturing some of the Byzantine behavior
unattended by earlier approaches [11, 12].

A Secure Checkpointing Protocol for Survivable Server Design 433

3 The Secure Checkpointing Protocol

Our secure checkpointing scheme assumes the following environment. The system
consists of pool of similar servers all providing the same service. The servers
communicate with each other over an open network, which is susceptible to
eavesdropping, message modification and replay. Any server can potentially be
attacked and compromised. Servers periodically run the secure checkpointing
algorithm to generate checkpoint data about their process states. To minimize the
storage overhead we use compressed differences with incremental checkpointing.

To make the checkpoint information readily available we distribute the checkpoint
data of each server to some (or all) of its peers. In case of failure of the current server,
the checkpoint data is still available at some other location. Two security issues arise
here. First, if the original server is attacked instead of simply failing the checkpoint
data is compromised. To prevent this we delete the generated checkpoint data from
the source as soon as it is safely distributed to other servers. Second, simple
replication of checkpoint data at other servers increases the vulnerability of the data.
We address this problem by dispersing the checkpoint data to a set of servers instead
of replicating the same. The dispersion process breaks down the data into n segments
such that any k segments can be used to re-create the data but no k-1 can do the same.

To disperse the data in a secure manner over open networks we establish secure
channels between the peers. We employ secure group communication. Most of the
secure group key schemes suggested in literature [14, 15] have considerable overhead
in terms of re-keying for group membership events and keeping track of consistent
view of the group. To solve this particular problem we develop a RSA-type keying
scheme based on the theory proposed earlier by one of the authors [8]. The proposed
group key has a simple re-keying method by which each member individually and
independently computes the new group key in a completely distributed manner. While
the group key guarantees the confidentiality of the dispersed data, integrity is ensured
by the use of RSA based digital signatures.

A major problem that still needs to be addressed is determining if a server has been
attacked and compromised. To do this, however, we cannot, rely on a single source of
information. This is because that particular source may itself be compromised. Thus,
we propose a consensus approach by which a coterie of peers determines if some
sibling has been compromised. Our solution to the problem comes from the domain of
unreliable fault detectors suggested by Chandra and Toueg [11].

3.1 System Model

We consider an asynchronous distributed environment with n 2 processes. Each
process has a unique logical identifier associated with it. All processes are connected
to all other processes by communication channels and processes communicate with
each other by passing messages. No bounds are placed on communication times for
such messages. Each process has access to a local clock, but the clocks themselves are
not synchronized. Message passing primitives include send, recv, broadcast-send, and
broadcast-recv. Communication failures are modeled as process failures and for
simplicity we consider communication faults as process faults.

Processes may behave correctly according to their algorithmic specification or they
may show arbitrary (Byzantine) behavior. Crash faults due to software errors or

434 V. Kambhampati, I. Ray, and E. Kim

hardware failures are modeled as Byzantine faults and hence receive no special

treatment. We denote k
3

)1(−n
 to be the maximum number of Byzantine processes

and require at least
(2 1)

3

n+
 processes to be correct.

3.2 Byzantine Fault Detector

We propose a new algorithm for solving consensus in an asynchronous environment
using a weak fault detector D1 in W(bz). As part of the algorithm D1 is transformed to
a stronger detector D2 in class S(bz). Output(D2)p emulates the output of D2 i.e., the
eventual strong fault detector S. The consensus algorithm presented here uses
techniques from Chandra and Toueg [11], Kilhstrom et al. [9] and Malkhi and Reiter
[12]. This scheme involves a revolving coordinator and proceeds in asynchronous
rounds. All processes have a priory knowledge that during round r, the coordinator is
process c (r mod n + 1), where n is the number of processes in the system.
Communication failures are counted towards process failures. The algorithm as
follows.

ALGORITHM 1: ConsensusUsingByzantineFaultDetectors
Input: pv is p’s estimate of input value.

 1p
D is a fault detector in class W

 psuspect is a local variable (vector) of suspected processes.

Output:
2 p

OutputD is the list of current failed processes.

 ()decide v is the decided estimate.

Steps: /* All processes execute the following in parallel */
 /* Initialization */
 p pestimate v←

 ()decide v ←⊥

 : []i pSuspect i∀ ←⊥

 0pr ←
 repeat forever

Phase 1 1p pr r← +

 (mod) 1p pc r n← + /* pc is the current coordinator */

 broadcast-send(ESTIMATE, pr , pestimate , p)

Phase 2 /* coordinator */
 if [pp c=] then

 wait until [for
(2 1)

3

n +
 distinct processes :q p broadcast-received

 well-formed-messages of type (ESTIMATE, pr , pestimate ,q) from q]

A Secure Checkpointing Protocol for Survivable Server Design 435

 :q∀ if [received (ESTIMATE, pr , pestimate , q)] then

 []p qV q estimate←

 else []pV q ←⊥

 if [for
(1)

1
3

n − + : in [][]q i j pestimate estimate estimate V i j=] then

 p qselect estimate←

 else p pselect estimate←

 broadcast-send(SELECT, pr , , p pselect c)

Phase 3 wait until [received well-formed-message (SELECT, pr , ,
pc pselect c)

 from pc or 1ppc D∈] /* p queries its local fault detector 1p
D */

 if [received (SELECT, pr , ,
pc pselect c) well-formed-message

 from pc] then

pp cestimate select←

 send(ACK, pr , p) to pc

 else send((NACK, pr , p) to pc

Phase 4 if [pp c=] then

 wait until [for
(2 1)

3

n +
 distinct processes q: p broadcast-received

 well-formed-messages of type (ACK/NACK, qr , q) from q]

 if [
(1)

1
3

n − + of these messages are of type (ACK, qr , q] then

 () pdecide v select←

 broadcast-send(DECIDE, pr , p, pselect)

Phase 5 if not [received well-formed-message of type
 (DECIDE, qr , pc ,

pcselect) from pc] then

 p psuspect c← /* pc is added to 1D suspect list */

 broadcast-send(DECIDE, pr , p, psuspect)

Phase 6 wait [receive well-formed-message(s) of type
 (SUSPECT, pr , q, qsuspect) from q]

 foreach [r in qsuspect]

 [] [] 1p pSuspect r Suspect r← +

 until [for
(2 1)

3

n +
 distinct processes q]

 foreach [r in []pSuspect r]

436 V. Kambhampati, I. Ray, and E. Kim

 if [[] (1)
1

3p

n
Suspect r

−≥ +] then

 2 p
OutputD r←

 2 ppsuspect OutputD←

 []: i pSuspect i∀ ←⊥

3.3 Checkpoint Data Generation and Dispersion

We adapt the technique of incremental checkpointing with compression differences
suggested by Plank et al. [2]. A major advantage of Plank et al.’ s scheme is that it is
more successful than other in reducing the storage overhead for saving checkpoints.
Moreover, it does not suffer from the aliasing problem discussed earlier. We assume
that the entity computing checkpoint data for dispersion is a member of a group and
has access to a group key gK that has been previously generated using the group key

protocol (described in section 4.4). The group periodically determines by executing
algorithm 1 if a member is malicious. If so the other members of the group discard
the malicious member by changing the group key for the other members.(described in
the keying algorithm). It is possible that the current server is the malicious one in the
group. However, since it does not have the most recent group key, the data it sends to
others will not be available to those group members for all practical purposes. The last
checkpoint data available to the peers before the current server was determined to be
malicious will be the one use if needed.

ALGORITHM 2: Secure Checkpoint
Input: Checkpoint data
Output: Compressed checkpoint data split into n portions of partial
 checkpoint data and dispersed to n peers.
Steps:

(1) The check pointer allocates appropriate buffers to hold checkpointing data.
(2) After each checkpoint, the address space of the program is protected with

read-only bit. Every time the program tries to change a read-only page, a
page fault is generated and detected. Checkpointing application puts the
fault-page number into a modified page list and it is copied to the checkpoint
buffer.

(3) The page protection bit is then modified to read-write.
(4) At each checkpoint, new content of the page is written and the modified page

list is cleared. The address space is protected with read-only again.
(5) Return control to the program
(6) At the next checkpoint, the two copies of each page (one is a current page

(pagei) and the other is previous page which is in checkpoint buffer (bufi))
are compared and the difference (diffi) between them calculated by using
bitwise Exclusive-OR operator (⊕).

(7) Any word that is not changed in pagei is zeroed in diffi due to the Exclusive-
OR operation. In addition, any compression algorithm with a small
compression ratio is enough to reduce the checkpointing information further.

A Secure Checkpointing Protocol for Survivable Server Design 437

(8) The diff’s are concatenated to form F which is then segmented into
sequences of length m (with padding in the end as needed) as follows:

() ()1 1, , , , , ,m N m NF b b b b− += … … … . That is 1 2|| || || N
m

F S S S= … where

()()1 1, , , 1i imi m
NS b b i m− += ≤ ≤… .

(9) Choose a set of n vectors ()1, , 1i i ima a a i n= ≤ ≤… such that every subset of

m different vectors is linearly independent. Using the set of vectors

()1, , 1i i ima a a i n= ≤ ≤… , F is processed and divided into n pieces

1 nF F′ ′… as follows: () ()()1 1i i k i im k mk mF a S a b a b ⋅− ⋅
′ = • = × + + ×…

(10) Concatenate the ith chunk iF′ obtained in step 9 with the ith vector ia .
Compute the digital signature of the concatenated information and append.
Encrypt the entire piece of information using the group key Kg.

(11) Distribute the ith-encrypted chunk to the ith group member.

3.4 Group Key Generation

We develop a new asymmetric key group key protocol based on the theory proposed
earlier by Ray et al. [8]. The cryptographic scheme is similar to RSA. There is a
single encryption key 1 2,g nK e N N N= × ×… where 1 2, , nN N N… are pairwise

relatively prime integers and n is the number of members in the group.
Each member Mi has a public key/private key pair given by

1, / , , where 1modi i i i i i iK e N K d N e d N−= = • ≡ . The property of this scheme is

such that any message that is encrypted with the key Kg can be decrypted by any one
of the keys 1

iK − and only one of these keys.

We define three operations for group key management. These are member join,
member leave, and forced member delete. Member join operation occurs when a new
member wants to join a group, for example, when a new node is added to the network
or some node, which has left the group, wants to re-join. However, nodes suspected
by the group are never allowed to join the group unless the entire distributed protocol
restarts. Also, note that a malicious node might attempt to join a different group in the
network, in which case it might be accepted by that group for a short period and later
deleted due to its Byzantine behavior. Member leave operation occurs when a
member wants to leave the group. Lastly, if (k + 1) members from the group agree
upon a certain member to be malicious (through Byzantine fault detection) then a
forced member delete operation occurs.

3.4.1 Member Join Operation
When a new member Mi+1 wants to join the group, it broadcasts a join-request
message to all group members {M1,…, Mi} with its public key Ki+1 = <e, Ni+1> and
keeps its private key K-1

i+1 = <di+1, Ni+1> as secrete. For consistent behavior, all group
members wait before responding until the current run of consensus algorithm finishes.
This makes sure that all group members end up with the same suspect list of
Byzantine processes.

438 V. Kambhampati, I. Ray, and E. Kim

Step1: A new member Mi+1 broadcasts a join-request message to all group
members with its public key Ki+1 = <e, Ni+1>.

Step2: Each member checks its local suspected processes list and sends a
deny-join/grant-join message to the new member.

Step3: Upon grant-join, each member computes the new group key using the
new group member’s public key.

Knew = Kprevious × Ki+1 = K1 × K2× …× Ki × Ki+1,

 = <e, N1×N2×…×Ni× Ni+1>.

3.4.2 Member Leave Operation
When a member Mm | Mm ∈[M1, Mi], wants to leave the group, it broadcasts a leave-
request message to all group members {M1,…, Mi}. To prohibit invalid group member
Mm to decrypt the encrypted message m’ with the invalid decryption key K-1

m= <dm,
Nm>, the group key K has to be changed.

Step1: A member Mm broadcasts a leave-request message to all group
members.

Step2: Every member updates the list of other group members’ public
key information.

Step3: Every member computes the new group key using updated
group members’ public key list.
Knew = Kprevious / Km

 = <e, N1×N2×…× Nm-1× Nm+1 ×…×Ni-1× Ni>.

3.4.3 Forced Member Delete Operation
Upon completion of a consensus protocol run, each process ends up with a list of
suspected processes. These processes should be removed from the group and a new
group key should be re-keyed, as some of them could be malicious. All processes
execute the following:

Step1: Start a new run of consensus solving algorithm (Algorithm
ConsensusUsingByzantineFaultDetectors) and wait until
completion.

Step2: Find if any group members are added to the suspect list.
Step3: For each member in suspect list, compute a new group key by

deleting the suspected group member from the old key.
Knew = Kprevious / Km

 = <e, N1×N2×…× Nm-1× Nm+1 ×…×Ni-1× Ni>.

4 Conclusions and Future Work

In this paper, we propose a new secure checkpointing protocol that is suitable for an
active intruder environment. We make three major contributions. First, we develop a
consensus protocol based on Byzantine fault detectors. Using this protocol a group of
servers can determine if some member of the group has been attacked and
compromised. Second, we develop the main checkpointing protocol in which the
checkpoint data is split into n chunks and dispersed securely among n recipient; this is

A Secure Checkpointing Protocol for Survivable Server Design 439

done in such a manner that any k of those n recipients can get together and re-create
the checkpoint information however, no k-1 or lesser number of recipients can.
Moreover, no checkpoint information is dispersed to a server that has been
determined as malicious. The third contribution is the development of a simple yet
elegant group encryption scheme. This scheme provides the usual member join and
leave operations. In addition, the group key allows a member to be kicked out if a
quorum of the group determines that the member is malicious. To our knowledge, this
is the first secure checkpointing protocol to offer this rich array of feature.

The protocol is still in its early phase of development. While individual modules
have been implemented and tested we still do not have an integrated whole. Our next
step will be to integrate these individual modules into a working proof-of-concept. A
natural extension of this work is to develop the corresponding secure recovery
protocol. This will ultimately contribute to our bigger effort in developing secure
process migration techniques.

Acknowledgement

The work of Indrajit Ray was partially supported by the U.S. National Science
Foundation under grant IIS-0242258. The opinion reflected in this paper is that of the
authors and does not necessarily represent that of the NSF.

References

[1] S.I. Feldman and C.B. Brown, “Igor: A system for program debugging via reversible
execution,” ACM SIGPLAB Notices, Workshop on Parallel and Distributed Debugging,
vol.24(1), Jan. 1989.

[2] J. Plank, J. Xu, and R. Netzer. “Compressed differences: An algorithm for fast
incremental checkpointing.” Technical Report CS-95-302, University of Tennessee,
August 1995.

[3] H. Nam, J. Kim, S.J. Hong, and S. Lee, “Probabilistic checkpointing,” In Proceedings of
the 27th International Symposium on Fault-Tolerant Computing, Seattle, WA, June 1997.

[4] E.N. Elnozahy, “How safe is probabilistic checkpointing?,” In Proceedings of the 28th
International Symposium on Fault-Tolerant Computing, Munich, Germany, June 1998.

[5] M. Rabin, “Fingerprinting by random polynomials.” Technical Report TR-15-81. Center
for Research in Computing Technology. Harvard University, Cambridge, MA 1981.

[6] M. Rabin, “Efficient dispersal of information for security, load balancing, and fault
tolerance.” Journal of the ACM. vol. 36(2), April 1989.

[7] H. Nam, J. Kim, S.J. Hong, and S. Lee, “Secure checkpointing.” In Proceedings of the
2001 Pacific Rim International Symposium on Dependable Computing, Seoul, Korea,
December 2001.

[8] I. Ray, I. Ray and N. Narasimhamurthi, “A fair exchange e-commerce protocol with
automated dispute resolution.” In Proceedings of the 14th Annual IFIP WG 11.3 Working
Conference on Database Security, Schoorl, The Netherlands, August 2000.

[9] K. P. Kihlstrom, L. E. Moser, P. M. Melliar-Smith, “Byzantine Fault Detectors for
Solving consensus.” The Computer Journal vol 46(1), 2003.

[10] L. Lamport et al., “The Byzantine generals problem,” ACM Transactions on
Programming Languages and Systems, vol. 4(3), July 1982.

440 V. Kambhampati, I. Ray, and E. Kim

[11] T. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems.”
Journal of the ACM, vol. 43(2), March 1996.

[12] D. Malkhi, D. M. Reiter, “Unreliable intrusion detection in distributed computations.” In
Proceedings of the 10th Computer Security Foundations Workshop, Rockport, MA, June,
1997.

[13] P. Feldman and S. Micali. “Optimal algorithms for byzantine agreement.” In Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, Chicago, IL, May 1988.

[14] M. Steiner, G. Tsudik and M. Waidner, “CLIQUES: A new approach to group key
agreement,” Proceedings of the 18th International Conference on Distributed Computing
Systems, Amsterdam, The Netherlands, May 1998.

[15] Y. Kim, A. Perrig and G. Tsudik, “Simple and fault-tolerant key agreement for dynamic
collaborative groups.” In Proceedings of the 7th ACM Conference on Computer and
Communications Security, Athens, Greece, November 2000.

[16] J. S. Plack, Kai Li and Michael A. Puening, “Diskless checkpointing.” IEEE Transaction
on Parallel and Distributed System, vol 9(10), October, 1998

[17] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent checkpointing under
Unix.” In Proceedings of the USENIX Winter 1995 Technical Conference, New Orleans,
January 1995.

[18] M. J. Fisher, N. A. Lynch and M. S. Paterson, “Impossibility of distributed consensus
with one faulty process,” Journal of the ACM, vol. 32(2), April 1985

MobiCoin: Digital Cash for M-Commerce

Ranjit Abbadasari1, Ravi Mukkamala1, and V. Valli Kumari2

1 Old Dominion University, Norfolk VA 23529, USA
mukka@cs.odu.edu,

http://www.cs.odu.edu/~mukka
2 S.R.K.R Engineering College, Bhimavaram AP 524204, India

Abstract. Advances in mobile device technology have given rise to ap-
plications that rely on trusted hardware. These have also made the once
only virtually possible ideas into real applications. One such applica-
tion is transforming the mobile phone into a mobile wallet with digital
cash that supports both anonymity (as in real cash) and security. In this
paper, we introduce MobiCoin, a protocol to support M-commerce trans-
actions. It employs SIM cards for data protection and active certificates
for distributed trust. MobiCoin is secure, durable, fair, atomic and ac-
countable. It may be used as a digital cash protocol with a mobile digital
wallet without the trade-off for anonymity. In addition, it is an offline
protocol, thus increasing the efficiency and availability of m-commerce
transactions. The paper describes the model, the infrastructure, and the
details of the protocol. It also discusses some implementation issues and
security implications of using the protocol.

1 Introduction

While e-commerce is still the major boom in the global business scenario, new
applications and technologies are beginning to focus on mobile commerce or m-
commerce [22]. As the use of mobile devices becomes cheaper and convenient,
more will the commerce through mobile devices. At present, a majority of the
applications that exist require users to use credit cards to pay for commercial
transactions through mobile phones. This requires the user to carry a mobile
phone as well as his wallet. More convenience is achieved if we could add the
functionality of the wallet into the mobile phone. The stedy improvement in the
hardware side of mobile devices is one of the catalysts for efforts in this direction.
For instance, the SIM card used in a mobile phone has changed from a memory
chip to a smart card, which can perform several tasks [8]. The main objective of
this paper is to show that the advances in mobile technology can be utilized to
transform a mobile phone into an electronic wallet that contains digital cash.

The major inhibitor of m-commerce is the perception that it is not secure.
However, many protocol standards are now trying to make m-commerce more
secure and reliable [21]. An ideal m-commerce transaction system supports atom-
icity, fairness, accountability, privacy, and security [19]. Most often it is seen that
the user privacy is given little or no importance compared to other features.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 441–451, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

442 R. Abbadasari, R. Mukkamala, and V. Valli Kumari

Traditional physical cash (or currency note) provides the user a high degree of
privacy, as it is not traceable to a single user, when used for purchases. Our
idea is to develop a protocol that replicates this cash using mobile phone as an
electronic wallet.

Our protocol, MobiCoin, is based on PayCash [14], an e-commerce protocol.
Primarily, our protocol is designed to work offline, without involving a third-
party broker for every transaction. This change makes it all the more efficient
because the communication overhead previously needed to contact the third-
party is eliminated. On the other hand, none of the advantages offered by Pay-
Cash are lost. The hardware capability of SIM cards [17] and the feature-rich
active certificates [13] enable MobiCoin to function in an offline fashion offering
the much-needed efficiency for m-commerce transactions. While the SIM card is
used as a storage medium for the digital cash and as a secure foundation for ac-
tive certificates, active certificates implement distributed trust between various
parties in an m-commerce transaction.

The paper is organized as follows. Section 2 provides the background for
the technologies employed in MobiCoin. Section 3 describes MobiCoin’s over-
all architecture. Section 4 describes the protocol in detail. Section 5 provides a
detailed analysis of the protocol and proves some properties that MobiCoin sat-
isfies. Finally, section 6 summarizes the contributions of the paper and describes
our plans for future work.

2 Background

In this section, we provide a brief background of the technologies underlying the
proposed MobiCoin protocol.

M-commerce has been defined as the use of handheld wireless devices to
communicate, interact, and transact via high-speed connection to the Internet.
A number of issues arise when we try to port the current e-commerce protocols
and applications to M-commerce [22]. Mobile phone devices differ from desktops
in many ways [7, 20]. Secure transmission is yet another issue [11]. While devel-
opments are taking place in each of these areas, this paper is mainly concerned
with developing an M-commerce transaction protocol that supports authentica-
tion, authorization, fairness, privacy, non-repudiation, and efficiency.

Active Certificates expand the domain of digital certificate applicability to
dynamic authorization, privilege management, and access control [13]. In Mobi-
Coin, we primarily use active certificates to facilitate access control (for read/
update) to the data that is stored in the SIM card and also to perform some
simple operations such as checking the validity of data.

Smart cards are introduced in wireless networks as SIM cards [1]. They pro-
vide superior fraud protection since they were specifically designed to secure
data against physical and logical attacks [16, 17]. MobiCoin employs SIM cards
for their programmability and security [6].

An M-commerce transaction protocol may be called off-line or on-line based
on the necessity for its interaction with a third-party during a transaction [15].

MobiCoin: Digital Cash for M-Commerce 443

Some of the well-known on-line payment protocols are NetBill [6], PayCash [14],
CyberCoin (http://www.cybercoin.com), and DigiCash [5]. Off-line protocols,
on the other hand, do not involve a third party during the payment part of the
transaction. The problem with off-line protocols is the issues of double spending
and overspending [5, 24]. However, it is an efficient system. In MobiCoin, we
employ off-line protocols and yet avoid overspending and double spending.

A good M-commerce payment protocol should be both convenient and secure
[24]. One such protocol is the Wireless Payment Protocol (WPP). The shortcom-
ing of WPP is that it does not actually address security. SWPP [24] is proposed
to make up for WPP’s security deficiencies. MobiPay (www.mobipay.com) is
another system for mobile payments.

3 MobiCoin: Architecture

As stated in the introduction, the proposed protocol, MobiCoin, is targeted at
offering security, efficiency, and privacy to m-commerce transactions. It is an
offline mobile payment system offering a high level of privacy and anonymity
to a mobile user. In addition, it offers features to prevent double spending and
overspending, addressing the concerns of brokers. In this section, we describe
the overall architecture and approach of MobiCoin.

Fig. 1. Overall Architecture

As shown in Figure 1, six primary entities are involved in the protocol. The
customer (or the user) owns a mobile phone. He/she is supported by a wireless
provider (e.g., Verizon, T-Mobile, etc.) through a mobile phone. In addition to
its basic functionality as a telephone, the mobile phone also offers several other

444 R. Abbadasari, R. Mukkamala, and V. Valli Kumari

internet-based services. In this paper, we are primarily interested in its role as
a tool for enabling M-commerce.

The digital cash provider (or broker) is responsible for digital cash. It is
the one that supplies a digital wallet to mobile phone customers to use M-
commerce transaction services. The digital wallet is installed on a secure SIM
card. (In cooperation with the wireless provider, it is also possible for the digital
cash provider to install the wallet on wireless provider’s SIM card as an added
functionality.)

The digital wallet (implemented as an active certificate, in our work), in
addition to containing digital cash in the form of MobiCoins, also contains code
to support its interactions with the digital cash provider, the customer, and the
vendor. As explained in the next section, it may optionally contain an audit of
earlier transactions. The digital wallet is assumed to be secure and reliable, and
hence its data and code are tamper-proof.

The vendor (or the merchant) sells electronic goods such as E-books, MP3
downloads, software, and results from digital library searches. He participates in
the digital cash provider’s network. So his system has an installation of secure
software provided by the digital cash provider. The software has the ability to
securely interact with the customer as well as the digital cash provider.

The customer has an account with a bank (customer bank). This is a tradi-
tional bank (e.g., Bank of America). Whenever a customer wants to enrich his
digital wallet with more money, he can authorize his bank to transfer money
from his account to the digital cash provider. The digital cash provider, in
turn, transfers digital cash to the customer’s digital wallet. Similarly, the ven-
dor has an account with the vendor bank. The vendor can exchange his digi-
tal cash (received as MobiCoins from customers) with real cash deposited in
his account with coordination from the digital cash provider and the vendor
bank.

The involvement of the wireless provider in implementing this architecture
depends on its collaboration with the digital cash provider, the vendor, and the
customer. Due to space limitations, we have omitted this aspect here.

4 MobiCoin: Protocol

MobiCoin protocol is based on digital wallet containing digital coins. These are
a variation of Chaum’s electronic coins [3] used in PayCash [14]. The wallet is
provided to the customer either when he subscribes for the mobile service or as a
special subscription service with a monthly fee. The digital wallet is installed on
a SIM card provided either by the wireless provider or the digital cash provider.
The protocol has the following five primary operations.

(i) Blank Wallet Creation. Initially, the customer receives an inactive blank
wallet. If the customer chooses to use the MobiCoin wallet, the wallet (the code
part of it) handles subscription by executing the relevant code on the SIM card.
It asks the customer for some subscription details and contacts the digital cash

MobiCoin: Digital Cash for M-Commerce 445

provider with the details to customize the account. The subscription process
consists of the following steps:

1. Associating the customer’s bank account with customer’s MobiCoin account
with the digital cash provider.

2. Providing information such as username, password, or pin, in an encrypted
form, to authorize the digit al cash provider to interact with the customer
bank.

3. Providing options such as using credit or debit to create the coins.

The details provided by the customer are encrypted and formatted by the
wallet and sent as a message to the digital cash provider. Once the registration
is successful, the wallet is considered active and ready for m-commerce transac-
tions. The value of the wallet is initially set to zero. The value is maintained as
a secure data field in the digital wallet showing the amount of digital cash in the
wallet.

(ii) Coin Creation. This primarily involves an interactions between the cus-
tomer and the digital cash provider through messages M0 and M1 (Fig. 2). The
details are as follows.
1. Customer decides the amount of electronic cash (say n) to be purchased from

the digital cash provider and interacts with his digital wallet. The digital
wallet (implemented as an active certificate) generates a key pair <public
key P, secret key S>. (Optionally, the pair can be generated by the customer
and provided to the digital wallet.) Depending on the degree of anonymity
required, the customer can choose to use the same key pair or different key
pair every time he wants to create a new MobiCoin. The digital wallet now
creates message M0 sent to the digital cash provider:

M0: {cusID, n, blind(f(P))}signed by customer

f(.) and g(.) are two well-known functions published by the digital cash
provider and stored in the digital wallet as code. g−1(.) is kept as a secret by
the broker, and cannot be computed from g(.). blind() is a blinding function
[4]. Thus, the digital cash provider never gets to see either P or f(P). This
makes the coin anonymous.

2. Once the digital cash provider gets M0, it identifies the customer using the
customer ID and the digital signature of the customer. Further authentica-
tion can be done by interacting with the digital wallet. It then debits “n”
from the customer’s bank account and hence has the prepayment for the Mo-
biCoin to be minted. It applies g−1(blind(f(P))) function to obtain a minted
coin. This is like a stamp made by the third party because only the digital
cash provider knows g−1. He sends message M1 to the customer’s digital
wallet.

M1: {n, g−1 (blind (f(P)))}signed by digital cash provider

446 R. Abbadasari, R. Mukkamala, and V. Valli Kumari

M0 M1 M9 M10
 M2

 M3

 M4

 M5
 M6 M6

 M7

 M8

CUSTOMER

VENDOR

Digital Cash Provider

Fig. 2. Interactions in MobiCoin

3. The digital wallet unblinds the above function to obtain g−1(f(P)). At this
stage, the customer h as his newly minted MobiCoin, which can be used for
M-commerce. Additionally, the digital wallet has a field called expenditure
“e”. This is initially set to zero when the certificate is issued.

(iii) Negotiation. This operation takes place between the customer and the
vendor when customer decides to purchase an item. Referring to Fig. 2, the
step-by-step flow of this operation is as follows.

1. The customer selects the item he wants to purchase and sends it as message
M2.

2. The vendor makes two electronic documents, record-1 and record-2, and
sends them to the customer. Record-1 contains the description of the product
and the details such as the price agreed for the transaction. Record-2 is an
electronic payment form that contains an authorization for the third-party to
transfer funds from the customer’s account to the vendor’s account. Record-1
and Record-2 contain a unique serial number for the transaction. The vendor
signs both the records and sends M3 to the customer.

M3: {{record-1}vendor, {record-2}vendor}
3. Customer’s digital wallet signs the record-1 and sends it to the vendor as

message M4.
M4:{record-1}vendor+customer.

MobiCoin: Digital Cash for M-Commerce 447

4. Vendor sends the goods in an encrypted form to the customer as message
M5. The decryption key is still with the vendor. Thus, the customer gets
the goods before payment but then actual goods are not transferred.

M5:{goods(encrypted)}
(iv) Payment. Here, customer pays the vendor. Like the PayCash protocol,
functions sign() and verify() are used for payment. The sign() is used to encrypt
some information with a secret key. For example sign(S, Z) encrypts message Z
with the secret key S. The function verify() is used to decrypt the sign() value
with the public key. For example verify (P, sign (S, Z)) = Z. Both the functions
are well known to all three parties. It has the following steps.

1. The digital wallet computes sign(S, record-1) and sends the message M6.
The record-1 is also encrypted using the secret key chosen by the customer
and appended to the message. It should be noted that the message is sent
only when the condition n >= k+e, where k is the cost of goods, and e is
the amount expended so far, is met.

M6:{record-1, sign (S, record-1), k, P, g−1 (f(P))}signed by
customer

2. The vendor computes f(P) from P. It then applies g() to the g−1 (f(P)) field.
If the computed f(P) tallies with the result of the previous computation, it
can be sure that the coin is valid and also that “P” is a legal key. It applies
verify(sign(S, record-1)) using P and gets the value of record-1. It then
compares the result of the previous computation with that of record-1. If
they both tally, it can be sure that the message is from the customer. At this
stage, the vendor can be sure about the customer and also that the coin is
valid because record-1 is valid and also f(P) which is valid is also minted by
the digital cash provider. It sends the decryption key to the customer in the
form of M7. The key is encrypted using the customer’s public key P. Later
the customer can use his secret key to decrypt the key.

M7:{record-1 +Key(signedbyvendor+EncryptedusingP)}
3. Customer’s digital wallet sends M8 in acknowledgement of the decryp-

tion goods and hence the acknowledgement for the goods. M8:{record-2}
vendor, customer.

(v) Coin Cashing. Occasionally, the vendor may want to convert the digital
cash (MobiCoins) into real cash. This involves the following steps.

1. The vendor presents M9 containing record-2, which authorizes payment, to
the digital cash provider. Record-2 is signed by the customer and by the
vendor. So transfer of funds cannot take place without the notice of any of
the parties. Also a time stamp is given for record-2. The vendor is expected to
cash the coin within this time period. Even though the digital cash provider
knows that the customer is transferring funds to the vendor, it never gets to
know why the transfer is taking place.

448 R. Abbadasari, R. Mukkamala, and V. Valli Kumari

2. The digital cash provider transfers the funds to the vendor’s account basing
on record-2 and sends a reply as M10.

5 Protocol Analysis

In this section, we try to analyze the proposed protocol and see how it satisfies
different properties expected of an M-commerce protocol.

Claim 1: MobiCoin Supports Offline M-Commerce Transactions.
In this protocol, the digital coin (MobiCoin) of any value may be generated

prior to customer’s M-transaction. Customer can even recharge his mobile wallet
and use the coin at a later time. So the customer-vendor transaction does not
involve the digital cash provider, and hence it is offline. Similarly, the vendor
can transact with the digital cash provider anytime prior to the digital cash’s
expiration time. So the vendor-digital cash provider transaction is also offline.

Claim 2: MobiCoin Allows Only Authorized User to Take Part in
M-Commerce.

This transactional objective is achieved because only customers who are mem-
bers with the digital cash provider (following MobiCoin protocol) can get a
minted coin. The digital cash provider checks whether a customer ID (cusId in
M0) is valid prior to processing a request for digital cash creation. This also en-
hances a vendor’s trust in M-transactions since he knows that he is transacting
with a customer who is also known to digital cash provider.

Claim 3: MobiCoin Prevents Double Spending of Digital Cash.
In the protocol, the digital wallet is maintained on a tamper-proof SIM card.

In fact, the code in MobiCoin ensures that it is only residing at the digital wallet
to which it is initially assigned at the time of its creation by the digital cash
provider. The fields in the MobiCoin such as its current value, total expenditure,
etc., are stored in an encrypted form on the SIM card. These are only accessible
to the digital wallet. For this reason, there is no danger of a customer (or a
hacker) making multiple copies of a MobiCoin.

Claim 4: MobiCoin Prevents Over Spending of Digital Cash.
Prior to approval of a purchase, the digital wallet ensures that the current

value of MobiCoin is at least as much as the purchase amount. Unless this
condition is satisfied, the digital wallet does not approve a transaction. In fact,
the digital wallet maintains an up-to-date value of a MobiCoin by updating its
current value after every transaction (credit or debit). Prior to any subtractions
due to purchases, it ensures that the amount being subtracted is identical to that
mentioned in the corresponding record-1 of the transaction. Record-1 is stored
for later audits. In addition, except for the digital wallet, no other entity has
access to the code or data fields of MobiCoin. These are stored in an encrypted
manner. Thus, no illegal updates are possible on MobiCoin.

MobiCoin: Digital Cash for M-Commerce 449

Claim 5: MobiCoin Prevents Non-repudiation.
The protocol keeps track of every interaction between the parties. Let us

consider repudiation in different point of views.

1. The customer claims that the goods received were not what he asked or the
vendor sends wrong goods. The vendor stores the description of the goods in
an EPO (Electronic Purchase Order), record-1. The vendor signs the EPO
and the customer also has to sign the EPO when he pays the vendor. So a
mutually signed record of what the customer and vendor agreed is present.
Thus, the parties cannot repudiate on the issue of the order.

2. The customer or vendor dispute the price. Again the price of a purchase
is agreed and is recorded in the EPO that is signed by the customer and
the vendor. So neither the vendor nor the customer can claim an incorrect
amount.

3. Customer does not pay for the goods after receiving it. Here, with only in-
formational goods, the vendor gives the decryption key only after receiving
the payment from the customer.

4. Vendor and customer collude to cheat digital cash provider by specifying
a higher redeeming value from digital cash provider but deducting a lesser
amount from MobiCoin. The digital wallet and MobiCoin code will not al-
low such transactions to take place. They have sufficient code to compare
the agreed amount and deducting only that amount. Only when digital wal-
let/Mobicoin code are satisfied that the amount being sent is equal to the
amount in record-1, they send the signed record-2 to vendor. The customer
has no way to alter the process.

Claim 6: MobiCoin Is Resistant to Replay Attacks.
Every message that is exchanged between the parties contains a unique order

number either in record-1 or record-2. This can be used to keep track of duplicate
messages that are replayed either due to network problems or by a malicious
person tapping into the messages. If the vendor receives more than one message,
say M6, he just ignores all the other messages with the same order number.
Also, even if the malicious person interrupts the message in which the goods are
received, he will not be able to decrypt it because the key is encrypted and can
be decrypted only using the secret key.

6 Conclusion and Future Work

In this paper, we have introduced the MobiCoin wallet and have shown that
M-Commerce can indeed have digital cash. Previous protocols had a trade-off
with anonymity for efficiency, introducing vulnerabilities of double spending and
overspending. In the case of MobiCoin, we have eliminated the need for a cen-
tralized agency during payment making the system both fast and inexpensive.
MobiCoin is secure in terms of preventing customer fraud, double spending, non-
repudiation and allows for partial and full anonymity. This paper just explains

450 R. Abbadasari, R. Mukkamala, and V. Valli Kumari

a theoretical basis for the proposed system with some infrastructural and im-
plementation details. Our main task after this would be to implement the above
model. Support for multiple currencies is another aspect that can be incorpo-
rated into the system. Micro payments are also possible with the above scheme
but a more simple system, which also preserves all the advantages of MobiCoin,
would be desirable.

References

1. Carrara, J., Legaspi, L. E.: SIM Cards: At the Heart of Digital Wireless Security.
Annual Review of Communications, (2001), Vol. 54, 1-10

2. Chan, S.-C: An Overview of Smart Card security.
http://home.hkstar.com/∼alanchan/ papers/smartCardSecurity/, (1997)

3. Chaum, D., Fiat, A., Naor, N: Transaction Systems To Make Big Brother Obsolete.
Communications of the ACM, (1985), Vol. 28, No. 5, 1030-1044

4. Chaum, D.: Blinding for Unanticipated Signatures. Advances in Cryptology EU-
ROCRYPT ’87, Springer-Verlag, (1987), 227-233

5. Chaum, D.: An introduction to ecash: DigiCash. http://www.digicash.com, (1995)
6. Cox, B. J.D., Tygar, Marvin, S.: Netbill Security and Transaction Protocol. First

USENIX Workshop on Electronic Commerce, (1995), 77-88
7. De Bruijn, O., Spence, R., Chong, M. Y.: RSVP Browser: Web Browsing on Small

Screen Devices. Personal and Ubiquitous Computing, (2002), 1-4
8. Dhem, J., Feyt, N.: Hardware and Software Symbiosis Helps Smart Card Evolution.

IEEE MICRO, (2001), 14-25
9. Gemmell, P. S.: Traceable E-cash. IEEE Spectrum, (1997), Vol. 34, No. 2, 35-37

10. Gordon, P., Gebauer, J.: M-Commerce: Revolution + Inertia = Evolution. IM
Information Management and Consulting, (2001), Vol. 2

11. Juul, N. C., Jørgensen, N.: Security Issues in Mobile Commerce using WAP. 15th
Bled Electronic Commerce Conference, (2002), 6-13

12. Medvinsky, G., Clifford B.: Netcash: A design for practical electronic currency on
the internet. First ACM Conference on Computer and Communications Security,
(1993), 102-106

13. Mukkamala, R., Balusani,S.: Active Certificates: A New Paradigm in Digital Cer-
tificate Management. International Conference on parallel Processing Workshops
(ICPPW’02), (2002), 30-37

14. Peha, M., Khamitov, M.: PayCash: A Secure Efficient Internet Payment System.
5th international conference on Electronic commerce, (2003), 125-130

15. Poutanen, T., Hinton, H., Stumm, M.: NetCents: A Lightweight Protocol for Secure
Micropayments. Third USENIX Workshop on Electronic Commerce, (1998)

16. Shelfer, K. M., Procaccino, J. D.: SmartCard Evolution. Communications of the
ACM, (2002)

17. SmartTrust: SIM - software shift. http://www.smarttrust.com/sim/default.asp,
(2004)

18. Stefan, B.: Untraceable Off-line Cashing Wallet with Observer. Crypto’93, LNCS
773, Springer-Verlag, (1994), 302-318

19. Steves, D. V., Yurkanan, C. E.,Gouda, M.: An ACID Framework for Electronic
Commerce. http://www.cs.utexas.edu/users/dhs/papers/ictec 98/forum.html,
(1998)

MobiCoin: Digital Cash for M-Commerce 451

20. Tandon, R., Mandal, S., Saha, D.: M-commerce-Issues and Challenges. Interna-
tional conference on High performance Computing, (2003)

21. Tarasewich, P.: Mobile commerce opportunities and challenges: Designing mobile
commerce applications. Communications of the ACM, (2003), 46(12), 57-60

22. Tsalgatidou, A., Veijalainen, J.: Mobile Electronic Commerce: Emerging Issues.
Proceedings of EC-We, (2000), 477-486

23. Varshney, U., Vetter, R.: Mobile Networks and Applications. Mobile Networks and
Applications (MONET), (2002), 7(3), 185-198

24. Wang, H., Kranakis, E.: Secure Wireless Payment Protocol. Proceedings of ICT,
(2001)

Cellular Automata: An Ideal Candidate for a
Block Cipher

Debdeep Mukhopadhyay� and Dipanwita RoyChowdhury��

Indian Institute of Technology, Kharagpur, India

Abstract. Confusion and diffusion are two important requirements of
the round of a block cipher. In the present paper Cellular Automata
(CA) has been identified as a mathematical tool to achieve these. The
analytical framework of the automata has been used to characterize a
new class of linear CA and to implement the non-linearity through a
non-linear reversible CA. A generalized ideal structure of the block ci-
pher round have been developed and has been shown to perform both
encryption and decryption.

Keywords: Cellular Automata, Block Ciphers, Cycle Structure, Non-
linearity, Self-invertibility.

1 Introduction

With the ever increasing growth of data communication, the need for security
and privacy has become a necessity. CA based pseudorandom generator has
been studied in ([1, 2, 3, 4, 5, 6]). Quality of randomness has been evaluated as
per the criterion set by Knuth [7]. The advent of wireless communication and
other handheld devices like Personal Digital Assistants and smart cards have
made the implementation of cryptosystems a major issue. Modern day ciphers
require the scope of area minimization. The CA can be a good choice to develop
algorithms which are compact.

Research have been carried out to use the CA for encryption as the automata
has been known to have remarkable pseudorandom property. However the cur-
rent implementations face the following problems. The maximal group CA (that
is the CA in which all the non-zero elements lie in one cycle) used by several
researchers to implement ciphers has the advantage of cyclic nature in its state
transitions. This cyclic behavior of the CA helps in performing both encryp-
tion and decryption using the same cipher. But for the maximal group CA the
length of the CA grows exponentially with the number of cells. Thus the number
of clock cycles required to encrypt/decrypt grows exponentially with the number
of cells. The other problem of CA based ciphers is the affine nature, which makes

� Debdeep Mukhopadhyay is a Phd student in the Department of Computer Sc. and
Engg, IIT Kharagpur. debdeep@vlsi.iitkgp.ernet.in

�� Dipanwita RoyChowdhury is Associate Professor in the Department of Computer
Sc. and Engg, IIT Kharagpur. drc@cse.iitkgp.ernet.in

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 452–457, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Cellular Automata: An Ideal Candidate for a Block Cipher 453

the modules amenable to cryptanalysis. The cipher systems based on Cellular
Automata proposed by Nandi et al. [8] were proved to be affine and insecure
[9]. Thus non-linearity is an essential feature of ciphers. However non-linearity
should be introduced such that the cycle structure of the CA is not altered [10].
The present paper provides a viable solution to the above problems.

The outline of the paper is as follows: Section 2 gives an overview on the
proposed block structure. The linear and non-linear transformations of the round
are constructed in sections 3 and 4 respectively. Section 5 presents the final
round of the block cipher and also describes the properties of the overall round
structure. The work is concluded in section 6.

2 Present Work

Research have been carried out to use the Cellular Automata (CA) for develop-
ment of ciphers. The designs use maximal group CA because the cyclic nature
helps in obtaining structures which can be used to both encrypt and decrypt
data. However such structures have the lengths growing exponentially with the
number of cells and hence with the number of bits of data. The number of bits
inturn decides the security of the scheme. Also non-linearity should be intro-
duced to the affine nature of linear CAs. However the non-linearity should not
disturb the cyclic nature of the CA cipher.

In the following sections a structure of the block cipher is proposed which
solves the above problems. The block cipher round is composed of a linear trans-
formation T1 and a non-linear part f . The linear (T1) and the non-linear (f)
parts are composed together to form a structure (T2), where T2=f.T1.f

−1 (refer
figure 1). Thus non-linearity is introduced into the cipher and it has been proved
that such a structure does not disturb the cyclic nature of the linear CA. It has

+

Non−linear Step

 Inverse
Non−linear Step

Add Round Key

Linear Step

From Previous Round

(T)

−1
 (f)

1

(f)

To Next Round

+ Add Round Key

Fig. 1. The Proposed Structure of a Block Cipher Round

454 D. Mukhopadhyay and D. RoyChowdhury

been shown that the transformation T2 is self-invertible and fast (as the number
of clock cycles required to operate are lesser). Also the fast-forwardness property
of the structure helps in obtaining low cost and high-speed implementations.

In the following sections the linear and non-linear parts of the cipher are
constructed with Cellular Automata.

3 Construction of the Linear Transformation (T1)

The linear part of the cipher is constructed with the help of Cellular Automata.
The transform must be a group CA as the cyclic nature of the state space helps
in devising architectures which can both be used to encrypt and decrypt data.
However in contrast to the maximal group CA (which is being used widely) the
cycles of the new transform must grow linearly with the size of the automata.
This makes the cipher faster inspite of having a larger block size, that is the
speed of the cipher does not interfere with the security of the scheme. In the
following subsection a Cellular Automata constructed out of the rule 153 have
been characterized. It has been analytically shown that the automata forms
cycles of equal dimension which grows linearly with the number of cells.

3.1 Characterization of the Fundamental Transformations and Its
State Spaces

One of the rules of fundamental transformations (T) is the rule 153, [11]. The
present section characterizes the CA with rule 153. It is known that if a cel-
lular automata with rule 153 is fed with an initial seed of X, then the cellular
automata produces an output T (X) = T (X) + IF , where I is a unit matrix
and F is all one vector. Hence, we have X, T (X) and T

2
(X) members of the

same cycle. Physically, an n-cell uniform CA having rule 153 evolves with equal
number of cyclic states. This fundamental transformation T is used as the linear
transformation T1 mentioned in the previous section. The CA has some remark-
able properties. The CA evolves equal lengths and the length for an n-cell CA
grows linearly with the number of cells. The advantage of such a structure is to
obtain a module which can be programmed to perform both an encryption and
decryption module at a faster rate.

The following theorem characterizes a CA based on the rule T . The proof
has been ommitted for the lack of space.

Theorem 1. The length of cycle for an n-cell CA, having rule T , is

l = 2	logn
+1 ,n≥2 (1)

The following observations may be made from the above theorem. The length
of the proposed CA is a linear function of the number of cells. Thus if the length
of the complemented CA with rule 153 is used the length of the cycles (l) formed
may be obtained from equation 3. Thus T

l
=I. Thus T

l/2
= T

−l/2
. Thus using

the automata self-invertible transforms can be constructed. Also the number of

Cellular Automata: An Ideal Candidate for a Block Cipher 455

clock cycles required are less compared to a maximal group CA where the length
of the cycles depend exponentially on the block size. Also the proposed CA does
not have any fixed point compared to the maximal group CA. Thus the ciphers
developed out of the 153 rule CA are fast and also hardware efficient.

4 Construction of the Non-linear Transformation (f)

Non-linearity to the block cipher should be introduced such that the cyclic nature
of the embedded CA is not disturbed. The block cipher is thus self-invertible and
thus is amenable to efficient implementation. The implementation of the non-
linear function is also a major challenge. In the following subsections first it has
been shown how to introduce non-linearity to the round of the block cipher. It has
been proved that the non-linearity does not hamper the cyclic nature achieved
by the linear transform described in the previous section. The total structure
with both the linear and non-linear parts have been found to be self-invertible.
Subsequently a non-linear CA has been suggested to implement the non-linear
part. The CA has been shown to be reversible. Some of the properties for which
the CA is a good candidate for a one-way function has also been discussed.

4.1 Introducing Non-linearity to the CA Transformation

Theorem 2. The cycle structure of a transformation T1 is the same as T2 =
f.T1.f

−1.

Proof. Let the length of T1 be l, thus T l
1(X) = T l

1(X).
Let us evaluate Y = T l

2(X) = (f.T1.f
−1)(f.T1.f

−1) . . . (ltimes)(f.T1.f
−1)(X)

= (f.T 2
1 .f−1).(f.T1.f

−1) . . . (f.T1.f
−1)(X)

= (f.T l
1.f

−1)(X)
= (f.f−1)(X) [since, T l

1(f
−1(X)) = f−1(X)]

= f.f−1(X)
= X.

Thus the cycle structure of T1 and T2 are same.

It may be easily observed that the fields generated by T1 and f.T1.f
−1 are one-

one. The new transformation can thus be used instead of the Cellular Automata
alone. It may be noted that the transformation f is used to introduce non-
linearity in the block ciphers. The following subsection shows a possible means to
implement the non-linear part of the cipher using a reversible Cellular Automata.

4.2 Development of the Non-linear Part

The other feature required is that the Cellular Automata should have a non-
linear rule. The update rule that has been used is: xi

t+1 = xi
t ⊕ (xi+1

t + xi+2
t).

The inverse rule for the non-linear CA may be obtained. The large radius of
the inverse rule may be readily observed from the equations, thus making the rule
a candidate for a ”one-way” function. The resulting automata displays much the
same behavior as rule 30 would if it was skewed sideways. The rule 30 automata

456 D. Mukhopadhyay and D. RoyChowdhury

is known to exhibit good randomness property but the rule is not reversible. The
following section sums up the construction of the round of the block cipher.

5 The Resulting CA Based Cipher Structure

The previous sections identify a non-linear CA (f) and characterizes a linear
CA (T1) which can be the basic building components of the round of an ideal
block cipher. Present section deals with the construction of a generalized cipher
structure which employs the above transformations. It shows how the properties
like self-invertibility, non-linearity and fast forwardness can be achieved by the
proposed CA based cipher round.

The transformation T2 has the advantage of fast forwardness. This may be
observed as follows:

Tm
2 (X) = (f.T1.f

−1)m

=f(T1(f−1(f(T1(f−1(. . . (mtimes)f(T1(f−1)))...)(X)
=fTm

1 f−1(X).
Thus the transformation T2 can be made to iterate without requiring the non-

linear function to be iterated. Since the non-linear function is more computation
intensive this reduces the cost of the operation and is amenable to efficient
implementations. Also the transformation T2 is self invertible. Thus the same
round can be used for encryption and decryption.

The figure 2 shows the final constructed cipher round of a block cipher.
The round operates on a block of data, which may be conceptualised to be
made of bytes. For example a block of 128 bits is made up of 16 bytes. The
non-linear reversible CA operates with the 16 bytes as input. Thus the function
f is implemented. The fundamental Transformation is applied on each bytes.
Thus the length of the state space is 16. Thus inorder to make the encryption
and decryption blocks identical the 153 CA is cycled only 8 times. Instead if a

 Add Round Key

 Add Round Key

Reversible CA

Non−linear

Transformation
Fundamental

Count = 8

Non−linear CA

Inverse

Fig. 2. Structure of a round of the Block Cipher

Cellular Automata: An Ideal Candidate for a Block Cipher 457

maximal group CA is used and it is required that the same structure be used for
encryption and decryption then the number of clock cycles would have been 28/2
= 128. The advantage of the present structure thus lies in making the cipher
faster.

6 Conclusion

The present paper develops a generalized ideal block cipher round through the
use of Cellular Automata. The analytical framework of the automata has been
used to characterize a special class of null boundary CA, which forms the linear
part of the block cipher round. It has been shown that the cycle structure of the
linear CA leads to self-invertibe structures which can both encrypt and decrypt
data. Also the cycle length grows linearly with the block size thus requiring
less number of clock cycles. A non-linear CA has been identified to introduce
non-linearity to the round without disturbing the cyclic nature of the cipher.

References

[1] Ph. Tsalides, “Cellular Automata based Built-In Self-Test Structures for VLSI
Systems,” Elect. Lett., vol. 26, no. 17, pp. 1350–1352, 1990.

[2] Ph. Tsalides, T. A. York, and A. Thanailakis, “Pseudo-random Number Genera-
tors for VLSI Systems based on Linear Cellular Automata,” IEE Proc. E. Comput.
Digit. Tech., vol. 138, no. 4, pp. 241–249, 1991.

[3] P. D. Hortensius et al., “Cellular automata based pseudo-random number gener-
ators for built-in self-test,” vol. 8, pp. 842–859, August 1989.

[4] D. Roy Chowdhury, Theory and Applications of Additive Cellular Automata for
Reliable and Testable VLSI Circuit Design, Ph.D. thesis, I.I.T. Kharagpur, India,
1992.

[5] D. Roy Chowdhury and P. Pal Chaudhuri, “Parallel memory testing : a BIST
approach,” in Proc. 3rd Intl. Workshop on VLSI Design. Bangalore, India, 1989,
pp. 373–377.

[6] A. K. Das, Additive Cellular Automata : Theory and Application as a Built-in
Self-test Structure, Ph.D. thesis, I.I.T. Kharagpur, India, 1990.

[7] D. E. Knuth, The Art of Computer Programming – Seminumerical Algorithms,
Addison-Wesley, 1981.

[8] B.K. Kar, S. Nandi, and P. Pal Chaudhuri, “Theory and applications of cellular
automata in cryptography,” IEEE Trans. Comp, vol. 43, no. 12, pp. 1346–1357,
December 1994.

[9] S. Murphy, S.R. Blackburn, and K.G. Paterson, “Comments on theory and appli-
cations of cellular automata in cryptography,” IEEE Trans. Comp., vol. 46, no.
5, pp. 637–638, 1997.

[10] Moni Naor and Omer Reingold, “Constructing pseudo-random permutations with
a prescribed structure,” Journal of Cryptology, vol. 14, pp. 97–102, 2001.

[11] P. Pal Chudhuri, D. Roy Chowdhury, Sukumar Nandi, and Santanu
Chattopadhyay, Additive Cellular Theory and its Application, vol. 1, chapter 4,
pp. 200–300, IEEE Computer Society Press, 1997.

 R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, pp. 458---467, 2004.
© Springer-Verlag Berlin Heidelberg 2004

NFD Technique for Efficient and Secured Information
Hiding in Low Resolution Images

S.N. Sivanandam1, C.K. Gokulnath1, K. Prasanna2, and S. Rajeev2

1 Department of Computer Science & Engineering, PSG College of Technology,
Coimbatore, India

profsns@hotmail.com, goki_pras@yahoo.co.in
2 Department of Electronics & Communication Engineering, PSG College of Technology,

Coimbatore, India
prasan_psg@yahoo.com, rajeev@ece.psgtech.ac.in

Abstract. A new steganography algorithm that supports transmission of huge
information with minimal embedding is proposed. This approach uses the New-
ton’s Forward Difference (NFD) Technique for mapping the text file/s onto a
low resolution image file. A polynomial function is derived to represent the
mapping of the text bits with the bit positions on the host image file. This poly-
nomial is represented as bits and is embedded in the image file that is transmit-
ted. The bit replacements made in the host image file are negligible compared
to those in the existing embedding techniques.

1 Introduction

New approaches to data hiding open wide prospects in content management and se-
cure communications. The text message hidden in a image (cover) medium may be
plain text, cipher text, or any data/file that can be represented as a bit stream. To em-
bed data onto an image, the following prevailing issues are worth noting:

Recent data hiding techniques indicate that bit-replacement or bit-substitution is
inherently insecure with safe capacities far smaller than previously thought. Further
these techniques demand lesser data to be embedded into the cover image so that
probability of introducing detectable artifacts by the embedding process is less (i.e.
the size of the text data to be embedded is strictly restricted to a fraction of the cover
image file).

The proposed technique using NFD overcomes these issues by considering:

− The cover image data should not be significantly degraded by the embedded text
data and the embedded data should be as imperceptible as possible.

− The embedded data should directly be encoded into the media rather than into a
header or wrapper to maintain data consistency formats.

− The embedded data should be as immune as possible to modifications from intel-
ligent attacks or anticipated manipulations such as filtering and re-sampling.

 NFD Technique for Efficient and Secured Information Hiding 459

The proposed technique is designed to meet the above requirements and to over-
come the disadvantages faced by other embedding techniques.

2 NFD Steganography Algorithm

The text data file to be hidden on to the image and the cover image file are read as
bits. A table is constructed for all the bits in the text data file and the bit positions are
correspondingly tabulated (taken as x -values). For each bit in the text file, a tra-
versal is made on the image file and when a bit match is found an entry of corre-

sponding bit position of the matched image bit is made as)(ixf against the text bit

position ix . The search for subsequent bits of text file is performed such that the

)(ixf values for Mtoi 1= , yield a forward difference table in which the
thP differences of ()f x are constant (typically P = 2, 3 or 4) such that P M< ,

where M is the number of bits of the text file, thus generating a polynomial of de-
gree P . In other words, the polynomial generated is going to perfectly correspond to

the , ()()i ix f x values for all Mtoi 1= so that this provides lossless encoding.

The forward difference table is constructed using the following formula.

The thj -order forward difference of f evaluated at kx is

0

() (1) ()
j

j i
k k j i

i

j
f x f x

i + −
=

∆ = −
 (1)

Where
j

m
 represents a binomial coefficient for a fixed value of m.

The final polynomial is constructed after the thP differences in the forward differ-
ence table become constant.

)()...1()(0
2

21 xfxCxCxCxf p
p∆++∆+∆+= (2)

This final polynomial with its highest degree and coefficients is partitioned into
bits. This bit pattern can be considered as yet another data file and by applying the
procedure a still reduced bit pattern can be obtained.

The data flow diagram of the NFD Stego algorithm is given below. The various
blocks in the diagram are intended to represent the logical steps involved in the
algorithm.

The image file (the cover) and the data file to be hidden are represented in binary
format and sent to the Optimal Bit Mapper block which sequentially maps the bits in

460 S.N. Sivanandam et al.

the data file to the matched bits in the image file such that for each bit in the former
there is a positive integer value based on the bit position in the latter. The OBM
chooses the matches in such a way that the higher order differences in the difference
table vanish thus ensuring convergence and a polynomial function of a smaller
degree. These set of positive integer values form an increasing trend so that the set of

Fig. 1. Process Flow cycle of NFD Stego Algorithm

pairs of bit positions in the text x and position indexed values in the cover ()f x

generated can be applied to the Working Function Generator block which uses
Newton’s Forward Difference to construct the appropriate polynomial to fit the data
set.

The position indexed values)(ixf can exceed the maximum number of bits N

in the image file wherein bit mapping actually made indicates that bit in the position
given by the following hypothesis:

RNxFxf c ×+=)()((3)

where ()cF x indicates the actual position of the bit in the cover and R , the number of

recursions on the image file.
The working function i.e. the polynomial ()f x generated is then partitioned as

bit pattern in the Function Partitioner. This bit pattern is checked in the Base Check

 NFD Technique for Efficient and Secured Information Hiding 461

Sensor for basis function requirement which includes the final size of the message
bits which could be safely embedded without causing any perpetual degradation in
the host image. If the polynomial obtained is not to the expected less degree then the
bit pattern is fed into the OBM where it is considered as another text data file and the
above procedure is recursively performed until the basis function requirement is met
as indicated by the Base Check Sensor.

Once the basis function is obtained, it is partitioned into bit format storing the de-
gree and the coefficients of the polynomial. This bit pattern is appended with the
range of x , the number of recursions (r) of the procedure to give the Master Bit
Pattern or the Basic Builder Set. If this Master Bit Pattern is brought down to ‘ m ’
bits, we embed just the ‘ m ’ bits instead of the M bits of the text file (M>>m).

The Master Bit Pattern thus obtained has to be safely guarded since any bit change
in the MBP would lead to distorted retrieval of the hidden bits .Hence the obtained bit
pattern is coded using Turbo Code .

The MBP is copied to encoder1 and encoder2. Before entering the encoder2, The
MBP bits are scrambled by the interleaver. Each encoder generates a string of error-
correction bits (parity bits) by performing a series of calculation on the data bits it
receives. The original data and the two strings of parity bits are combined in to a
single block are embedded on to the image in the embedding area. This final turbo
encoded message is embedded using an existing efficient embedding technique gives
the ‘pseudem cover file’ as the output.

Fig. 2. Turbo encoder block with sample Master Bit Pattern

 This NFD Stego embedding technique leads to two important aspects\

1. Image file is seldom distorted.
2. For maximum utility multiple data files can be pseudo-embedded till the

maximum safe limit.

An Illustration of the NFD Stego Algorithm is given below

462 S.N. Sivanandam et al.

 Fig. 3. Mapping of text bits with the image bits

Where (i) in the Fig. 3 indicates ith iteration on the image needed for providing
mapping for the particular text bit.

Thus the difference table for the above mapping is provided below.
Applying the Newton’s forward difference formula, the polynomial we get is

2() 2 2f x x x= + + (4)

 NFD Technique for Efficient and Secured Information Hiding 463

Fig. 4. Difference table for the mapping of text bits with the image

Therefore the Master Bit Pattern is constructed as follows, two bits for each co ef-
ficient of the polynomial obtained and this would be turbo encoded for lossless re-
covery of the pattern in presence of channel noise.

MBP for the obtained polynomial

3 Extraction Algorithm

The extraction process is reasonably simple. From the agreed bit locations (both at the
transmitting and receiving ends) in the image, the turbo encoded message is extracted
which is decoded to get the Master Bit Pattern. The decoding operation is as follows:
 The received analog signal corresponding to the secure MBP is sampled and as-
signed integers indicating how likely it is a ‘0’ or a ‘1’. For example, -7 means a bit
is certainly a zero +7, a certain ‘1’. Note that an error occurred in the 5th bit in the
block as highlighted. Originally a ‘1’, it now has a negative value, which suggests it is
a logical zero which is the error that has occurred.
 Each Decoder takes noisy data and respective parity information and computes
how confident it is about each decoded bit. The two decoders exchange this confi-
dence information repeatedly and after a number of iteration, typically around 4 to

464 S.N. Sivanandam et al.

Fig. 5. Turbo decoder block for extraction of the Master Bit Pattern

10, they begin to agree on the decoded bits. The decoded data is the sum of noise and
data plus the two strings of confidence value. The output is converted back to binary
digits.

Once the Master Bit Pattern has been got by after decoding, the polynomial is
framed with the power and the co-efficient bits and the size of the text file. The poly-
nomial is evaluated for x: 1 to M and the necessary bits are extracted from the image
bit positions generated by the polynomial and hence the data file is retrieved.

The pseudem cover file, received at the receiving device is passed into the Master
Bit Pattern Extractor (a combination of encoded message extractor and turbo de-
coder) that retrieves the Basic Builder Set. This set enters the Bits to Function Con-
verter, which converts the bits in to well-defined polynomial function and range of
x the function should take. The higher level bit pattern is obtained in the Mapper and
Reader block. Here the function is evaluated for each value of x and the bit at the
position depicted by the function value is read from the image file. If the function
value is found greater than the maximum size of the image, then a cyclic back-trace
on the image file is made to read the required bit.

The actual position in the image is given by

() () modcF x f x N= (5)

The obtained higher level bit pattern is sent as input to the Bits to Function Con-
verter and after similar procedures we get the next higher level bit pattern and the
recursion continues until the final text data is obtained. This recursion ends when the
Recursion Null Comparator returns a ‘Null’ (this occurs when the decrement opera-
tion on the recursion counter results a null value).This final text data is driven to the
output along with the image file.

 NFD Technique for Efficient and Secured Information Hiding 465

Fig. 6. Data flow diagram for the extraction algorithm

An Illustration of the Extraction Algorithm is given below.
 From agreed locations in the Pseudem cover file the necessary bits to construct the
Turbo-Encoded Message is taken and decoded to get the Master Bit Pattern. Once the

polynomial (x² + 2x + 2) is constructed, it is evaluated for Mtox 1= , (16 in this

case) and from the positions generated by the polynomial, the text file bits are re-
trieved from the mapped area in the received file.

Bit Locations in Image After Performing Modulo Operation:

Thus Bits Extracted from Mapping Area are:

4 Simulation Results

The NFD-Stego Algorithm has been simulated in MATLAB environment and the
simulation results have been shown graphically. The graph gives the % Change in the
image file after hiding the information from the text file. The results have been given

466 S.N. Sivanandam et al.

for hiding 6 sets of text files of varying size into 4 images (BMP) of varying sizes. At
the end of the NFD-Stego algorithm, a turbo-encoded message is obtained which is
hidden by non-destructive embedding procedures. The size of the turbo-encoded
message (T) varies with the size (M) and nature of the text and the image files. Fi-
nally the % change in the image file is calculated using the formula:

%Change in the Image = (T/M)*100

5 Conclusion

The main objective of this work is to hide large volume of data (text) in the host caus-
ing minimal perceptual distortion on the image. Further to ensure reliability the pro-
posed model uses the turbo code which is one of the best possible error correction and
detection encoding schemes available in digital communications. This concept of
mapping is designed to represent a large text file with a polynomial achieving appre-
ciable reduction in number of bits required to be embedded. Thus the size of the data
to be hidden can be as high as or even more than the size of the image because actual
data that is embedded is much lesser than the stego embedded information.

References

1. Y. Wang and P. Moulin, “Steganalysis of Block-Structured Stegotext,” Proc. SPIE Conf.,
Vol. 5306, San Jose, CA, Jan. 2004.

2. J. L. Cannons and P. Moulin, “Design and Statistical Analysis of a Hash-Aided Image Wa-
termarking System,” to appear in IEEE Trans. on Image Processing, 2004.

3. P. Moulin and J. A. O'Sullivan, “Information-Theoretic Analysis of Information Hiding,”
Sep. 1999 [Sep. 99 postscript] ; revised, Sep. 2002. IEEE Trans. on Information Theory,
Vol. 49, No. 3, pp. 563-593, March 2003

 NFD Technique for Efficient and Secured Information Hiding 467

4. P. Moulin, “A Mathematical Approach to Watermarking and Data Hiding,” ICASSP
Tutorial, Orlando, FL, May 13, 2002

5. Moulin and E. J. Delp, “A Mathematical Approach to Watermarking and Data Hiding,”
ICIP Tutorial, Thessaloniki, Greece, October 7, 2001

6. J. A. O'Sullivan and P. Moulin, “Some Properties of Optimal Information Hiding and In-
formation Attacks,” Proc. 39th Allerton conference , Monticello, IL, Oct. 3--5, 2001

7. Neil F. Johnson and Sushil Jajodia, “Steganalysis: The investigation of hidden informa-
tion”, proceedings of the 1998 ieee information technology conference, syracuse, new york,
usa, september 1st - 3rd, 1998.

8. N.F. Johnson, S. Jajodia, “Steganalysis of images created using current steganography
software”, proceedings of information hiding workshop, portland, oregon, usa, april 1998.

9. F. A. P. Petitcolas, “Attacks on Copyright Marking Systems,”Information Hiding: Second
International Workshop, D. Aucsmith,Editor, Lecture Notes in Computer Science
1525,Springer-Verlag, Portland,OR(April 15–17, 1998), pp. 219–239.

Improving Feature Selection in Anomaly
Intrusion Detection Using Specifications

Yanxin Wang1, Andrew Miner1, Johnny Wong1, and Prem Uppuluri2

1 Department of Computer Science,
Iowa State University, Ames, Iowa, 50011
{wangyx, asminer, wong}@iastate.edu

2 Dept. of Computer Science and Electrical Engineering,
University of Missouri-Kansas City, MO, 64110

uppulurip@umkc.edu

Abstract. In the paper we discuss the intergration of an support vector
machine (SVM) based anomaly detection system with an specification
based intrusion detection system (IDS), where the specification based
IDS improves the feature-selection function of the SVMs. We demon-
strate through experimental results, that extended finite state machine
(EFSA) based anomaly detectors performs better than either the EFSA
and SVM anomaly detectors individually. Specifically the accuracy of
detection improved and the time and space required for SVM learning
reduced using the feature reduction based on EFSAs.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, p. 468, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Towards Automatic Learning of
Valid Services for Honeypots

Vishal Chowdhary, Alok Tongaonkar, and Tzi-cker Chiueh

State University of New York, Stony Brook, NY 11794

Abstract. Honeypots have emerged as an important tool in the field
of Intrusion Detection Systems. Honeypots are decoy machines whose
sole purpose is to be compromised by network attackers, in order to
gain information about the attack techniques. The biggest challenge in
deploying honeypots is their configuration and maintenance compounded
with the fact that they either emulate a few services or provide the real
services. The emulated services, which are usually implemented using
scripts, are restricted by the responses given to the attacker. This limits
the amount of information that can be gathered. The scipts are also much
easier to be detected by the attacker. On the other hand, the drawback
of providing real services is the greater risk associated with their use.

In this paper, we describe service-mining, a machine learning approach
to learn and emulate behavior of real-world services. Given large enough
traces of the real-service interactions and some basic information about
the service, we propose a scheme whereby we can learn the semantics
of its various commands and then effectively emulate the service. This
service may then be deployed on a honeypot to capture attack signatures
without posing a threat to the complete network.

Our initial experience in trying to emulate the popular FTP service
is promising. We are able to learn the FTP service and then intelligently
and consistently respond to user queries with our emulated FTP service.

R.K. Ghosh and H. Mohanty (Eds.): ICDCIT 2004, LNCS 3347, p. 469, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Author Index

Abbadasari, Ranjit 441
Acharya, Satyajit 244
Arora, Neelima 391
Atluri, Vijayalakshmi 369

Baik, Doo-Kwon 237
Barua, Gautam 400
Basu, Samik 353
Bhargava, Bharat 146
Bhattacharyya, Chiranjib 346
Biswas, Debmalya 117
Boora, Niranjan K. 346
Brahma, Siddhartha 22
Bruhadeshwar, Bezawada 410

Caraconcea, Izabell 168
Chakravarthy, Sharma 21, 106
Chand, Narottam 85
Chandra, Satish 243
Chaudhary, Banshi Dhar 266
Chiueh, Tzi-cker 469
Chowdhary, Vishal 469
Cleaveland, Rance 273

Dhar, Shilpa 75

Ferdean, Corina 204
Flocchini, Paola 194
Fotouhi, Farshad 168

Geisenberger, Marco 318
George, Chris 244
Ghosh, R.K. 127
Gokulnath, C.K. 458
Gopinath, K. 346
Gore, M.M. 127
Goswami, D. 135
Groth, Martin 318
Guo, Heqing 310
Gupta, Ankur 127
Gupta, Gopal 283
Gupta, Nitin 127

Ha, Yan 237
Hadimani, Vijayalakshmi 210
Hansdah, R.C. 210

He, Jifeng 255
Hedley, Yih-Ling 158
Hu, Yi 420
Hwang, Chong-Sun 96

Jajodia, Sushil 336, 379
James, Anne 158
Jang, Jong-soo 385
Jeon, Heung Seok 217
Joshi, Ramesh 85

Kalmady, Rajesh 50
Kambhampati, Vamsi 430
Kang, Hyun-Kyn 217
Kannan, Rajgopal 75
Khalil, Ibrahim 65
Khosla, Pradeep 145
Kim, Eunjong 430
Kim, Junghwan 217
Kim, Jinsoo 217
Kim, Ki-young 385
Ko, Myeong-Cheol 217
Krishnan, Padmanabhan 294
Kulkarni, Sandeep S. 410
Kumar, Sreenivasa P. 178
Kumar, Rajeev 304
Kumar, Vijay 2, 32
Kundu, Sukhamay 329

Lee, Jeong-Oog 217
Lee, Soon-Mi 237
Li, Xiaoshan 255
Lilien, Leszek 146
Lin, Manshan 310
Liu, Zhiming 255
Long, Quan 255
Lu, Shiyong 168

Macharla, Sandeep 22
Madria, Sanjay Kumar 227
Makpangou, Mesaac 204
Mall, Rajib 304
Miner, Andrew 468
Misra, Manoj 85
MadhuMohan, M.K. 178
Mohanty, Hrushikesha 244

472 Author Index

Mohapatra, Durga Prasad 304
Mukhopadhyay, Debdeep 452
Mukkamala, Ravi 441
Muller, Marianna 363

Nayak, Amiya 194
Negi, Tripti 42

Paik, Woojin 217
Pal, Sudebkumar Prasant 22
Panda, Brajendra 420
Park, Hea-Sook 237
Park, KwangJin 96
Park, Young-Whan 237
Parvathipuram, Pradeep 32
Peng, Xinyi 310
Prasad, Devi M. 266
Prasanna, K. 458

Rajasekhar, Sathish 65
Rajeev, S. 458
Ramamritham, Krithi 1
Ray, Arnab 273
Ray, Indrakshi 363
Ray, Indrajit 430
Rayanchu, Shravan K. 400
Rege, Manjeet 168
Roy, Krishnendu 75
RoyChowdhury, Dipanwita 452

Sahu, S. 135
Sarda, Kaushal 379
Sengupta, Bikram 273
Shin, Seung-won 385
Shyamasundar, R.K. 391

Singh, Anil 42
Singh, Sudhir Kumar 22
Sivanandam, S.N. 458
Song, Moon Bae 96
Sonvane, Digamber 50

Tari, Zahir 65
Tiwari, S. 60
Tongaonkar, Alok 469
Tripathi, V.S. 60
Tripathy, Amiya 42

Upadhyaya, Sujatha R. 178
Uppuluri, Prem 353, 468

Valli Kumari, V. 441
Venkitaraman, Ramakrishnan 283
Vidyasankar, K. 117
Vontella, Nishant 106

Wang, Lai 294
Wang, Yanxin 468
Warner, Janice 369
Wong, Johnny 468
Wijesekera, Duminda 336, 379

Xie, Ming 194

Yang, Gi-Chul 32, 227
Yin, Jianfei 310
Younas, Muhammed 158

Zaha, Johannes Maria 318
Zhou, Jing 420

	Frontmatter
	Plenary Talk -- I
	Taming the Dynamics of Disributed Data

	DISTRIBUTED COMPUTING
	Keynote Address -- I
	Data in Your Space

	Invited Talk -- I
	Enabling Technologies for Harnessing Information Explosion

	Algorithms and Modeling
	Fair Leader Election by Randomized Voting
	An Efficient Leader Election Algorithm for Mobile Ad Hoc Networks
	Distributed Balanced Tables: A New Approach

	Systems, Protocols and Performance
	Performance Evaluation of Gigabit Ethernet and SCI in a Linux Cluster
	Performance Evaluation of a Modified-Cyclic-Banyan Based ATM / IP Switching Fabric
	A Scalable and Robust QoS Architecture for WiFi P2P Networks
	NEC: Node Energy Based Clustering Protocol for Wireless Sensor Networks with Guaranteed Connectivity
	Energy Efficient Cache Invalidation in a Disconnected Mobile Environment

	Transaction and Information Dissemination
	An Efficient Data Dissemination Schemes for Location Dependent Information Services
	A Publish~/~Subscribe Based Architecture of an Alert Server to Support Prioritized and Persistent Alerts
	A Nested Transaction Model for LDAP Transactions
	Team Transaction: A New Transaction Model for Mobile Ad Hoc Networks
	An Efficient Protocol for Checkpoint-Based Failure Recovery in Distributed Systems

	Plenary Talk -- II
	Cybersecurity: Opportunities and Challenges

	INTERNET TECHNOLOGY
	Keynote Address -- II
	Vulnerabilities and Threats in Distributed Systems

	Query and Retrieval
	A TNATS Approach to Hidden Web Documents
	Querying XML Documents from a Relational Database in the Presence of DTDs
	SAQI: Semantics Aware Query Interface

	Protocol and Replica Management
	Hybrid-Chord: A Peer-to-Peer System Based on Chord
	A Generic and Flexible Model for Replica Consistency Management
	An Efficient Distributed Scheme for Source Routing Protocol in Communication Networks

	Ontology and Services
	The Roles of Ontology and Metadata Registry for Interoperable Databases
	DHL: Semantically Rich Dynamic and Active Hyperlinks
	User-Class Based Service Acceptance Policy Using Cluster Analysis

	SOFTWARE ENGINEERING
	Invited Talk -- II
	Tools and Techniques for Multi-site Software Development

	Analysis and Modelling
	Specifying a Mobile Computing Infrastructure and Services
	Generating a Prototype from a UML Model of System Requirements
	A Type System for an Aspect Oriented Programming Language
	Secure Requirements Elicitation Through Triggered Message Sequence Charts
	Framework for Safe Reuse of Software Binaries

	Tools and Techniques
	Supporting Partial Component Matching
	A Novel Approach for Dynamic Slicing of Distributed Object-Oriented Programs
	Pattern Semantic Link: A Reusable Pattern Representation in MDA Context
	Compatibility Test and Adapter Generation for Interfaces of Software Components
	A Modern Graphic Flowchart Layout Tool

	SYSTEMS SECURITY
	Keynote Address -- III
	A Flexible Authorization Framework for E-Commerce

	Intrusion Detection and Access Control
	Efficient Algorithms for Intrusion Detection
	Proxi-Annotated Control Flow Graphs: Deterministic Context-Sensitive Monitoring for Intrusion Detection
	Using Schemas to Simplify Access Control for XML Documents
	Automatic Enforcement of Access Control Policies Among Dynamic Coalitions

	Network and Security
	Implementing Consistency Checking in Correlating Attacks
	LSAD: Lightweight SYN Flooding Attack Detector
	UGSP: Secure Key Establishment Protocol for Ad-Hoc Networks
	Tracing Attackers with Deterministic Edge Router Marking (DERM)

	Secured Systems Design
	Distributing Key Updates in Secure Dynamic Groups
	Succinct and Fast Accessible Data Structures for Database Damage Assessment
	A Secure Checkpointing Protocol for Survivable Server Design

	Security Services
	MobiCoin: Digital Cash for M-Commerce
	Cellular Automata: An Ideal Candidate for a Block Cipher
	NFD Technique for Efficient and Secured Information Hiding in Low Resolution Images

	WORKSHOP ON DATAMINING, SECURITY \& APPLICATION
	Improving Feature Selection in Anomaly Intrusion Detection Using Specifications
	Towards Automatic Learning of Valid Services for Honeypots

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

